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 FUNDAMENTAL RINGS FOR CLASSES OF DARBOUX FUNCTIONS

 Many interesting results are connected with addition and multi-

 plication of Darboux functions, see, for example: [2],[3]»[5J,[7],

 [10], [11]. We have investigated some problems connected with the

 possibility of constructing some rings of Darboux functions and their

 properties ([8], [9])- In this paper we try to answer the following

 question: for which classes of Darboux functions can we construct

 a fundamental ring. Our paper does not answer this question comple-

 tely leaving the general case is open (Problems 1,2). Our conside-

 rations are similar, in a way, to the research on the simultaneo-

 usly maximal additive and multiplicative classes for some family

 of Darboux function ([1],[2],[5]).

 We now give the main definitions and notation. The symbol R

 denotes the set of real numbers with the natural topology of the

 line; in a case of another topology we specifically state this fact.

 Let A denote the closure of A (in the natural topology) and

 £(A), the set of all components of A also in the natural topo-

 logy-

 Throughout this paper we consider real functions. Por a fa-

 mily H of functions,, the symbol H|^ denotes the set of all
 restrictions h,., where h 6 H. We consider the set Cu = C,. h he* h
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 where Ch denotes the set of the continuity points of h. Then
 Dy = R ' Cg. If H = {h}, we write D^.

 The symbol C denotes the class of continuous functions (in

 the nat. top.), and C(T), the family of the continuous function

 f (R,T) - R, where T is some topology in R. If T is a

 family of topologies on the real line, then C(T) = {C(T): T€T).

 If T is some topology on R, then by a T-open set we mean

 a set open with respect to T, and by a T-continuous function, a

 continuous function f : (R,T) - R. The terms an open set, a clo-

 sed set, a continuous function will refer to the natural topology.

 We say that a topology T is connected if the space (R,T)

 is connected.

 We say that two. families of Darboux functions and are

 compatible (with respect to conditions (*)) if there exists a

 ring P of Darboux functions (fulfiling conditions (*)) such

 that H1,H2 C P.
 Let 3P be some ring of functions and let H be some family

 of functions. Then ]P(H) denotes the ring consisting of all func-

 tions of the form

 S1 1 S1 2 st 1 st 2
 S = *hl,2 ••• +-"+St -ht;i *ht,2 •••

 St,k
 * * * ^t z >Kt k z >Kt k

 where g. € IP, h • „ € H and s. „ are natural numbers,
 i J »P „ J >P „
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 If H is a class of Darboux functions, then we say that

 a ring HP of real functions is fundamental for H, if P(H) is

 a ring of Darboux functions. We say that a class P of fundamental

 rings for H is complete (with respect to conditions (*)) if for

 every family of functions compatible with H (resp. to (»))

 there exists a ring ]P € P which is fundamental for H u H^.
 We say that a real number a is a right-side cluster number

 of f at xQ relative to a set A if there exists a sequence
 {x } C A such that x„ ^ x„ and lim f(x ) = a. -Similarly we n no n

 n

 define left-side cluster numbers. The set of all right-side (left-

 -side) cluster numbers of f at x„ relative to a set A we
 o

 denote by LÎ(f,x ) (L7(f,x )). If A = R, we just write 'A' O A O

 L+ (f,x0) (L~ (f ,xQ ) ) .
 Let H be some class of functions, n > 0 and ACR. Then

 H*(A,x0) = {h € H: 3(0€Lļ(h,xo)) ß - h(xQ) > n>, H*(A,xQ) =
 = {h G H: 3 (ß€Lt(h,x )) h(x ) - & > tí). Similarly we define A U U

 HÜ(A,xo ) and ( A»x0 ) .

 We say that a net ^xc^cen C R decreasing if

 vt0l,o2es) ox- 3 a2<=>x0ļ ž x^,

 where - 3 is a directing relation in £ . Analogously we define an

 increasing net.

 The aim of this paper is to find conditions on a family H of

 Darboux functions, under which there exists a fundamental ring for

 H. We assume the following definitions.
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 DEFINITION 1. We say that a family H possesses the property

 of Young if for every x there exist sequences {xn> and
 such that xn x ^ yn and lim f(xn) = f(x) = lim f(yn)» for

 n-°° n-®

 every f e H.

 If H possessses the property of Young (consists of functions

 of first class of Baire ) , then we write H C Y (HC ) . Of course

 if H = {f}, the property of Young for a family {f} is identical

 to the well known property of Young for f. (See [1], [2] ). The

 following proposition is easily proves. (See [8] and [ 9 ] ) -

 PROPOSITION 1. Let f^ (i=l,...,k) be Darboux functions such
 that D„ = (x } (i=l,...,k). Then the functions f. (i=l,...,k) 1.0 1

 belong to a common ring of Darboux functions which includes the

 constant functions if and only if the family {f^: i = l,...,k}
 possesses the property of Young.

 DEFINITION 2. Let H be a class of real functions defined

 on a set A C R. We say that x^ is a right sided upper Darboux

 point for H, with respect to A_ (written xQ € Dbx(H,A), if xQ
 is an isolated point from the right side in A or for every n > 0

 there exists 6Q > 0 such that for every C € £( An ( xQ ,xQ+ô ) )
 and h G H*(A,xQ) the following inequalities hold

 (*) h ^(h(xQ) + n) n A n (x0,xQ+ó)¿ t i

 i fi h_1((h(x ) - Tļh(x ) + n)) n C.
 h€H ° 50
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 Analogously we define a right sided lower Darboux point, left-

 «ided upper and left sided lower Darboux point by replacing H*(A,xQ)
 with H+(A,x ), H~(A,x ) and H (A,x ) respectively.

 fi O f| O f| O

 The notion of Darboux point and one sided Darboux point are de-

 fined in the obvious way. If H = {h}, we say refer to a right si-

 ded upper (right sided lower ,...) Darboux point for h.

 PROPOSITION 2. Let f : R - R. Then xQ is a Darboux point

 from the right (left) side for f ([6]) if and only if xQ is a
 right (left) sided upper and lower Darboux point for f (with res-

 pect to r:

 Before we formulate and prove the fundamental theorem of this

 paper, we give the following definition.

 DEFINITION 3 • We say that a family H fulfils the condition

 ( D) if there exists a nonempty set A C such that:

 1. every element x 6 R is a Darboux point for H with respect

 to A

 2. hig C for every C 6 £(R ' Ā).

 If addi'tionaly H|^ C Y for every C € £(R ' Ā), then we say
 that H fulfils condition GDY).

 THEOREM 3. Let H be a family of the functions fulfiling

 condition (DY ) . Then H is a family of Darboux functions and there

 exists a nonempty class T of connected topologies finer than the

 natural topology of the line such that C(T) is the complete class
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 of fundamental rings for H, with respect to condition (B).

 Proof. Let Q, be a family of all sets AC such that

 H fulfils the condition (BY) with respect to A. Let A € (X .

 We describe now a class of topologies. First we construct one topo-

 logy in this class. Let B = R ' Ā. For every' t 6 Õ, where Ce£(B)

 let anc* be decreasinS an<* increasing nets con-

 verging to t and such that for every finite set of functions h^,
 I ^ ^

 ...,h. e H there exist subnets {t . } . , of (t and K O O cS' , G OcE
 f _ _

 of fulfiling the following condition:

 (1) lim h.(t T) = h. 1 (t) = lim h. 1 (tÄ7) 0 ^or i=l,.--,k. o' es' 10 1 6'6a' 1 0

 Since Hļg C Y, the family of nets fulfiling above condition
 is nonempty. (Of course if t is a left endpoint of the closure of

 »

 a component C, then we consider only { fc } and analogously in

 the case a right endpoint of Õ). For every C € -¿(B) let denote

 a topology in Č finer than the natural topology of the segment Õ

 such that every U 6 is a F^ set (in the natural topology of
 the line) and for every U € and t 6 U there exist aQ € E and
 6_ € A such that t* € U and t" € U for every o ž o and 6 o 00 o o

 (Of course, at least one such topology exists).

 For t € Õ we put Bm (t) = {U€TP C : t € U A U ¿ S}. For C C
 tec let B«. s Bm (t) ' {U e Bm (t) : U ' C i 0}. Now we describe

 lC TC
 a family B(t), for any t 6 Ā. We make the construction from the

 right side of t. Consider the following cases:
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 1. There exists a > t such that (t,a) 6 1(B) and t ř A.

 Then we put

 B+(t) = B„ (t).
 (t ,a)

 2. t 6 A. Then we put:

 B+(t) = { [ t , t + Tn) : n=l , 2 , . . . } ,

 where some decreasing sequence tending to zero.

 3. t Í A and there exists a > t such that (t,a)C A. Since

 t is a Darboux point for H with respect to A, there exists a

 sequence {t }~ . C (t,a), t„^ t and lim h(t ) = h(t) for e- n n= . l n _ n
 » _ n"*°°

 very h E H. For every tn let be a sequence such that

 Tk k^° °* We additionally assume that tn+Tl^ C
 Then we put :

 B+(t) = { { t } u d, n=m (t n -x^, m t n +t") m : m=l,2,...}. n=m n m n m

 4. t Í A and t is neither a left endpoint of any compo-

 nent of B nor of A. For every n=l,2,... let 6^ > 0 denote a
 number such that conditions (») of Definition 2 are fulfilled for

 1 +
 n = - . Of course, we may assume 6r 0. Let ¿n denote the set
 of all component C of the set A such that C n (t+6n+1,t+6n)¿0,

 CC(t, t+6^) and C n (t, t+®n+l^ = Furthermore for every
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 C 6 ¿+ Iet tr L e h"1 ( (h(t ) - ì, n h(t ) + i)) n n C and let n L h H n n
 c ®

 ^Tn*n-1 be an arbitrary decreasing sequence converging to zero. As-
 sume :

 B+(t) ={{t} .u (J (II (t^-x^, C n tp+T^)): C n m=l,2, . . . , } . n=m c£e+ C n C n

 + c
 Moreover, we may assume that for every C € £n, t+6n+^ < A-
 nalogously, we define the families "neighbourhoods from left side of

 t" : B~Ct). Finally we put:

 B ( t ) = {U+ U U" : U+ 6 B+(t) A U" e B~ ( t ) } .

 Let T be the topology generated by the neighbourhood system

 {B(t)>tgp ([4]). Of course T is finer than the natural topology
 of R.

 Now we shall show that C(T)(H) is a ring of Darboux functions.

 Let k e C(T)(H) . Then

 (2) k = f o + f1h1 11, i 1 ... h^ . + ...+ f PP,1 h . .. h , p, o 11, 1 ... l,k1 . PP,1 . .. P»kp ,

 where f. e C(T) (i=0,l, . . . ,p ) , h. , € H and s. are natural
 1 J )1 J )P

 numbers .

 It is obvious that k is continuous at every point of A (in
 - 1 +

 the natural topology). Let C € £(B) and t € C. Let (t0, }c,
 ł - « + -

 and denote the subnets of and ^fcô^6€A resP*
 satisfying (1), for every function h. -, from (2). Clearly there
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 exist sequences ^n^n=l' ^n^n=lł w^th elements in ^o'^o'EZ'
 1 - - +

 and resP* such that tn / t / t (in the natural to-
 pology) and lim h. n(t") = h. , (t) = lim h. -lít*), for every h. ,

 n-«o J,J- n J,x n-® Jł
 from ( 2 ) .

 Si ļ i s^ m l,k..
 Thus, lim (h/»1 1 -*■ ļ ... h. „ ) (-tn n ) = (h/»1 ... h, . i)(t). ft-»» 1 » -*■ -LJKļ n ± > -L ■'■i'tļ

 +

 From the construction of the topology T converge to t,

 in T) and from T-continuity of f^ we infer that lim f^(t ) = f^(t).
 n-»®

 Applying similar reasoning to remaining elements from (2) we see
 +

 that lim k(t~) = k(t). According to the obvious fact that k € B^
 n-°°

 and the theorem of Young (see, for example [1],[12]) we infer that

 kļg is a Darboux function.
 We shall prove now that k is a Darboux function. Suppose to

 the contrary that there exist a < b and a 6 (k(a), k(b)) such

 that

 (3) k"1 (a) n (a,b ) = 0.

 Assume that k(a) < k(b). If a e A u B or a is a left end-

 point of some component C € £(B) we put a^ = a. In the remain-
 ing cases let a1 be an element of A such that

 (4) a^ € [a,b ) n k_1( (- ,a) ) .

 Notice that

 (5) {x > aŁ : [a^x) C k"1 ((-•», a) ) } i 0.
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 In fact if 6 A, then (5) is true by the continuity of k

 at this point. If a^ € B or a1 is a left endpoint of some com-
 ponent C € £(B), then according to (3) and the fact that k is

 a Darboux function in some right hand neighbourhood a^ we have (5).
 _ A

 Let 5 = sup {x > a^ : [a^x) C k ((--,a))} < b. Of course
 [a^jg) C k~ ((- ,a)). Suppose that k(g) > a. Since k(g has the
 Darboux property, for each Ce£(B) g£C nor 5 is a right endpoint

 of some component C e £(B). If £ € A and g is not a right

 endpoint of any component of B, then we find an element g*€(a^,g)n
 k ((a,+-)), which is impossible.

 Suppose now that k(g) < a. Of course g g A. Por each

 (p,q) € -¿(B), g g [p,q) because ^|[p j has the Darboux prope-
 rty. So let g € Ā ' A with g not a left endpoint of any com-

 ponent of B. Let U c (a,b) be an element of B(g) such that e-

 very component of U, which lies to the right of g, has nonempty
 -I

 intersection with k ((--,a)). Let 6^ = sup {x > g:xeU}. Since
 for each C € 1(h) f k^ has the Darboux property, A n (g,g+6c)
 k ((-«,a)) and so, according to (3), we have:

 (6) Ā n (g,g + 6g ) C k_1( (-« .,a) ) .

 Let S be an arbitrary component of the set B n (g, g + 6g) .

 Then § includes some points of Ã n (g,g + 6g). From this, (6),
 (3) and the property of Darboux of k(g we have that SCk ((-°°,at))
 and consequently B n *(g, g + ôp) C k ((- ,a)), and so (accord-

 - 1

 ing to (6)) (g, g + 6g) c k - ({-<*>, a)). The last inclusion con-
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 tradicts the definition of £. According to (3), k(£) i a. The

 obtained contradiction (k is not defined at £) proves that k is

 a Darboux function.

 According to the fact that every function k 6 C(T)(H) is a

 Darboux function we have that H and C(H) are families of Dar-

 boux functions, and consequently T is a connected topology.

 Let T be the class of all possible topologies (for different

 A € CL) described above. We shall show that C(T) is the complete

 class of fundamental rings for H with respect to the conditions

 (D).
 A

 Let H be a family of Darboux functions compatible to H with

 respect to the conditions (D) and let K be a ring of Darboux

 functions fulfiling (D) with respect to A# C and containing

 H U H. Let C e £(R ' Ā# ) . Then fjg € for f e K. Let H de-
 note the class of all finite subfamilies of functions belonging to

 K. Let H# € H. It is easy to see, that

 for every x 6 Č there exist sequences {x„ ix„ J C C
 #» H»>n

 such that x~ ^ * x ^ x„ and H#»n ^ ^ H#>n.
 lim h(xu ) = h(x) = lim h(x£ „), for every h e H .
 n- H»'n n-« H»'n *

 (Of course, if x is an endpoint of the segment C, then there

 exists only one such sequence converging to x from one side). Let

 S+ = 2 = {(H#,n) : H# € H A n=l,2,...).. In E+ and 2~ we defi-
 «

 ne the directing relations - 3 and - resp., in the following way:

 let = (H^,n^) € E+ (i=l,2). Then - 3 Oj if .and only
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 if X* s X+ -
 H»»n1 H^,n2

 and

 let = (H^,n^) e E~ (i = l,2). Then 0^-93 if and only
 if x" ¿ x"

 H»»nl H#»n2

 Let t+(x) = x* (t~(x) = x~ ) be the element of C ' {x}

 assigned to o = (H#,n) 6 S+ (a - (H#,n) e Z~). * Then the net

 {t^(x)}a€S+ decreasing (increasing) and con-
 verges to x. Moreover, for every finite set of functions HqC K

 I 4. ! _
 there exist the subnets {t . (x . and (t . (x , 1 such G G G G cE , 1

 that

 lim. h(t„*(x)) = h(x) for h 6 H_.
 O'eS1» ° 0

 This means that we can from the topology T^, by means of the
 above nets, as a't the beginning of this proof. Similar reasoning

 can be applied to every component C € £(R ' Ā#). Notice that tak-
 ing advantage of the method described in first part of this proof

 A

 we can define the topology T# for HUH (instead of A we use

 A#). It is easy to see that T# € T, which means that C(T#) is
 A

 the fundamental ring for H u H.

 The above Theorem makes it possible to form fundamental rings,

 in particular - rings of Darboux functions, for some classes of

 functions. We may formulate the following additional problems:
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 Problem 1. Characterize the classes of Darboux functions for

 which there exist fundamental rings.

 Problem 2. Give necessary and sufficient conditions under

 which families of Darboux functions and Hg have a conmon fun-
 damental ring.
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