WHEN IS THE INTEGRATION ON QUANTUM PROBABILITY SPACES ADDITIVE?

1. Introduction. In the paper [9] S. Gudder and J. Zerbe proved that for finitely valued functions the integral on quantum probability spaces is additive. Their proof involved highly nontrivial combinatorial reasoning. By applying a new (essentially plane topological) method, we extend the additivity result to a broad class of functions. (See Theorem 6.) When specialized to finitely valued functions, we also provide a simpler proof of the original Gudder-Zerbe theorem.

Following [3], a couple (X, L) is called a σ-class if X is a nonempty set and $L \subset 2^{X}$ such that
(i) $\emptyset \in L$,
(ii) if $A \in L$, then $X-A \in L$,
(iii) if $A_{i} \in L(i \in N)$ are mutually disjoint, then $U_{i \in N} A_{i} \in L_{\text {。 }}$ Further, a function $s: L \rightarrow[0,1]$ is called a state if $s(\emptyset)=0$ and $s\left(L_{i \in N} A_{i}\right)=\sum_{i \in N} s\left(A_{i}\right)$ for every mutually disjoint sequence $A_{i} \in L$ ($i \in N$). The triple (X, L, s), where (X, L) is a σ-class and s is a state on L, is called a quantum probability space (abbr. QPS).

Quantum probability spaces - besides being a formal generalization of classical probability spaces - naturally appeared as "event structures" in theories involving the phenomenon of "compatibility" $[2,6,7,8]$. Here we shall be interested exclusively in the so called additivity problem.

Its motivation comes from quantum mechanics (See [2, 3].)
Let (X, L, s) be a QPS and let $f: X \rightarrow R$ be a function measurable with respect to L. Then the collection $A=f^{-1}(\mathcal{B}(R))$, where $\mathcal{B}(R)$ is the σ-algebra of all Borel subsets of R, is a Boolean σ-algebra contained in L. If we now restrict the state s to A we obtain an ordinary (probability) measure. The integral $\int f$ ds then may (and will) be understood as the Lebesgue integral with respect to s on A.

Let f, g be two bounded measurable functions on ($\mathrm{X}, \mathrm{L}, \mathrm{s}$) and suppose that $f+g$ is measurable,too. Do we then have the equality

$$
\int f d s+\int g d s=\int(f+g) d s ?
$$

Since in every integral we view the state s as an ordinary probability measure on the respective σ-algebras generated by f, g and $f+g$, all the integrals obviously converge. (Also see [3] for relevant comments.) There are examples showing that this equality does not have to hold in general $[1,4,5]$. On the other hand, in [9] the authors showed that the equality holds provided both f, g are finitely valued. Their proof was nontrivial and quite intriguing. Here we intend to offer another method (more transparent in the opinion of the author) which allows a principal extension of the Gudder-Zerbe theorem.
2. Main result. Prior to proving our result, let us assume that throughout the paper f, g and $f+g$ are fixed bounded measurable functions on a QPS (X, L, s). Without any loss of generality we may (and shall) assume that L is the σ-class generated by $f^{-1}(\mathcal{B}(R)) \cup g^{-1}(\mathcal{B}(R))$ $\cup(f+g)^{-1}(\mathscr{B}(R))$ (i.e., L is the least σ-class on which f, g and $f+g$ are all measurable).

Let R_{+}denote the set of all positive real numbers.
Define, for any $\varepsilon \in \mathrm{R}_{+}$, the functions $f_{\varepsilon}=\varepsilon \operatorname{int}(f / \varepsilon), g_{\varepsilon}=$
$=\varepsilon \operatorname{int}(g / \varepsilon)$ and $h_{\varepsilon}=\varepsilon \operatorname{int}((f+g) / \varepsilon)$, where int stands for the greatest integer part function. If $\varepsilon \rightarrow 0_{+}$, then the family f_{ε} converges uniformly to f. Similarly, we have $g_{\varepsilon} \rightarrow g$ and $h_{\varepsilon} \rightarrow f+g$. For every $\varepsilon \in R_{+}$the function $1 / \varepsilon\left(h_{\varepsilon}-\left(f_{\varepsilon}+g_{\varepsilon}\right)\right)=\operatorname{int}(f / \varepsilon+g / \varepsilon)-$ - (int $(f / \varepsilon)+\operatorname{int}(g / \varepsilon))$ attains only the values 0 and 1 . As one sees easily, the latter function is the characteristic function of a subset of X. Let us denote this set by K_{ε}. (The set is portrayed in Fig. 1.)

Fig. 1
We shall prove now that, under suitable assumptions, the sets $K_{\varepsilon}\left(\varepsilon \in R_{+}\right)$ belong to L and, moreover, they satisfy the following condition:
(A) $\quad s\left(K_{\varepsilon}\right)=1 / \varepsilon\left(\int h_{\varepsilon} d s-\int f_{\varepsilon} d s-\int g_{\varepsilon} d s\right)$.

Let us denote by E the set of all positive ε such that $K_{\varepsilon} \in L$ and the condition (A) holds.

Lemma 1: If the functions f, g are nonnegative then $E \neq \emptyset$.
Proof: If we take ε such that $\varepsilon>\sup f+\sup g$, we obtain $K_{\varepsilon}=$ $=\emptyset \in L$ and $f_{\varepsilon}=g_{\varepsilon}=h_{\varepsilon}=0$. Hence the condition (A) holds.

Lemma 2 ("contraction"): Let the functions f, g be nonnegative and let δ, ε be nonnegative real numbers with $\delta<\varepsilon$. Suppose that
$f^{-1}([i \varepsilon-(i+j)(\varepsilon-\delta), i \varepsilon)) \cap g^{-1}([j \varepsilon-(i+j)(\varepsilon-\delta), j \varepsilon))=\emptyset$ for all $i, j \in N$. Then $\delta \in E$ if and only if $\varepsilon \in E$ and, moreover, if $E \cap[\delta, \varepsilon] \neq \emptyset$, then $[\delta, \varepsilon] \subset E$.

Proof: Put, for any $n \in R_{+}$and any $i, j \in N, S_{\eta}^{i, j}=$ $=f^{-1}([i n-\eta$, in $)) \cap g^{-1}([j n-n, j n))$. Then $x=U_{i, j \in N} S_{n}^{i, j}$ and $S_{\eta}^{i, j} \cap K_{\eta}=S_{\eta}^{i, j} \cap(f+g)^{-1}([(i+j-1) \eta,(i+j) \eta))$. (See Fig. 1.) According to our assumption, $S_{\varepsilon}^{i, j}=\emptyset$ whenever $(i+j)(\varepsilon-\delta) \geqq \varepsilon$.

The sets $(f+g)^{-1}([k \delta, k \varepsilon)) \quad(k \in N) \quad$ are mutually disjoint. (Indeed, for $k(\varepsilon-\delta)<\varepsilon$ we have $[(k-1) \delta$, (k-1) $\varepsilon) \cap[k \delta, k \varepsilon)=$ $=\emptyset$ and for $k(\varepsilon-\delta) \geqq \varepsilon$ we obtain $(f+g)^{-1}([k \delta, k \varepsilon))=\emptyset$.)

We shall prove now that the set $\bigcup_{k \in N}(f+g)^{-1}([k \delta, k \varepsilon)) \in L$ is disjoint from K_{ε}. Fro any $i, j \in N$, we have the equalities

$$
\begin{aligned}
& S_{\varepsilon}^{i, j} \cap K_{\varepsilon} \cap U_{k \in N^{\prime}}(f+g)^{-1}([k \delta, k \varepsilon))= \\
& =\left(S_{\varepsilon}^{i, j} \cap K_{\varepsilon}\right) \cap \cup_{k \in N}\left(S_{\varepsilon}^{i, j} \cap(f+g)^{-1}([k \delta, k \varepsilon)) \subset S_{\varepsilon}^{i, j} \cap\right. \\
& \cap(f+g)^{-1}([(i+j) \delta,(i+j) \varepsilon)) \subset f^{-1}([i \varepsilon-(i+j)(\varepsilon-\delta), i \varepsilon) \cap \\
& \cap g^{-1}([j \varepsilon-(i+j)(\varepsilon-\delta), j \varepsilon))=\emptyset .
\end{aligned}
$$

Thus, $K_{\varepsilon} \cap U_{k \in \mathbb{N}}(f+g)^{-1}([k \delta, k \varepsilon))=\emptyset$ and the set

$$
P=K_{\varepsilon} \cup U_{k \in \mathbb{N}}(f+g)^{-1}([\underline{k} \delta, k \varepsilon))
$$

belongs to L if and only if $K_{\varepsilon} \in L$.
Similarly, the sets $f^{-1}([k \delta, k \varepsilon)), g^{-1}([k \delta, k \varepsilon)) \quad(k \in N) \quad$ are mutually disjoint. We shall prove that $U_{k \in \mathbb{N}^{-1}}([k \delta, k \varepsilon)) u$ $\checkmark U_{k \in N^{\prime}} g^{-1}([k \delta, k \varepsilon))$ is disjoint from K_{δ}. For all $i, j \in N$, we have the equalities

$$
\begin{aligned}
& S_{\delta}^{i, j} \cap K_{\delta} \cap \cup_{k \in N} f^{-1}([k \delta, k \varepsilon))= \\
& =S_{\delta}^{i, j} \cap(f+g)^{-1}([(i+j-l) \delta,(i+j) \delta)) \cap \\
& \cap f^{-1}([(i-1) \delta,(i-1) \varepsilon)) .
\end{aligned}
$$

The latter set is empty because it is a subset of the set
$f^{-1}\left(\left[i_{1} \varepsilon-\left(i_{1}+j\right)(\varepsilon-\delta), i_{1} \varepsilon\right)\right) \cap g^{-1}\left(\left[j \varepsilon-\left(i_{1}+j\right)(\varepsilon-\delta), j \varepsilon\right)\right)$, where $i_{1}=i-1$.

Hence $K_{\delta} \cap U_{k \in \mathbb{N}} f^{-1}([k \delta, k \varepsilon))=\emptyset$ and, analogously, $K_{\delta} \cap$ $\cap \bigcup_{k \in N} g^{-1}([k \delta, k \varepsilon))=\emptyset$. Therefore the set

$$
Q=k_{\delta} \cup U_{k \in N} f^{-1}([k \delta, k \varepsilon)) \cup U_{k \in N^{-1}}([k \delta, k \varepsilon))
$$

belongs to L if and only if $K_{\delta} \in L$.
A routine verification gives that $P=Q$. Moreover, we obtain the equality
$s\left(K_{\varepsilon}\right)+\sum_{i \in N} s\left[(f+g)^{-1}([i \delta, i \varepsilon))\right]=$
$=s\left(K_{\delta}\right)+\sum_{i \in N} s\left[\mathrm{f}^{-1}([i \delta, i \varepsilon))\right]+\sum_{i \in N} s\left[\mathrm{~g}^{-1}([i \delta, i \varepsilon))\right]$,
which ensures the validity of the condition (A). The rest of Lemma 2 is straightforward.

In what follows, let H denote the closure of the set $\left\{(f(x), g(x)) \in R^{2}: x \in X\right\}$. (As we shall not refer to any open intervals in this paper, the symbol (p, q) always denotes an element of R^{2}.)

Lemma 3: Let the functions f, g be nonnegative. Let $\eta>0$. Denote by F_{η} the (finite) set $\left\{(i \eta, j \eta) \in R^{2}: i, j \in N,(i-1) \eta \leqq\right.$ $\leq \sup f,(j-1) \eta \leq \sup g\}$. Suppose that there exists a neighborhood U of the point $(0,0) \in R^{2}$ such that $\left(F_{n}+U\right) \cap H=\emptyset$. Then η does not belong to the boundary of E.

Proof: The assumptions of Lemma 2 are fulfilled for some δ, ε satisfying the inequalities $\delta<n<\varepsilon$. (The numbers δ and ε can always be chosen such that for any point $P=(i n, j \eta) \in F_{\eta}$ we have $[i \varepsilon-(i+j)(\varepsilon-\delta), i \varepsilon) \times[j \varepsilon-(i+j)(\varepsilon-\delta), j \varepsilon)<P+U$.

Corollary 4: Let the functions f, g be nonnegative. Suppose that H contains no point $(u, v) \in R^{2}$ with u / v rational. Then $E=R_{+}$.

Proof: According to Lemma 1 , the set E is nonvoid and by Lemma 3 it has no boundary points in R_{+}.

Lemma 5: Suppose that the ranges of f and g are nowhere dense in R and suppose that the range of g is countable. Then there is a
point $(p, q) \in R^{2}$ with $p \leqq \inf f, q \leqq \inf g$ such that H is disjoint with every straight line which contains the point (p, q) and has a rational slope.

Proof: For all $u, v, r \in R$ we denote by $\ell_{u, v, r}$ the straight line in R^{2} containing the point (u, v) and having the number r for its slope. The union $U_{u \in f(X)} \ell_{u, v, r}$ is a nowhere dense set. Further, the union $V=U_{r \in Q} U_{v \in g(X)} U_{u \in f(X)} \quad \ell_{u, v, r}$ is a set of the first category and therefore we can choose for the required point (p, q) any point in $(-\infty, \inf f] \times(-\infty, \inf g]-\mathcal{V}$.

Theorem 6: Let (X, L, s) be a QPS and let $f, g, f+g$ be bounded measurable functions on X. Let the ranges of f and g be nowhere dense sets in R and let the range of g be countable. Then $\int(f+g) d s$ $=\int f d s+\int g d s$.

Proof: Suppose that $(p, q) \in R^{2}$ is a point with the properties of Lemma 5. Since by adding a constant function to $f, g, f+g$ the additivity remains unchanged, it is sufficient to prove the additivity for functions $f-p, g-p$. Thus, for the sake of simplicity, we can write f instead of $f-p$ and g instead of $q-p$ in the rest of the proof. According to Corollary 4, the sets K_{ε} belong to L and they also satisfy the condition (A) for all $\varepsilon \in \mathrm{R}_{+}$. The condition (A) then gives

$$
\int h_{\varepsilon} d s-\int f_{\varepsilon} d s-\int g_{\varepsilon} d s=\varepsilon \cdot s\left(K_{\varepsilon}\right) \in[0, \varepsilon]
$$

So, for $\varepsilon \rightarrow O_{+}$, the left-hand side converges to zero. Therefore $\int(f+g) d s-\int f d s-\int g d s=0$. The proof is complete.

Let us remark in conclusion that there are examples showing that neither boundedness nor nowhere density can be omitted in the formulation of Theorem 6. (See [1], Example 6 and [4].) Also, the theorem is not valid for more than two functions even if they are finitely valued. (See [4]
and [9].) We do not know however whether Theorem 6 remains valid when we relax the countability condition of g.

Acknowledgement. The author would like to express his gratitude to Prof. Pavel Pták for his encouragement during this research and for numerous discussions on the topic of this paper.

References

[1] Dravecký, J., Šipoš, J.: On the additivity of Gudder integral, Math. Slovaca 30, 299-303, 1980.
[2] Gudder, S. P.: Quantum probability spaces, Proc. Amer. Math. Soc. 21, 296-302, 1969.
[3] Gudder, S. P.: Stochastic Methods in Quantum Mechanics, North-Holland, New York, 1979.
[4] Navara, M., Pták, P.: Two-valued measures on σ-classes, Čas. pěst. mat. 108, 225-229, 1983.
[5] Navara, M.: Two-valued states on a concrete logic and the additivity problem, Math. Slovaca 34, 329-336, 1984.
[6] Suppes, P.: The probabilistic argument for a nonclassical logic of quantum mechanics, Philos. Sci. 33, 14-21, 1966
[7] Watanabe, S.: Modified concepts of logic, probability and information based on generalized continuous characteristic function, Information and Control 2, 1-21, 1969.
[8] Watanabe, S.: Pattern Recognition as Information Compression, Frontiers of Pattern Recognition, Academic Press, New York, 1972.
[9] Zerbe, J. E., Gudder, S. P.: Additivity of integrals on generalized measure spaces, J. Comb. Theory (A) 30, 42-51, 1985.

Erecived iranuary 251989

