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 WHEN IS THE INTEGRATION ON QUANTUM PROBABILITY SPACES ADDITIVE?

 1. Introduction. In the paper £91 S. Gudder and J. Zerbe proved that

 for finitely valued functions the integral on quantum probability spaces

 is additive. Their proof involved highly nontrivial combinatorial reasoning.

 By applying a new (essentially plane topological) method, we extend the

 additivity result to a broad class of functions. (See Theorem 6.) When

 specialized to finitely valued functions, we also provide a simpler proof

 of the original Gudder-Zerbe theorem.

 Following [3] , a couple (X, L) is called a 0 -class if X is a
 X

 nonempty set and L C 2 such that

 (i) 0 6 L ,

 (ii) if A € L, then X - A 6 L ,

 (iii) if A^ € L (i € N) are mutually disjoint, then U ^ A^ € L.

 Further, a function s : L + [ 0, 1 J is called a state if s(0) ■ 0 and

 s( ^-^feN ^or every mutually disjoint sequence A^ € L
 (i 6 N). The triple (X, L, s) , where (X, L) is a a -class and s is

 a state on L, is called a quantum probability space (abbr. QPS) .

 Quantum probability spaces - besides being a formal generalization

 of classical probability spaces - naturally appeared as "event structures"

 in theories involving the phenomenon of "compatibility" £2, 6, 7, 8]. Here

 we shall be interested exclusively in the so called additivity problem.
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 Its motivation comes from quantum mechanics (See [2, 3j.)

 Let (X, L, s) be a QPS and let f: X * R be a function measurable

 with respect to L. Then the collection A = f ^(¿3(R))> where i3 (R)

 is the o -algebra of all Borei subsets of R, is a Boolean 0 -algebra

 contained in L. If we now restrict the state s to A we obtain an

 ordinary (probability) measure. The integral /f ds then may (and will)

 be understood as the Lebesgue integral with respect to s on A.

 Let f, g be two bounded measurable functions on (X, L, s) and

 suppose that f + g is measurable , too. Do we then have the equality

 / f ds + /g ds * / (f + g) ds ?

 Since in every integral we view the state s as an ordinary probability

 measure on the respective 0 -algebras generated by f» g and f + g,

 all the integrals obviously converge. (Also see [3] for relevant comments.)

 There are examples showing that this equality does not have to hold in

 general [l, 4, 5 J . On the other hand, in [9] the authors showed that the

 equality holds provided both f, g are finitely valued. Their proof was

 nontrivial and quite intriguing. Here we intend to offer another method

 (more transparent in the opinion of the author) which allows a principal

 extension of the Gudder-Zerbe theorem.

 2. Main result. Prior to proving our result, let us assume that

 throughout the paper f, g and f + g are fixed bounded measurable

 functions on a QPS (X, L, s). Without any loss of generality we may (and

 shall) assume that L is the 0 -class generated by f ^($(R)) u g ^(^3(R))

 u (f + g) ^(iã(R)) (i. e., L is the least a -class on which f, g
 and f + g are all measurable).

 Let R+ denote the set of all positive real numbers.

 Define, for any e € R+, the functions f = e int(f/ e), §£ =

 229



 » e int(g/ e ) and h£ - e int((f + g)/e )» where int stands for the

 greatest integer part function. If e ■+• 0+, then the family f converges

 uniformly to f. Similarly, we have g ^ + g and + f + g. For every
 e € R, the function 1/e (h - (f + g )) « int(f/e + g/ e ) - + e e e

 - (int(f/ e ) + int(g/e )) attains only the values 0 and 1. As one

 sees easily, the latter function is the characteristic function of a subset

 of X. Let us denote this set by K£. (The set is portrayed in Fig. 1.)

 Fig. 1

 We shall prove now that, under suitable assumptions, the sets K£ (e€ R+)

 belong to L and, moreover, they satisfy the following condition:

 (A) s(K_) - 1/e ( /h e ds - / f £ ds - / g £ ds) .

 Let us denote by E the set of all positive e such that K£ e. L and
 the condition (A) holds.

 Lemma 1: If the functions f, g are nonnegative then E ^ 0.

 Proof: If we take e such that e > sup f + sup g, we obtain K£ ■

 ■ 0 € L and f » g£ » h£ = 0. Hence the condition (A) holds.
 Lemma 2 ("contraction"): Let the functions f» g be nonnegative

 and let 5 , e be nonnegative real numbers with 6 < e . Suppose that
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 f~l( [i e- (i + j)(e-5)» i£ )) <"> g 1 ( [j e - (i + j) ( £ - 6 ) , je)) - 0

 for all i, j 6 N. Then 6 6 E if and only if £ 6 E and, moreover,

 if E r' [ó, e] j4 0, then [6 , e] C E.

 Proof: Put, for any n € R+ and any i, j e N, ■

 » f l([in - n. in )) <"> g 1 < [ j n - n» jn )). Then X = Ui s*'^ and

 S*'j n Kn - S*,J r' (f + g)"1 ( [(i + j - 1) n , (i + j) n )). (See Fig. 1.)
 According to our assumption, » 0 whenever (i + j)(e - 6) » e .

 The sets (f + g) * ( [k ó , k e) ) (k 6 N) are mutually disjoint.

 (Indeed, for k(e - 6) < e we have £(k - 1) 6 , (k - 1) e) fi [k 6 , k e )=

 * 0 and for k(£ - 6) » e we obtain (f + g) ^([k 6, k e)) ■ 0.)

 We shall prove now that the set + <S, k e)) € L is

 disjoint from Kg . Fro any i, j fi N, we have the equalities

 Se>j n Ke n Uk£N(f + S)_1([k <5» k £>> "

 - (Si,j n k ) U keN (si,j n (f + g)_1([k 6, k e)) c Si,j^ e e keN z e

 n(f + g)_1([(i + j) 5, (i + j) e)) C f~Ł([i e - (i + j) (e - 6) ,ie)rt

 ^g'l([je - (i + j)(e - 6), j £)) - 0 .

 Thus, K£ n + g) ^([k5 , ke)) »0 and the set
 P - K£u ^k6N(f + g)_1( [kô , ke ))

 belongs to L if and only if K£ e L.

 Similarly, the sets f '[k (, ke)),g*([kô, ke)) (k € N) are
 mutually disjoint. We shall prove that ^ » k u

 ^ ke)) is disjoint from . For all i, j € N, we

 have the equalities

 SJ'J ^ K6 ^ UteN f~1(l-k 6' k e)) -

 - S*,j n (f + g)_1([(i + j - 1) 6 , (i + j) <5 )) r.

 A f_1([(i - 1) 6, (i - l)e )).
 The latter set is empty because it is a subset of the set

 rhlif - (ij_ + j)(£ - <5), iL £)) A g_1([j e - aļ + j)( e - 6 ), je )),
 where i^ - i - 1.
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 Hence n ^([ká , ke )) - 0 and, analogously, n
 n ^kfiN 8-1([k5 ♦ ke )) ■ 0. Therefore the set

 Q * Kô U Uk€N f"1( tkÓ ' ke )} u Uk€N8_1( })

 belongs to L if and only if K. € L.
 Õ

 A routine verification gives that P = Q. Moreover, we obtain the

 equality

 S(V + £i€N sE(f + S)"1 ( , U ))J -

 - s(K6) + j;i6N s[f_1([i6 , ie ))] + [ļeN s[g_1([Ï6 , ie ))] ,
 which ensures the validity of the condition (A) . The rest of Lemma 2 is

 straightforward.

 In what follows, let H denote the closure of the set

 2
 {(f(x), g(x)) 6 R : X 6 X }. (As we shall not refer to any open intervals

 2
 in this paper, the symbol (p, q) always denotes an element of R .)

 Lemma 3: Let the functions f, g be nonnegative. Let n > 0. Denote

 by Fn the (finite) set {(in , j n ) 6 R2: i, j e N, (i - 1) n -
 < <

 » sup f, (j - 1) n ■ sup g /. Suppose that there exists a neighborhood %
 2

 of the point (0, 0) € R such that (F^ + ) o H - 0. Then n does
 not belong to the boundary of E.

 Proof: The assumptions of Lemma 2 are fulfilled for some <5 , e

 satisfying the inequalities 6 < n < e . (The numbers S and e can

 always be chosen such that for any point P » (in , jn ) € F we have
 n

 [ie - (i + J)( e - 6 ), ie ) X [j e - (i + j ) ( e - Ó ) , j e ) C P + lt.)

 Corollary 4: Let the functions f, g be nonnegative. Suppose that

 2
 H contains no point (u, v) € R with u/v rational. Then E ■ R+.

 Proof: According to Lemma 1, the set E is nonvoid and by Lemma

 3 it has no boundary points in R+.

 Lemma 5: Suppose that the ranges of f and g are nowhere dense

 in R and suppose that the range of g is countable. Then there is a
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 2
 point (p, q) € R with p ž inf f, q ¿ inf g such that H is disjoint

 with every straight line which contains the point (p, q) and has a

 rational slope.

 Proof: For all u, v, r € R we denote by J I the straight ° line in J u,v,r °
 2

 R containing the point (u, v) and having the number r for its slope.

 The union U I is a nowhere dense set. Further, the union
 u€f(X) u,v,r

 IT « U _ U ,VN U i is a set of the first category ® J and r«Q _ v6g(X) ,VN u6f (X) u,v,r ® J

 therefore we can choose for the required point (p, q) any point in

 (- » , inf f] X (- « , inf g ] - It .

 Theorem 6: Let (X, L, s) be a QPS and let f, g, f + g be bounded

 measurable functions on X. Let the ranges of f and g be nowhere dense

 sets in R and let the range of g be countable. Then / (f + g) ds

 » / f ds + /g ds .
 2

 Proof: Suppose that (p, q) € R is a point with the properties

 of Lemma 5. Since by adding a constant function to f, g, f + g the

 additivity remains unchanged, it is sufficient to prove the additivity

 for functions f - p, g - p. Thus, for the sake of simplicity, we can

 write f instead of f - p and g instead of q - p in the rest of

 the proof. According to Corollary 4, the sets K£ belong to L and they

 also satisfy the condition (A) for all e € R+. The condition (A) then

 gives

 /h_ ds - /f£ ds - /g£ ds - e • s(Ke) € [O, e] .

 So, for e ■* 0+, the left-hand side converges to zero. Therefore

 / (f + g) ds - Jf ds - /g ds - 0. The proof is complete.

 Let us remark in conclusion that there are examples showing that

 neither boundedness nor nowhere density can be omitted in the formulation

 of Theorem 6. (See [l] , Example 6 and [4].) Also, the theorem is not valid

 for more than two functions even if they are finitely valued. (See [4]
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 and [9] .) We do not know however whether Theorem 6 remains valid when

 we relax the countability condition of g.
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