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 A SYMMETRIC DENSITY PROPERTY POR MEASURABLE SETS

 In [2] we established the following result:

 THEOREM A. Let W and B be open subsets of a real interval whose union has

 full measure. If for each x, the set {h>0| x-h € W and x+h € B} has density

 zero at zero then these sets are all empty.

 This was then used to prove the following :

 COROLLARY B. If a continuous real function has a non-negative lower

 approximate symmetric derivative on some interval then it is non-decreasing on

 that interval.

 In this note we show how to extend Theorem A to get:

 THEOREM 1. Let W and B be measurable subsets of a real interval whose union

 has full measure. If for each x, the set {h>0| x-h s W and x+h e B} has

 density zero at zero then these sets all have measure zero.

 This is an equivalent form of Query 184 in Volume 12, no. 2 of the Exchange,

 which also appeared as conjecture C(6) in Foran and Larson [3]. It settles

 all six conjectures in that paper.
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 We will also prove:

 THEOREM 2. If a measurable real function has a non-negative lower approximate

 symmetric derivative then it is non-decreasing on the set of points for which

 it is approximately continuous.

 This settles a conjecture in Larson [4].

 Thomson, [5], established partitioning properties for covers of an

 interval that are related to the ordinary, approximate, and symmetric

 derivatives. Theorem 3 proves a corresponding property for the approximate

 symmetric case. The appropriate definitions will be included under the

 heading "Notation".

 THEOREM 3. If S is an approximate symmetric cover of an interval then S

 partitions almost every concentric subinterval.

 Our goal here, of course, is to establish the truth of Theorems 1-3.

 Theorem A (proved in [2]) will be our main technical tool. In particular we

 will show Theorem A -» Theorem 1, and Theorem 1 -» both Theorem 2 and Theorem 3.

 In fact, what we are establishing in this paper is the equivalence of all four

 theorems, in the sense that without knowledge of a proof of any of them, each

 of them implies the others. This is because it can be easily demonstrated

 that Theorem 3 -► Theorem 2 by techniques in Thomson [5] , Theorem 2 -» Theorem 1

 by considering the characteristic function of the set W, and Theorem 1 reduces

 to Theorem A in the case where W and B are open.

 NOTATION : Let A and B be subsets of the real line and x a real number. Then
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 let A (A) (A^A), A (A)) denote the (inner, outer) Lebesgue measure of A. Let

 cl(A) denote the closure of A. Let AB(x) denote {h>0| x-heA and x+h€B}. Let

 ACj B denote the relationship AcB and every point of A is a density point of

 B. If g is a real function then A(g) denotes the set of approximate

 continuity points of g. For an interval (a,b), a collection ,S ,of

 subintervals is an approximate symmetric cover of (a,b) if, for each x, there

 is a measurable set H , with density 1 at 0, so that { [x-h,x+h] |h€H }cS. We
 X X

 say S partitions the subinterval [c,d] if there are numbers c=xQ<xļ< . . . <xn=d

 so that [x. „.x.leS for l<i<n.
 i-i i

 PROOF OF THEOREM 1 : Let W and B be measurable subsets of a real interval

 whose union has full measure and such that for each x, WB(x) has density zero

 at zero. If W and B intersect in positive measure then they can't satisfy

 this density condition, so we may assume without loss of generality that W and

 B are disjoint. Let W'cW and B'cB be the density points of W and B

 respectively. Then W' and B' are also disjoint, and by the Density Theorem,

 (see [6]), W'UB1 has full measure. For convenience we will assume our

 interval is [0,1]. Let e be any real number in (0,1/2). Let and B^ be

 closed subsets of W' and B' respectively with A(W^UBļ)>l/2 . Let S be ti>e
 collection of open intervals, N, whose endpoints are in W' and such that for

 any subinterval N' which shares at least one endpoint with N, we have

 A(N'nW' )/A(N' ) > 1-e..

 We wish to show that S covers W in the sense of Vitali, (see [6] pp.
 1 W 1

 105-109). By a theorem of Luzin and Menchoff (see [1] pg. 27), we may choose a

 perfect set P such that W.c P c_ W' . Let x be in W. and let 6 be any
 1 d d 1

 positive real number. By choice of P there is a symmetric interval, (a,b),
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 about X of size less than 6 such that the relative measure of P in this

 interval is at least l-e./3. Let a' be the maxmimum c in (a,b] such that

 A(Pfl(a,c) )/(c-a) < 1-e and let a'=a if no such c exists. Let b' be the

 minimum c in [a,b) such that A(PCl(c,b) )/(b-c) < 1-e, and b'=b if no such c

 exists. Clearly a' is less than x and b' is greater than x since otherwise

 A(PD(a,b) )/(b-a) < l-e/2. Hence we need only show that a' and b' are in W' .

 Since for any c in (a' ,b) we have A(Pfl(a' ,c) )/(c-a' ) > 1-e, and since P is

 closed, a' must be in P. Similarly, b' is in P, and hence (a', b') is in S
 1 W

 as required.

 Let S be the similar collection for B' which covers B in the sense of
 Id 1

 Vitali, and let S = S U S . Then by Vitali's Lemma, there exists a finite
 1 1W Id

 collection, C , of disjoint open intervals in S^ such that AJUC^ > 1/2. Let

 oŁ be the size of the smallest interval in .

 Let Wg and B^ be closed subsets of W'-cliUC^) and B'-cliUC^) respectively

 such that A(Wg U B^ U UC^ ) > 3/4. Let S^^ be the collection of open

 intervals, N c (0,1) - cliUC^, of length less than , whose endpoints are in
 W , and such that for any subinterval N' which has at least one endpoint in

 common with N, we have A(N'nw' )/A(N) > l-e/2. Let S be the corresponding
 ¿D

 collection for B, and S = S U S . Then S covers W UB. in the sense of
 2 òri ¿d ¿ Ł Ł

 Vitali. Hence by Vitali's Lemma, there exists a finite collection, C 2 of

 disjoint open intervals in S2 such that A(UC^ U UC^) > 3/4. Let be the

 size of the smallest interval in C^.

 Continuing in this manner we obtain a countable collection, C = UC^ , of

 disjoint open intervals with A(UC) = 1, such that for each interval N in C
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 with measure less than <^_j (let be any number > 1) and each subinterval N'

 which shares at least one endpoint with N, either both endpoints of N are in

 W and A(N'nw' )/A(N' ) > 1-é/i, or both endpoints of N are in B' and

 AiN'flB' ) /A (N ' ) > 1-é/i.

 Let W" be the union of neighborhoods in C whose endpoints are in W' and

 let B" be the union of neighborhoods whose endpoints are in B' . Every

 neighborhood in C is in either W" or B" and since W' and B' are disjoint, no

 neighborhood is in both. Hence W" and B" are disjoint open sets whose union

 has full measure.

 In order to apply Theorem A. we need to show that for each x, W"B"(x) has

 density zero at zero. If x is a member of UC then this follows since W" and

 B" are disjoint. If x is in an endpoint of some component of UC then this

 follows since either x is an endpoint of a component of W" and also a density

 point of W or else x is an endpoint of a component of B" and also a density

 point of B. It cannot be both since W and B' are disjoint. Since «.<1/2 each

 component of W" is mostly in W and each component of B" is mostly in B.

 Therefore, x must either be a density point of W" or a density point of B"

 which implies that W"B"(x) has density zero at zero as required. For other

 values of x, (ie. x is not in the closure of any component of UC) let i be any

 large integer and let N(x) be any symmetric neighborhood of x which intersects

 only those neighborhoods in C with length less than and let Nx={h>0|x+h
 € N(x)}, the translate of N(x). Then A(W"DN(x)-W)/A(N(x) ) < e/i and

 A(B"fTN(x)-B)/A(N(x) ) < e/i . Hence A(WMB"(x) fl Nx) < A(WB(x) 0 Nx)

 + 2eA(N(x))/i. Since i was arbitrary and since WB(x) has density zero at

 zero, it follows that W"B"(x) has density zero at zero as required.
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 By Theorem A, it now follows that W"B"(x) is empty for each x. In other

 words there is no element of B" which is to the right of an element of W" .

 Hence for each x, we have

 A ( WB ( X ) ) = A (WflB" BnB"(x)) + A (WOB" Bf"IW"(x)) + A(WnW" Bnw"(x))

 < A (WflB" ) + A (WnB" ) + A(BflW" )

 < 36.

 Since e is arbitrary it follows that the measure of WB(x) is zero. □

 PROOF OP THEOREM 2: Let f be a measurable real function whose lower

 approximate symmetric derivative is nonnegative. For &>0 let g(x)=f (x)+«.x.

 Then A(g)=A(f). Suppose c<d are two points in A(g) and g(c)>g(d). Pick

 ye(g(d) ,g(c) ) . Then since the lower approximate symmetric derivative of g is

 positive, W=g 1 [y , *») and B=g 1(-#0,y] clearly satisfy the hypothesis of Theorem

 2. Let m=(c+d)/2. Since W has density one at c and B has density one at d,

 A(WB(m))>0, contradicting Theorem 1. Thus ßl^gj is non-decreasing. Since e
 is arbitrary is non-decreasing. □

 THEOREM 3. Let S be an appoximate symmetric cover of (a,b) and c the

 midpoint of (a,b). For almost every 0<h<(b-a)/2, [c-h.c+h] is partitioned by

 S.

 PROOF : We may assume that c=0. Let W'={h>0| [-h,h] is partitioned by S},

 and B' = (0,b)-W'. Let W be an F set contained in W with A(W)=Ask(W' * ) . Note a *

 that A(W)>0 since HQcW' . Let B=(0,b)-W. Then A(B)=A (B'). We show that

 WB(x) has density 0 at 0 for all x in (0,b). Suppose x€(0,b) and WB(x) has
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 positive upper density at 0. Then, for y=-x, WB(x)l"IH DH also has positive
 X y

 upper density at 0. This says, for some ô>0 and for arbitrarily small

 neighborhoods, N, of 0, we have A(WB(x)HH flH flN)>0A(N). This gives
 X y

 A (W'B'(x)nH ("IH HN)>ÖA(N) since A(B)=A (B') and WcW' . Since heW'B'(x) means
 X y

 [-(x-h),x-h] is partitioned by S but (x-h,x+h] or [y-h,y+h] is not, the last

 inequality contradicts the fact that Hx and Hy have density 1 at 0. Thus
 WB(x) has density 0 at 0. By Theorem 1, WB(x) has measure 0 for all x in

 (0,b). Recall that W has positive measure in every neighborhood of 0, so B

 cannot have any subsets of positive measure to the right of 0. Thus A(B)=0

 which says A(B')=0. □
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