Real Analysis Exchange Vol. 14 (1988-89)

H. Pawlak, R. Pawlak, Institute of Mathematics, Łódź University,Łódź, Poland.

FUNDAMENTAL RINGS FOR CLASSES OF DARBOUX FUNCTIONS

Many interesting results are connected with addition and multiplication of Darboux functions, see, for example: [2],[3],[5],[7], [10],[11]. We have investigated some problems connected with the possibility of constructing some rings of Darboux functions and their properties ([8],[9]). In this paper we try to answer the following question: for which classes of Darboux functions can we construct a fundamental ring. Our paper does not answer this question completely leaving the general case is open (Problems 1,2). Our considerations are similar, in a way, to the research on the simultaneously maximal additive and multiplicative classes for some family of Darboux function ([1],[2],[5]).

We now give the main definitions and notation. The symbol R denotes the set of real numbers with the natural topology of the line; in a case of another topology we specifically state this fact. Let \overline{A} denote the closure of A (in the natural topology) and $\ell(A)$, the set of all components of A also in the natural topology.

Throughout this paper we consider real functions. For a family H of functions, the symbol $H_{|A}$ denotes the set of all restrictions $h_{|A}$, where $h \in H$. We consider the set $C_{H} = \bigcap_{h \in H} C_{h}$,

189

where C_h denotes the set of the continuity points of h. Then $D_H = R \setminus C_H$. If $H = \{h\}$, we write D_h .

The symbol C denotes the class of continuous functions (in the nat. top.), and C(T), the family of the continuous function $f: (R,T) \rightarrow R$, where T is some topology in R. If T is a family of topologies on the real line, then $C(T) = \{C(T): T \in T\}$.

If T is some topology on R, then by a T-open set we mean a set open with respect to T, and by a T-continuous function, a continuous function $f: (R,T) \rightarrow R$. The terms an open set, a closed set, a continuous function will refer to the natural topology.

We say that a topology T is connected if the space (R,T) is connected.

We say that two families of Darboux functions H_1 and H_2 are compatible (with respect to conditions (*)) if there exists a ring \mathbb{P} of Darboux functions (fulfiling conditions (*)) such that $H_1, H_2 \subset \mathbb{P}$.

Let \mathbb{P} be some ring of functions and let H be some family of functions. Then $\mathbb{P}(H)$ denotes the ring consisting of all functions of the form

$$g = g_{0} + g_{1} \cdot h_{1,1}^{s_{1,1}} \cdot h_{1,2}^{s_{1,2}} \cdots h_{1,k_{1}}^{s_{1,k_{1}}} + \cdots + g_{t} \cdot h_{t,1}^{s_{t,1}} \cdot h_{t,2}^{s_{t,2}} \cdots$$

$$s_{t,k_{t}}^{s_{t,k_{t}}} \cdots h_{t,k_{t}}^{s_{t,k_{t}}}$$

where $g_i \in \mathbb{P}$, $h_{j,p} \in H$ and $s_{j,p}$ are natural numbers.

190

If H is a class of Darboux functions, then we say that a ring \mathbb{P} of real functions is <u>fundamental</u> for H, if $\mathbb{P}(H)$ is a ring of Darboux functions. We say that a class P of fundamental rings for H is <u>complete</u> (with respect to conditions (*)) if for every family of functions H_1 compatible with H (resp. to (*)) there exists a ring $\mathbb{P} \in P$ which is fundamental for $H \cup H_1$.

We say that a real number α is a right-side cluster number of f at x_0 relative to a set A if there exists a sequence $\{x_n\} \subset A$ such that $x_n \sim x_0$ and $\lim_{n \to \infty} f(x_n) = \alpha$. Similarly we define left-side cluster numbers. The set of all right-side (left--side) cluster numbers of f at x_0 relative to a set A we denote by $L_A^+(f,x_0) \quad (L_A^-(f,x_0))$. If A = R, we just write $L^+(f,x_0) \quad (L^-(f,x_0))$.

Let H be some class of functions, $\eta > 0$ and ACR. Then $\overline{H_{\eta}^{+}}(A, x_{o}) = \{h \in H: \exists (\beta \in L_{A}^{+}(h, x_{o})) \ \beta - h(x_{o}) > \eta \}, \qquad H_{\eta}^{+}(A, x_{o}) = \{h \in H: \exists (\beta \in L_{A}^{+}(h, x_{o})) \ h(x_{o}) - \beta > \eta \}.$ Similarly we define $\overline{H_{\eta}^{-}}(A, x_{o})$ and $\overline{H_{\eta}^{-}}(A, x_{o}).$

We say that a net $\{x_{\sigma}\}_{\sigma \in \Sigma} \subset \mathbb{R}$ is decreasing if

$$\forall (\sigma_1, \sigma_2 \in \Sigma) \quad \sigma_1 \xrightarrow{3} \sigma_2 <=> x_{\sigma_1} \ge x_{\sigma_2},$$

where \rightarrow is a directing relation in Σ . Analogously we define an increasing net.

The aim of this paper is to find conditions on a family H of Darboux functions, under which there exists a fundamental ring for H. We assume the following definitions. DEFINITION 1. We say that a family H possesses the property of Young if for every x there exist sequences $\{x_n\}$ and $\{y_n\}$ such that $x_n \not x \not y_n$ and $\lim_{n \to \infty} f(x_n) = f(x) = \lim_{n \to \infty} f(y_n)$, for every $f \in H$.

If H possesses the property of Young (consists of functions of first class of Baire), then we write $H \subset Y(H \subset B_1)$. Of course if $H = \{f\}$, the property of Young for a family $\{f\}$ is identical to the well known property of Young for f. (See [1],[2]). The following proposition is easily proves. (See [8] and [9]).

PROPOSITION 1. Let f_i (i=1,...,k) be Darboux functions such that $D_{f_i} = \{x_0\}$ (i=1,...,k). Then the functions f_i (i=1,...,k) belong to a common ring of Darboux functions which includes the constant functions if and only if the family $\{f_i: i = 1,...,k\}$ possesses the property of Young.

DEFINITION 2. Let H be a class of real functions defined on a set A C R. We say that $x_{\hat{O}}$ is a right sided upper Darboux point for H, with respect to A (written $x_{\hat{O}} \in Db_{x}^{+}(H,A)$, if $x_{\hat{O}}$ is an isolated point from the right side in A or for every $\eta > 0$ there exists $\delta_{\hat{O}} > 0$ such that for every $\delta \leq \delta_{\hat{O}}$, $C \in \ell(A \cap (x_{\hat{O}}, x_{\hat{O}} + \delta))$ and $h \in H_{\eta}^{+}(A, x_{\hat{O}})$ the following inequalities hold

(*)
$$h^{-1}(h(x_0) + \eta) \cap A \cap (x_0, x_0 + \delta) \neq \emptyset \neq$$

 $\neq \bigcap_{h \in H} h^{-1}((h(x_0) - \eta h(x_0) + \eta)) \cap C.$

Analogously we define a right sided lower Darboux point, leftsided upper and left sided lower Darboux point by replacing $H_{\eta}^{+}(A,x_{o})$ with $H_{\eta}^{+}(A,x_{o})$, $H_{\eta}^{-}(A,x_{o})$ and $H_{\eta}^{-}(A,x_{o})$ respectively.

The notion of Darboux point and one sided Darboux point are defined in the obvious way. If $H = \{h\}$, we say refer to a right sided upper (right sided lower,...) Darboux point for h.

PROPOSITION 2. Let $f: R \rightarrow R$. Then x_0 is a Darboux point from the right (left) side for f([6]) if and only if x_0 is a right (left) sided upper and lower Darboux point for f (with respect to R).

Before we formulate and prove the fundamental theorem of this paper, we give the following definition.

DEFINITION 3. We say that a family H fulfils the condition (D) if there exists a nonempty set $A \subset C_H$ such that:

1. every element $x \in R$ is a Darboux point for H with respect to A

2. $H_{1\overline{C}} \subset B_1$ for every $C \in \ell(R \setminus \overline{A})$.

If additionaly $H_{|\overline{C}} \subset Y$ for every $C \in \mathcal{L}(\mathbb{R} \setminus \overline{A})$, then we say that H fulfils condition (DY).

THEOREM 3. Let H be a family of the functions fulfiling condition (DY). Then H is a family of Darboux functions and there exists a nonempty class T of connected topologies finer than the natural topology of the line such that C(T) is the complete class of fundamental rings for H, with respect to condition (D).

Proof. Let Q be a family of all sets $A \subset C_H$ such that H fulfils the condition (DY) with respect to A. Let $A \in Q$. We describe now a class of topologies. First we construct one topology in this class. Let $B = R \setminus \overline{A}$. For every $t \in \overline{C}$, where $C \in l(B)$ let $\{t_{\sigma}^+\}_{\sigma \in \Sigma}$ and $\{t_{\overline{o}}^-\}_{\overline{o} \in \Delta}$ be decreasing and increasing nets converging to t and such that for every finite set of functions h_1 , $\ldots, h_k \in H$ there exist subnets $\{t_{\sigma}^+\}_{\sigma' \in \Sigma'}$ of $\{t_{\overline{o}}^+\}_{\overline{o} \in \Sigma}$ and $\{t_{\overline{o}}^-\}_{\overline{o} \in \Delta}$, of $\{t_{\overline{o}}^-\}_{\overline{o} \in \Delta}$ fulfiling the following condition:

(1)
$$\lim_{\sigma'\in\Sigma'} h_i(t) = h_i(t) = \lim_{\sigma'\in\Delta'} h_i(t) = \lim_{\sigma'\in\Delta'} h_i(t)$$
 for i=1,...,k.

Since $H_{1\overline{C}} \subset Y$, the family of nets fulfiling above condition is nonempty. (Of course if t is a left endpoint of the closure of a component C, then we consider only $\{t_{\sigma}'\}_{\sigma\in\Sigma}$ and analogously in the case a right endpoint of \overline{C}). For every $C \in \ell(B)$ let T_C denote a topology in \overline{C} finer than the natural topology of the segment \overline{C} such that every $U \in T_C$ is a F_{σ} set (in the natural topology of the line) and for every $U \in T_C$ and $t \in U$ there exist $\sigma_0 \in \Sigma$ and $\delta_0 \in \Delta$ such that $t_{\sigma}^+ \in U$ and $t_{\overline{\sigma}}^- \in U$ for every $\sigma \ge \sigma_0$ and $\delta \ge \delta_0$. (Of course, at least one such topology exists).

For $t \in \overline{C}$ we put $B_{T_{C}}(t) = \{U \in T_{C} : t \in U \land U \neq \overline{C}\}$. For $t \in C$ let $B_{t} = B_{T_{C}}(t) \setminus \{U \in B_{T_{C}}(t) : U \setminus C \neq \emptyset\}$. Now we describe a family B(t), for any $t \in \overline{A}$. We make the construction from the right side of t. Consider the following cases:

1. There exists a > t such that $(t,a) \in \ell(B)$ and $t \notin A$. Then we put

$$B^{+}(t) = B_{T(t,a)}(t).$$

2. $t \in A$. Then we put:

$$B^{+}(t) = \{[t, t + \tau_n) : n=1,2,...\},\$$

where $\{\tau_n\}_{n=1}^{\infty}$ is some decreasing sequence tending to zero.

3. $t \notin A$ and there exists a > t such that $(t,a) \subset A$. Since t is a Darboux point for H with respect to A, there exists a sequence $\{t_n\}_{n=1}^{\infty} \subset (t,a)$, $t_n \sim t$ and $\lim_{n \to \infty} h(t_n) = h(t)$ for every $h \in H$. For every t_n let $\{\tau_k^n\}_{k=1}^{\infty}$ be a sequence such that $\tau_k^n \sim 0$. We additionally assume that $(t_n - \tau_1^n, t_n + \tau_1^n) \subset (t,a)$. Then we put:

$$B^{+}(t) = \{\{t\} \cup \bigcup_{n=m}^{\infty} (t_{n}^{-}\tau_{m}^{n}, t_{n}^{+}\tau_{m}^{n}) : m=1,2,\ldots\}.$$

4. $t \notin A$ and t is neither a left endpoint of any component of B nor of A. For every n=1,2,... let $\delta_n > 0$ denote a number such that conditions (*) of Definition 2 are fulfilled for $\eta = \frac{1}{n}$. Of course, we may assume $\delta_n \sim 0$. Let ℓ_n^+ denote the set of all component C of the set A such that $C \cap (t+\delta_{n+1},t+\delta_n) \neq \emptyset$, $C \subset (t, t+\delta_1)$ and $C \cap (t, t+\delta_{n+1}) = \emptyset$. Furthermore for every

 $C \in \ell_n^+$ let $t_C \in h^{-1}((h(t) - \frac{1}{n}, h(t) + \frac{1}{n})) \cap C$ and let $\{\tau_n^C\}_{n=1}^{\infty}$ be an arbitrary decreasing sequence converging to zero.Assume:

$$B^{+}(t) = \{\{t\} \cup \bigcup_{n=m}^{\infty} (\bigcup_{C \in \ell_{n}^{+}} (t_{C}^{-}\tau_{n}^{C}, t_{C}^{+}\tau_{n}^{C})): m=1,2,\ldots,\}.$$

Moreover, we may assume that for every $C \in \ell_n^+$, $t+\delta_{n+1} < t_C - \tau_1^C$. An alogously, we define the families "neighbourhoods from left side of t" : B⁻(t). Finally we put:

$$B(t) = \{U^{\dagger} \cup U^{-} : U^{\dagger} \in B^{\dagger}(t) \land U^{-} \in B^{-}(t)\}.$$

Let T be the topology generated by the neighbourhood system ${B(t)}_{t\in R}$ ([4]). Of course T is finer than the natural topology of R.

Now we shall show that C(T)(H) is a ring of Darboux functions. Let $k \in C(T)(H)$. Then

(2)
$$k = f_0 + f_1 h_{1,1}^{s_{1,1}} \dots h_{1,k_1}^{s_{1,k_1}} + \dots + f_p h_{p,1}^{s_{p,1}} \dots h_{p,k_p}^{s_{p,k_p}},$$

where $f_i \in C(T)$ (i=0,1,...,p), $h_{j,1} \in H$ and $s_{j,p}$ are natural numbers.

It is obvious that k is continuous at every point of A (in the natural topology). Let $C \in \ell(B)$ and $t \in \overline{C}$. Let $\{t_{\sigma'}^{++}\}_{\sigma' \in \Sigma'}$ and $\{t_{\overline{\delta}'}^{-+}\}_{\delta' \in \Delta'}$ denote the subnets of $\{t_{\sigma}^{++}\}_{\sigma \in \Sigma}$ and $\{t_{\overline{\delta}}^{-+}\}_{\delta \in \Delta}$ resp. satisfying (1), for every function $h_{j,1}$ from (2). Clearly there

exist sequences $\{t_n^+\}_{n=1}^{\infty}$, $\{t_n^-\}_{n=1}^{\infty}$, with elements in $\{t_{\sigma'}^+\}_{\sigma'\in\Sigma'}$ and $\{t_{\delta'}^-\}_{\delta'\in\Delta'}$ resp. such that $t_n^- \not t \not t_n^+$ (in the natural topology) and $\lim_{n\to\infty} h_{j,1}(t_n^-) = h_{j,1}(t) = \lim_{n\to\infty} h_{j,1}(t_n^+)$, for every $h_{j,1}$ from (2).

Thus,
$$\lim_{n \to \infty} (h_{1,1}^{s_{1,1}} \dots h_{1,k_1}^{s_{1,k_1}})(t_n^{\pm}) = (h_{1,1}^{s_{1,1}} \dots h_{1,k_1}^{s_{1,k_1}})(t).$$

From the construction of the topology $T\left(\left\{t_{n}^{\pm}\right\}_{n=1}^{\infty}\right)$ converge to t, in T) and from T-continuity of f_{1} we infer that $\lim_{n \to \infty} f_{1}(t_{n}^{\pm})=f_{1}(t)$. Applying similar reasoning to remaining elements from (2) we see that $\lim_{n \to \infty} k(t_{n}^{\pm}) = k(t)$. According to the obvious fact that $k \in B_{1}$ and the theorem of Young (see, for example [1],[12]) we infer that $k_{1\overline{C}}$ is a Darboux function.

We shall prove now that k is a Darboux function. Suppose to the contrary that there exist a < b and $\alpha \in (k(a), k(b))$ such that

(3)
$$k^{-1}(\alpha) \cap (a,b) = \emptyset$$
.

Assume that k(a) < k(b). If $a \in A \cup B$ or a is a left endpoint of some component $C \in \ell(B)$ we put $a_1 = a$. In the remaining cases let a_1 be an element of A such that

(4)
$$a_1 \in [a,b) \cap k^{-1}((-\infty,\alpha))$$

Notice that

(5)
$$\{x > a_1 : [a_1, x) \subset k^{-1}((-\infty, \alpha))\} \neq \emptyset.$$

In fact if $a_1 \in A$, then (5) is true by the continuity of k at this point. If $a_1 \in B$ or a_1 is a left endpoint of some component $C \in \ell(B)$, then according to (3) and the fact that k is a Darboux function in some right hand neighbourhood a_1 we have (5).

Let $\xi = \sup \{x > a_1 : [a_1, x) \in k^{-1}((-\infty, \alpha))\} < b$. Of course $[a_1, \xi) \in k^{-1}((-\infty, \alpha))$. Suppose that $k(\xi) > \alpha$. Since $k_{|\overline{C}|}$ has the Darboux property, for each $C \in l(B) \notin C$ nor ξ is a right endpoint of some component $C \in l(B)$. If $\xi \in \overline{A}$ and ξ is not a right endpoint of any component of B, then we find an element $\xi^* \in (a_1, \xi) \cap k^{-1}((\alpha, +\infty))$, which is impossible.

Suppose now that $k(\xi) < \alpha$. Of course $\xi \notin A$. For each $(p,q) \in \ell(B)$, $\xi \notin [p,q)$ because $k_{\lfloor [p,q]}$ has the Darboux property. So let $\xi \in \overline{A} \setminus A$ with ξ not a left endpoint of any component of B. Let $U \subset (a,b)$ be an element of $B(\xi)$ such that every component of U, which lies to the right of ξ , has nonempty intersection with $k^{-1}((-\infty,\alpha))$. Let $\delta_{\xi} = \sup \{x > \xi : x \in U\}$. Since for each $C \in \ell(A)$, $k_{|C}$ has the Darboux property, $A \cap (\xi, \xi + \delta_{\xi})$ $k^{-1}((-\infty,\alpha))$ and so, according to (3), we have:

(6)
$$\overline{A} \cap (\xi, \xi + \delta_{\xi}) \subset k^{-1}((-\infty, \alpha)).$$

Let S be an arbitrary component of the set $B \cap (\xi, \xi + \delta_{\xi})$. Then \overline{S} includes some points of $\overline{A} \cap (\xi, \xi + \delta_{\xi})$. From this, (6), (3) and the property of Darboux of $k_{1\overline{S}}$ we have that $S \subset k^{-1}((-\infty, \alpha))$ and consequently $B \cap (\xi, \xi + \delta_{\xi}) \subset k^{-1}((-\infty, \alpha))$, and so (according to (6)) $(\xi, \xi + \delta_{\xi}) \subset k^{-1}((-\infty, \alpha))$. The last inclusion contradicts the definition of ξ . According to (3), $k(\xi) \neq \alpha$. The obtained contradiction (k is not defined at ξ) proves that k is a Darboux function.

According to the fact that every function $k \in C(T)(H)$ is a Darboux function we have that H and C(H) are families of Darboux functions, and consequently T is a connected topology.

Let T be the class of all possible topologies (for different $A \in \mathbf{Q}$) described above. We shall show that C(T) is the complete class of fundamental rings for H with respect to the conditions (\mathbb{D}) .

Let \hat{H} be a family of Darboux functions compatible to H with respect to the conditions (D) and let K be a ring of Darboux functions fulfiling (D) with respect to $A_* \subset C_K$ and containing $H \cup \hat{H}$. Let $C \in \ell(R \setminus \bar{A}_*)$. Then $f_{|\bar{C}} \in B_1$ for $f \in K$. Let H denote the class of all finite subfamilies of functions belonging to K. Let $H_* \in H$. It is easy to see, that

for every $x \in \overline{C}$ there exist sequences $\{x_{H_{*},n}^{+}\}, \{x_{H_{*},n}^{-}\} \in C$ such that $x_{H_{*},n}^{-} \land \land \land x_{H_{*},n}^{+}$ and $\lim_{n \to \infty} h(x_{H_{*},n}^{-}) = h(x) = \lim_{n \to \infty} h(x_{H_{*},n}^{+}),$ for every $h \in H_{*}$.

(Of course, if x is an endpoint of the segment \overline{C} , then there exists only one such sequence converging to x from one side). Let $\Sigma^+ = \Sigma^- = \{(H_*, n) : H_* \in H \land n=1,2,\ldots\}$. In Σ^+ and Σ^- we define the directing relations -3 and -33 resp., in the following way: let $\sigma_i = (H_*^i, n_i) \in \Sigma^+$ (i=1,2). Then $\sigma_1 -3 \sigma_2$ if and only

and

let $\sigma_i = (H_*^i, n_i) \in \Sigma^-$ (i=1,2). Then $\sigma_1 \longrightarrow \sigma_2$ if and only if $x_{H_*^i, n_1}^- \le x_{H_*^2, n_2}^-$

Let $t_{\sigma}^{+}(x) = x_{H_{*},n}^{+}$ $(t_{\sigma}^{-}(x) = x_{H_{*},n}^{-})$ be the element of $C \setminus \{x\}$ assigned to $\sigma = (H_{*},n) \in \Sigma^{+}$ $(\sigma = (H_{*},n) \in \Sigma^{-})$. Then the net $\{t_{\sigma}^{+}(x)\}_{\sigma \in \Sigma^{+}}$ $(\{t_{\sigma}^{-}(x)\}_{\sigma \in \Sigma^{-}})$ is decreasing (increasing) and converges to x. Moreover, for every finite set of functions $H_{\sigma}C$ K there exist the subnets $\{t_{\sigma}^{+}(x)\}_{\sigma^{+}\in\Sigma^{+}}$, and $\{t_{\sigma}^{+}(x)\}_{\sigma^{+}\in\Sigma^{-}}$, such that

$$\lim_{\sigma'\in\Sigma^{\pm}} h(t_{\sigma'}^{(\pm)}(x)) = h(x) \quad \text{for } h \in H_{o}.$$

This means that we can from the topology T_C , by means of the above nets, as at the beginning of this proof. Similar reasoning can be applied to every component $C \in \ell(R \setminus \overline{A}_{\star})$. Notice that taking advantage of the method described in first part of this proof we can define the topology T_{\star} for $H \cup H$ (instead of A we use A_{\star}). It is easy to see that $T_{\star} \in T$, which means that $C(T_{\star})$ is the fundamental ring for $H \cup H$.

The above Theorem makes it possible to form fundamental rings, in particular - rings of Darboux functions, for some classes of functions. We may formulate the following additional problems: Problem 1. Characterize the classes of Darboux functions for which there exist fundamental rings.

Problem 2. Give necessary and sufficient conditions under which families of Darboux functions H_1 and H_2 have a common fundamental ring.

REFERENCES

- [1] A.M. Bruckner, "Differentiation of real functions", Springer--Verlag (1978).
- [2] A.M. Bruckner, J.G. Ceder, "Darboux continuity", Jbr. Deutsch. Math. Verein 67 (1965), 93-117.
- [3] A.M. Bruckner, J.G. Ceder, "On the sum of Darboux functions", Proc. Amer. Math. Soc. 51 (1975), 97-102.
- [4] R. Engelking, "General topology", Polish Scientific Publishers (1977).
- [5] R. Fleissner, "A note on Baire 1 Darboux functions", Real Anal. Exchange vol. 3 (1977-78), 104-106.
- [6] J.S. Lipiński, "On Darboux points", Bull. Acad. Polon. Sci.Ser. Math. Astronom. Phys. 26 No 10 (1978), 869-873.
- [7] J.S. Lipiński, "On a problem of Bruckner and Ceder concerning the sum of Darboux functions", Proc. Amer. Math. Soc. 62 (1977), 57-61.

201

- [8] R.J. Pawlak, "Przekształcenia Darboux", Acta Univ. Łódź. (1985), 1-146.
- [9] R.J. Pawlak, "On rings of Darboux functions", Colloq. Math. 53 (1987), 289-300.
- [10] T. Radaković, "Über Darbouxsche und stetige Funktionen", Mont. Math. Phys. 38 (1931), 111-112.
- [11] J. Smital, "On the sum of continuous and Darboux functions", Proc. Amer. Math. Soc. 60 (1976), 183-184.
- [12] J. Young, "A theorem in the theory of functions of a real variable", Rend. Circ. Mat. Palermo 24 (1907), 187-192.

Received January 26 1988