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 SOME CATEGORY BASES WHICH ARE EQUIVALENT TO TOPOLOGIES

 In a series of papers (for example, [3-8] and many others) John Morgan has developed a
 theory of category bases , which unites many features of the topological theory of category, the
 theory of measure, and certain other classifications of point sets. (Below we will recall some of the
 fundamentals of the theory.) Many of the most familiar category bases are topological spaces, and
 one of the basic questions in the theory is: Which category bases are equivalent to topological
 spaces? In [6], Morgan showed that any category base in which every region contains a minimal
 region (so, in particular, any finite category base) is, via a natural construction, equivalent to a
 topological space. In an abstract presented to the AMS in January 1987, Z. Piotrowski and A.
 Szymański announced some relevant (as of this writing, unpublished) results, two of which bear
 directly on our work here. First, they obtained (independently) the result in our example (i) of

 Section 3; roughly, any category base of power less than or equal to K j is equivalent to a

 topology. Second, they announce the construction (under Martin's axiom) of a category base
 which is not equivalent to a topology . Thus, the answer to the basic question above is at least ~
 "Not all of them."

 We now recall some definitions and fix some notation.

 A pair (X, C ), where C is a family of subsets of a nonempty set X, is called a category base if

 the nonempty sets in C, called regions, satisfy the following axioms :
 1. UC =X.

 2. Let A be a region and D a nonempty family of disjoint regions which has power less than the

 power of C. Then

 i. If A 0 (UD) contains a region, then there is a region D«D such that ADD contains a
 region.

 ii. If A PI (UD) contains no region, then there is a region BC A which is disjoint from UD.

 It is easy to see that every topological space is a category base. Other examples of category
 bases are:

 1. If (X,B,|i) is a a-finite measure space, and C is the class of sets of positive ^-measure, then

 (X,C) is a category base.

 2. (Assume the continuum hypothesis.) If (I is a Hausdorff measure on Rn (n-dimensional

 Euclidean space), and C is the class of closed subsets of positive ļi-measure, then (Rn,C) is a
 category base.

 3. If C is the class of non-empty perfect subsets of R, then (R,C) is a category base.

 It has been known for a long time that the category base of example 1 is equivalent to a
 topology (see [10]). We shall show presently that the category bases of examples 2 and 3 enjoy
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 the same property.

 A set SCX is singular if for all regions C there exists a region C'CC such that SfiC'=0. A
 set MCX is meager if M is a countable union of singular sets. The class of meager sets will be

 denoted fl(C). A set ACX has the Baire property if, for all regions C, there exists a region
 C'CC such that (CTI A is meager or C' - A is meager). The class of sets with the Baire
 property will be denoted B ( C ) .

 Let (X,C) and (X^D) be category bases. C and D are said to be equivalent if ft(C) = ft(D)

 and B(C) = B(D). For any category base (X,C), (X,C~{ 0 }) is a category base which is
 equivalent to (X,C). We shall therefore assume, without loss of generality, that every set in (X,C)
 is a region (i.e., is non-empty).

 2. Main results.

 Throughout this section, fix a category base (X,C). Call a set D of non-empty subsets of X a

 basis if X=UD and D U { 0 ) is closed under finite intersection. It is easy to check that, if D is

 a basis, then D is equivalent to T, the topology generated by D (i.e., T consists of all unions of

 arbitrary subsets of D). We shall therefore use topologies and bases interchangeably.

 Lemma 1: Let D be a basis such that D C B(C) - H(C), and such that for all CeC there

 exists DeD such that DCC. Then D* = {D-M: DeD, MeJT,(C) } is a basis which is
 equivalent to C.

 Proof : We must show that ft(D*) = M(C) andB(D*) = B(C).

 i) n(C) C ttCD*) : Let Mett(C) . Then for all DeD*, D - M e D*; thus M is
 D * -nowhere dense, and, a fortiori, Mett(D * ).

 ii) tt(D * ) C M(C): It is enough to show that every D * -nowhere dense set is C-meager, so
 suppose M is D *-nowhere dense. By the Banach Category Theorem (see, e.g., [5], p. 23) if
 Mitt(C), then there exists CeC such that for all C'eC such that C'CC, MflC«M(C).

 Therefore let C®C; we will find C'eC such that C'CC and C'ÌÌM s řt(C). Indeed, by

 hypothesis there exists DeD such that DCC, and D'eD * such that D' C D and D'flM = 0.
 Since D' e B(C) - řt(C) and D'CC, there exists C'CC such that C' - D' s řt(C). But
 C'flM C C' - D', so COM « M(C).

 iii) B(C) C B(D* ) : Suppose AeB(C). Given an arbitrary DeD*, there exists CeC such
 that C-Defl(C). By assumption, there exists C'eC such that C'CC and ( C'flA efl(C)
 or C' - A e Tt(C) ). There exists D'eD such that D'CC'. Now D' - D C C - D e n(C),
 soD'flD = D'-(D'-D) e D*, and ( (D'ÌÌD) 0 A e Ťt(C) or (D'flD) - A e ft(C) ).
 Since Jt(C) = ft(D* ), by definition we have AeB(D* ).

 iv) B(D* ) C B(C) : Let AeB(D* ). Given an arbitrary CeC, there exists DeD such that
 DCC, and D'eD* such that D'C D and ( D'flA e tt(D* ) or D' - A e tt(D* ) ) . There
 exists C'eC suchthat C'CC and C' -D' è J*t(C) =!M(D*), so since
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 CHA C (D'HA) U (C' - D') and C' - A C (D' - A ) U (C' - D'), we have
 ( CDA e n(C) or C'-A e M(C) ). Thus Aefi (C ), which completes the proof of the
 lemma.

 The main difficulty in turning a category base C into an equivalent topology is what to do when

 youcome to Cļ, ....Cjļ e C such that CļfL.fiCn is non-empty but meager. Indeed, if this never
 happens the problem is easy.

 Proposition 2: If, for all Cļ,..., Cn e C, e řt(C) only if Cļfl...nCn = 0,
 then

 { Cļ fi ... D Cn-M: Cļ,...,^ « C, M«tt(C) }
 is a basis which is equivalent to C.

 This proposition follows immediately from the preceding lemma. Unfortunately, the hypothesis of

 Proposition 2 is rarely satisfied unless C is a topology to begin with. To get a somewhat more
 useful result, define

 N(C) = { Cļ n ... n Cn : Cļ, ..., Cn « C and Cļ fi ... D « WC) } .

 Theorem 3: Assume that C is infinite, and that every region in C is abundant Suppose

 further that for all E C N(C) such that the power of E is less than the power of C, U E s

 n( C ) . Then C is equivalent to a topology.

 Proof: Enumerate C = { Cą : Ç < k } (so C has k elements) . For all £<k, let

 e = u{ c.nc n... nc : i' < ą and cnc n...nc ■ «moi
 % % ^ % 1 % Tlļ īļn

 and Dą = Cą - Eą. Let

 D = {D n... OD : ąi,...,ąn<K} U {X} - {0}.
 1

 We finish the proof by showing that D satisfies the hypotheses of Lemma 1. Indeed D is

 clearly a basis, and for Ç<k, D^CCą. Now consider a typical element

 D n...f1D of D, and say ^ > ^2»---4n • Of course,
 M Si

 d n...riD = ( c n...nc > - ( e u ... u e ) .
 Si Si Si

 Each Eą is a union of fewer than k elements of N(C), so by hypothesis

 E, U...UEe e tt(C). IfCB fL.nc e řt(C), then by construction C. CE. ,
 ^ ^ ' ' ' k '
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 so D fL.flD =#> contrary to the hypothesis that this set is not in D. Therefore

 C, n...nc e B(C) - n(C) and so D n...DD 6 ß(C) - M(C) .
 Ç1 Si 'l

 We have verified that D satisfies the hypotheses of Lemma 1. The proof of Theorem 3 is complete.

 3. Examples.

 i) If C has power less than or equal to X j (the first uncountable cardinal number) and every

 region in C is abundant, then Theorem 3 applies. (The union in its hypothesis must be a countable
 union).

 In particular, assume the continuum hypothesis, let |i be a Hausdorff measure on Rn, and let C

 be the class of closed subsets of positive ^-measure. In [5], it is shown that (Rn, C) is a category

 base, B(C) is the class of (i-measurable sets, and H(C) is the class of sets having no subset of

 finite, positive measure. Since under the continuum hypothesis Rn has X j closed subsets, we
 have, by Theorem 3:

 There exists a topology T on Rn such that "T-Baire property = (i-measurable. "

 ii) The Marczewski sets (see [1], [2], [4] and [11]).
 In [11], Marczewski investigated a class of sets which became known as the Marczewski sets.

 A set A of real numbers is a Marczewski set if every perfect set of real numbers P has a perfect

 subset P' such that either P'C A or AfiP' = 0. A set A is Marczewski singular if every
 perfect set P has a perfect subset P' such that AfiP' = 0.

 It is shown in [4] that (R,P) is a category base, where P is the class of perfect subsets of R.
 Furthermore, B(P ) is the class of Marczewski sets, and Tt(P ) is the class of
 Marczewski-singular sets.

 As we shall now show, Theorem 3 applies to (R,P). Indeed, let P be a perfect set, and let E be

 a subset of N(P ) of power less than the continuum. Then every EeE is closed and has no

 perfect subset; by the Cantor-Bendixson theorem each such E is countable. Therefore UE has
 power less than the continuum. By a well-known theorem, P has continuum many disjoint

 perfect subsets. One such subset must be disjoint from UE. Thus UE is Marczewski singular and

 so P-meager, and so (R^P) satisfies the hypotheses of Theorem 3.

 Therefore we have : There exists a topology T on R such that T-Baire property = Marczewski

 set, and T-meager = Marczewski singular.

 I wish to thank John C. Morgan II for a careful reading and many helpful suggestions.
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