Vasile Ene, Institute of Mathematics, str. Academiei 14, 70109 Bucharest, Romania

CONSTRUCTION OF A WRINKLED FUNCTION

Wrinkled functions were introduced by Nina Bary in [1] and she called them "fonctions ridées". In our paper we construct another wrinkled function using an idea different from that of Nina Bary.

Let $a_i = 1/2^{i+1} + 3/4^{i+1}$ and let P be the perfect, nowhere dense subset of [0,1], $P = \{x : x = \sum c_i a_i \text{ with } c_i \text{ taking the values } 0 \text{ and } 1$ only}. Each point $x \in P$ is uniquely represented by $\sum_{i=1}^{\infty} c_i(x)a_i$. $V_n = \bigcup_{c_1} \cdots \bigcup_{c_n} \left[\sum_{i=1}^{n} c_ia_i, \sum_{i=1}^{n} c_ia_i + \sum_{i=n+1}^{\infty} a_i \right]$. Then $P = \bigcap_{n=1}^{\infty} V_n$ Let and $|V_n| = 2^n \sum_{i=n+1}^{\infty} a_i \rightarrow 1/2$. Hence |P| = 1/2. For each $x \in P$ let $F_1(x) = \sum_{i=1}^{\infty} c_{2i}(x)2^i$ and $F_2(x) = \sum_{i=1}^{\infty} c_{2i-1}(x)/2^i$. Extending F_1 and F_2 linearly on each interval contiguous to P we have F_1 and F_2 defined and continuous on [0,1]. Define $F : [0,1] \rightarrow [0,1] \times [0,1]$ by F(x) = $(F_1(x), F_2(x))$. Clearly $F(P) = [0,1] \times [0,1]$. For each irrational number $z \in (0,1)$ represented in base 2 by $\sum_{i=1}^{\infty} d_i(z)/2^i$ let $A_z =$ $\{x \in P : F_1(x) = z\} = \{x \in P : c_{2i}(x) = d_i(z)\} = a_z + A$, where $a_z = a_z + A$. $\sum_{i=1}^{\infty} d_i(z)a_{2i} \text{ and } A = \{x \in P : c_{2i}(x) = 0, i = 1, 2, \ldots\} \text{ and let } B_z =$ $\{x \in P : F_2(x) = z\} = \{x \in P : c_{2i-1}(x) = d_i(z)\} = b_z + B, \text{ where } b_z = b_z + B, \text{$ $\sum_{i=1}^{\infty} d_i(z) a_{2i-1} \text{ and } B = \{x \in P : c_{2i-1}(x) = 0, i = 1, 2, \ldots\}.$ Then A_z and B_z are perfect sets of measure zero.

<u>Lemma 1</u>. a) $F_2(A_z) = [0,1]$ and $F_1(B_z) = [0,1]$. b) F_2 is increasing on A_z and F_1 is increasing on B_z .

<u>Proof</u>. We prove the lemma only for F_2 since for F_1 the proof is analogous. Part a) is evident. b) Let $x, y \in A_z$, x < y. Then $x = a_z + \sum_{i=1}^{\infty} c_{2i-1}(x)a_{2i-1}$ and $y = a_z + \sum_{i=1}^{\infty} c_{2i-1}(y)a_{2i-1}$. Let n be a natural number such that $c_{2n-1}(x) = 0$, $c_{2n-1}(y) = 1$ and $c_{2i-1}(x) = c_{2i-1}(y)$ for each $i \in n-1$. We have $F_2(x) \in \sum_{i=1}^{n-1} c_{2i-1}(x)/2^i + \sum_{i=n+1}^{\infty} 1/2^i = \sum_{i=n+1}^{n-1} c_{2i-1}(x)/2^i + 1/2^n \in F_2(y)$.

Lemma 2. For each measurable subset M of P the set F(M) is measurable and |F(M)| = 2|M|.

Proof. Let
$$I_{c_1...c_{2p}} = \begin{bmatrix} \sum_{i=1}^{2p} c_i a_i, \sum_{i=1}^{2p} c_i a_i + \sum_{i=2p+1}^{\infty} a_i \end{bmatrix}$$
. Then
 $F(P \cap I_{c_1...c_{2p}}) = \begin{bmatrix} p_{i=1} c_{2i}/2^i, \sum_{i=1}^{p} c_{2i}/2^i + 1/2^p \end{bmatrix} \times \begin{bmatrix} p_{i=1} c_{2i-1}/2^i, p_{i=1}/2^i, p_{i=1} c_{$

(1)
$$|S_{c_1...c_{2p}}| = 2|P \cap I_{c_1...c_{2p}}| = 1/4^p$$

Let $\varepsilon > 0$ and let M be a measurable subset of P. Let G and H be open sets such that $M \in G$ and $F(M) \in H$, $|F(M)| > |H| - \varepsilon$, $|M| > |G| - \varepsilon$. Then $G \cap F^{-1}(H)$ is an open neighborhood of M. Since $P = \prod_{\alpha}^{\infty} [\bigcup_{C_1} \cdots \bigcup_{C_{2P}} (P \cap I_{C_1} \ldots C_{2P})]$ and $|I_{C_1} \ldots C_{2P}| \to 0$, as $p \to +\infty$, it follows that $G \cap F^{-1}(H) \cap P$ can be represented as a countable union of disjoint sets $P \cap I_{C_1} \cdots C_{2P}$, $p = 1, 2, \ldots$. By (1) it follows that $2 \cdot |G \cap F^{-1}(H) \cap P| = |F(G \cap F^{-1}(H) \cap P)|$. Since $M \in G \cap F^{-1}(H) \cap P \in G$ and $F(M) \in F(G \cap F^{-1}(H) \cap P) \in H$ and ε is arbitrary, we obtain |F(M)| = 2|M|. It follows that F satisfies Lusin's condition (N). By the continuity of F and the measurability of M, $F(M) = F(Q) \cup F(Z)$, where Q and F(Q) are F_{σ} sets and Z and F(Z) are null sets. Hence F(M) is measurable. **Definition** [1]. A continuous function F is a wrinkled function if for each set E of positive measure there exists a set E_1 , $|E_1| = 0$, $E_1 \subseteq E$ such that F is monotone on E_1 and $|F(E_1)| > 0$.

Lemma 3. F_1 and F_2 are wrinkled functions on P.

<u>Proof</u>. It is known that if a set $E \in \mathbb{R} \times \mathbb{R}$ is of positive measure, then by Fubini's Theorem there exist uncountably many lines parallel to a fixed straight line d such that the intersection of E with each of these parallel lines is of positive measure. By Lemma 2 F(M) is of positive measure. Recall that $|A_Z| = 0$ for all z. Let $z \in (0,1)$ such that $|F_2(E_Z)| > 0$, z irrational, where $E_Z = \{x \in M : F_1(x) = z\}$. Because $E_Z \cap A_Z$, $|E_Z| = 0$, and by Lemma 1, F_2 is increasing on A_Z and on E_Z . For F_1 the proof is analogous.

<u>Lemma 4.</u> Let $f : [a,b] \rightarrow \mathbb{R}$ be a continuous function and \mathbb{Q} a positive measurable subset of [a,b]. Let g be a differentiable function on [a,b]. If f is wrinkled on \mathbb{Q} , then f + g is wrinkled on \mathbb{Q} .

<u>**Proof.**</u> Let E be a positive measurable subset of Q and let $E_1 \subset E_2$ $|E_1| = 0$ such that $|f(E_1)| > 0$ and f is monotone on E_1 . Suppose for example that f is increasing on E_1 . Let F(x) = f(x), $x \in \overline{E}_1$ and let F be linear on each interval contiguous to \overline{E}_1 . Then F is increasing on [a,b]. Let $E_{+\infty} = \{x : F'(x) = +\infty\}$. By [3] page 270 we have $|E_{+\infty}|$ = 0, $E_{+\infty} \subset E_1$ and $|F(E_{+\infty})| > 0$. Let G(x) = F(x) + g(x). Then $E_{+\infty} =$ $\{x : G'(x) = +\infty\}$ and $g \in ACG_*$ on [a,b]. It follows that $G \in VBG_*$ on Suppose that $|G(E_{+\infty})| = 0$. By [3] (Theorem 7.2, page 230 and [a,b]. Theorem 4.6, page 271) it follows that $G \in (N)$ on [a,b]. Hence $G \in ACG_*$ on [a,b]. Thus F is AC on [a,b], a contradiction. Since $|G(E_{+\infty})| > 0$, there exists a subset A of $E_{+\infty}$ such that G is increasing on A and |G(A)| > 0. (See [2], page 83.) Hence f + g is wrinkled on Q.

We can glean the following from Lemma 3. For each interval I there is a nowhere dense perfect subset P of I and a continuous function g on I such that $|P| = (1/2) \cdot |I|$, g is wrinkled on P, g vanishes at the endpoints of I, and g is linear on each component interval of I - P. Make g vanish outside of I. Let $I_1 = [0,1]$. Let P_1 and g_1 be the set and function so associated with I_1 such that $\sup |g_1| = 1$. Let I_2 be an interval of $I_1 - P$ of maximal length. Associate P_2 and g_2 this way with I_2 . Let I_3 be an interval of $I_1 - (P_1 \cup P_2)$ of maximal length. Associate P_3 and g_3 this way with I_3 . In general, let I_{k+1} be an interval of $(I_1 - (P_1 \cup \cdots \cup P_k))$ of maximal length. Associate P_{k+1} and g_{k+1} with I_{k+1} this way. Then $|(\bigcup_{n=1}^{\infty} P_n)| = 1$, and $H = \sum_{n=1}^{\infty} (1/2^n) \cdot g_n$ is wrinkled on [0,1]. Indeed, let E be a measurable subset of [0,1], |E| > 0. Since $|\cup P_1| = 1$, it follows that there exists some P_n such that $|E \cap P_n| > 0$. Since H is the sum of a linear function and $(1/2^n) \cdot g_n$ on P_n , by Lemma 4 it follows that H is a wrinkled function on [0,1].

We are indebted to Professor Solomon Marcus for his help in preparing this article.

References

[1]	Bary, N.: Mén	oire sur la	représentation	on finie	des foi	nctions
	continues.	Math. Ann.	, 103 (1930),	185-248	and 59	8-653.

- [2] Foran, J.: A Generalization of Absolute Continuity. Real Analysis Exchange, 5 (1979-80), 82-91.
- [3] Saks, S.: Theory of the integral. 2nd. rev. ed. Monografie matematiczne, vol. VII, PWN, Warsaw (1937).

Received June 18, 1987