
 Real Analysis Exchange Vol. 14 (1988-89)

 R. B. Darst and Shu Sheng Fu, Department of Mathematics, Colorado State

 University, Fort Collins, Colorado 80523.

 APPROXIMATION OF INTEGRABLE, APPROXIMATELY CONTINUOUS

 FUNCTIONS ON (0, l)n BY NONDECREASING FUNCTIONS

 For n > 1, let O denote the open unit n-cube, (0, l)n. Let n denote Lebesgue

 measure, let S consist of the Lebesgue measurable subsets of Ū, and let

 Lp = Lp(ft, S, fi), p > 1. Let Ap consist of the approximately continuous functions

 in Lp and let Mp consist of the strictly right continuous functions in the equivalence

 classes in Lp which contain nondecreasing functions. Finally, let A^+ = Up>ļAp-

 When f 6 Ap it is known [1] that there is a unique best L ^-approximat ion , fp

 to f in Mp Theorem 7 below asserts that if fn € Ap n > 1, and fn -» f € in

 Lj-norm, then ||fj - fj||ļ -» 0. If f e Lp, p > 1, then there is a unique function

 fp e Mp with ||f - fpUp = dp(f, Mp) = infhgM ||f - h||p. According to Theorem 5,

 fp -» f^ a.e. and in L^-norm as p -» 1. When n = 1, it is shown after Theorem 7

 that fp converges uniformly to fļ as p -♦ 1 on each closed subinterval of ii; however,

 to contrast with the case when f is bounded, examples are given to show that f

 need not be continuous when p > 1 (f^ is continuous when n = 1) and to show that

 fp need not be bounded when f^ = 0.

 The case of bounded, approximately continuous functions, f, on the closed

 interval [0, 1] is considered in [2]; continuous functions, f, on the closed n-cube

 [0, l]n, n > 1, are considered in [3]. In each of these cases, there is a unique best

 L^-approximation f^ by nondecreasing functions, and is continuous.

 The proper setting for considering unbounded functions is Ū (cf. [1]). Existence

 and uniqueness of fj for f e A^ are established in [1]. When n = 1, the proof of
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 Lemma 1 in [2] carries over to imply that is continuous. However, when n > 1,

 fj need not be continuous, even if f is bounded (cf. [1]).

 For X = (xp ..., xn) and y = (yp ..., yn) G Ci, x < y means x. < y., i < n,

 and x < y means Xj < y^, i < n. A function g: Ci -» R is nondecreasing on Cl if

 x < y implies that g(x) < g(y); g is strictly right continuous if g(x) = inf f(y),
 y>x

 X e n. Let M denote the set of nondecreasing functions on Ct.

 Let S be a measurable set in Cl. The upper metric density of S at a point p is

 'ffTO S Ìl)n): "(Q) < =]■
 where Q is an open n-cube containing p; the lower metric density is defined

 similarly. If they are equal, the common value is called the metric density of S at

 P-

 A function from Ci to R is said to be approximately continuous at a point p if,

 for every open set G containing f(p), the set f~^(G) has metric density 1 at p. A

 function f is said to be approximately continuous on CI if it is approximately

 continuous at every point of Í1. Lebesgue points of an integrable function are points

 of approximate continuity, and for bounded functions, the reverse is true.

 When f e Ap f is the only element of A^ which equals f a.e.. Moreover, there

 is a one-to-one correspondence between the integrable, strictly right continuous,

 nondecreasing functions g on Ci and the classes in which contain a nondecreasing

 function; each element of represents its class in Lp

 Consider a nondecreasing function g on Ci. For u € Rn_* and t e R, put

 p(u, t) = (u,0) + tln, ln = (1,...,1) e Rn. Then put gļļ(t) = g(p(u,t)) when

 p(u,t) e Ct. For each u, gu is a nondecreasing function defined on a bounded, open,

 connected subset (perhaps empty) of R. Consequently, gu has a countable set of

 discontinuities. Moreover, if p(u, t) 6 Ci and gu is continuous at t, then g is
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 continuous at p(u, t). Fubini's theorem permits us to assert that g is continuous

 a.e. on ft. Let C denote the set of continuity points of g.
 O

 We will use the following four lemmas. The fourth is well known, so we omit a

 proof for it.

 LEMMA 1. Let f € Then d^(f M^) is a nondecreasing function of p and

 limļHldp(f> Mp) = di(f> Mļ)-

 Proof: We know that if <f> is measurable on fî and 1 < r < s, then ||0||r < ||^|l
 1 u

 < oo. Since f e A1+, there exists p£ > 1 with f G A^. Consider p < then

 dp(f' ^p) *s nondecreasing and limp^dpß Mp) > d^(f, M^). To establish the

 reverse inequality, let e > 0 and h e Mļ with ||f - h^ < d^f, + e. Let h

 denote the m^ truncate of h: h(x) = (m ~ h(x)) ^ (-m), where ||f- h.m|ļ ^ < ||f-hļļ^

 + e. Since lim^Rf - hm||p = ||f - hm||1, let q satisfy ||f - hm||q < ||f - hm||1 +

 e. Then dp(f, Mj) < ||f - hm||p < ||f - h^ + 2e < d^f, M^ + 3e, 1 < p < q.

 LEMMA 2. Suppose {/ } is a pointwise bounded sequence in M. Then there exists ĪJI

 a strictly right continuous, nondecreasing Junction h on Ū and a subsequence {fm }
 k

 which converges to h on C^.

 Proof: Let % denote the set of points in Ū all of whose coordinates are rational.

 Let {fm } converge on 1 and put g(x) = lim^fm (x), x € 1. Extend g to Ū - t by k k

 putting g(y) = inf(g(x): y<xGÎ}, yefi-l Then g is nondecreasing on Ū and

 it is straightforward to verify that fm -> g on C s . Now, put h(x) = inf y - g(y), k s y -

 x e n. Then h is strictly right continuous, h = g on Cg, and C^ = C^.
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 LEMMA 3. Suppose {f-} is a sequence of functions in M and {f-} is a Cauchy

 sequence in L^. Then there exists h € M such that ''Ą - h''^ -» O and, Ą -> h on C^.

 Proof: Let <f> e with |ļfj - -* 0. Let {fj } be a subsequence of {f- } with

 Ufi - ^llj < 2"j. Then |f¡ | < g = |¿| + Y|f. - <f> I e L^. Since an L^-bounded
 J J j J
 sequence in M is pointwise bounded, Lemma 2 applies. Thus, there exists a (unique)

 strictly right continuous h e M with fj -> h on C^; |h| < g on C^. The

 Dominated Convergence Theorem implies that ||fj - h||^ -» 0, so <¡> = h a.e.. To

 show that fj -t h on C^, let x e and put A(t) = h(x+tln), = (1,...,1) e Rn
 Then A is continuous at zero. Let e > 0 and choose 6 > 0 so that |A(t)-A(0)| < e

 where |t| < 6. Then ||fj - h||j > etf1 if |fj(x) - h(x)| > 2e; thus, f¡(x) -> h(x).

 LEMMA 4. (cf. [6, p. 90]) Let be a sequence of integrable functions. Suppose

 that <f) is integrable, <j>¿ -» <f> a.e. and ''<l>ļ'ļ -* ''<t>''}- Then ''<p¿ - <f>''ļ -* 0.

 THEOREM 5. Let f e Then f^ converges to f^ on Cj as p decreases to 1

 and II fp - f1 II i -» 0.

 Proof: To show that fp -• fļ on C = Cp it suffices to consider gm = fp , where

 f € A and pm decreases to 1, and show that a subsequence gm -> fļ on C. 1 k

 Notice that ||f-f y !| y < ||f-0||D=||f|Ļ; p y thus, ||f || < PL +11«. IĻ < 2||f|| y y p y ťm ťm Fm ťm ťm ťm

 < 2||f|| . Consequently, {f } is pointwise bounded on Í2, so we apply Lemma 2
 P1 pm m

 to obtain h 6 M with gm -» h on C^. By Fatou's lemma, ||f- h|| ^ < lim||f- gm ||j. k k
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 Moreover, since ||f-gm k ^ < ||f-gm k || , p-h^ < ļim||f-gm k || = lim|[f-g k ||p k k niļ^ k k
 = dļ(f,Mj) because of Lemma 1. By the uniqueness of best L^-approximation,

 fļ = h. It remains to verify that ||fp - fjJļj -» 0 by showing that ||fp - fj^ -» 0

 when p_ decreases to one as follows. Put ó Ym = f - f and è = f - f,. 1 Then p_ m Ym Pm 1
 (¡>m -> <fr cm C and ll<Amllļ -> II 011 p so Lemma 4 applies to finish a proof of Theorem

 5.

 Before proceeding, we note that the uniqueness of fp established in [1], and

 Theorem 2 in [5] imply that ||fp - fjJI^ -♦ 0. Consequently, application of Lemma 3

 gives another proof of Theorem 5.

 We will show that Lj-approximation is continuous on the set of integrable,

 approximately continuous functions. The following simple example from [2] illustrates

 that approximate continuity is "necessary" to ensure continuity of Lj -approximation.

 Let Ig denote the indicator function of a subset E of R: Ig(x) = 1, x e E,

 IE(x) = 0, x i E.

 Example 6. Put fn(x)=l, x 6 [0, ^(1 - j-j-)], fn(x)=0, x e [^, 1], and extend fn to be

 linear on [^(1 - |), ķ. Put gn(x) = fn(x), x 6 [0, j] U [^(1 + £), 1], gn(x) = 1,

 x 6 [^(1 4- jüj-), 7j(l + ^)], and extend gn to be linear on each of [^, ^(1 + ^)],

 &1 + 5>- + 5>1- Then f" * «"• SI1(0)=fn(0), |'gn-fn) - 0, and 5 l.

 Notice that fn -» I^ pointwise and gn -> I^ pointwise. 1^
 quasi-continuous and has only one point of discontinuity on [0, 1], so the following

 theorem is tight.
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 THEOREM 7. Let fm 6 Av Suppose f e Aļ and ''fm -f''ļ -» 0. Then

 llf? - fi W i - o.

 mk
 Proof: Suppose, on the contrary, that there exists e > 0 and a subsequence, {f },

 mk
 such that ||fļ - > e- We will show that this supposition leads to a
 contradiction. A sequence of relabelings permits us to make some additional

 suppositions. First, we suppose > e. Since ||fm - -> 0, there exists a
 mk -k mV r mV

 subsequence with |ļf - f||j < 2 . Thus, |f | < |g| = |f| + ¿If ~ f| e
 k

 mk
 moreover, [5, Lemma 3], -gj < fj < gj. Hence, we suppose |f | < g, so

 I f^| < g^. Next, we suppose fm -» f a.e.. Now we repeat the argument in Theorem

 mk
 5 to find a subsequence f ^ which converges to h e on C^. Finally, suppose

 f^1 -» h on C^. By the Dominated Convergence Theorem, ļļf^1 - h||^ -» 0, so

 llf"1 - f^llj - ||f - hllj. Also, ''f - fjlj - ||f - fjllļ. Thus, since ||fm - f™||j

 < ||fm - fjllp ||f - hļļļ < ||f - fjHj. By the uniqueness of best approximation, h =

 fp hence, we have a contradiction.

 Henceforth, suppose n = 1 and f e A^+. To show that fp -> uniformly on
 [a, b] c fi, suppose on the contrary that there is e > 0 and a sequence p

 decreasing to one with ||f - f^|| 00 > e on [a, b]. As in the proof of Theorem 7, *m 00

 Helly's Theorem gives us a subsequence g^ = f that converges pointwise to a
 . mk

 nondecreasing function g on [a, b]; as before, g = f^ à.e. on [a, b]. But f^ is

 continuous (cf. [2, Lemma 1]), so g = f^ on [a, b]. Moreover, because g is

 continuous, we can conclude that g^ -+ g uniformly on [a, b]. This contradiction

 establishes the uniform convergence of fp to fj on [a, b].
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 Two examples follow. Example 8 shows that f need not be continuous.

 Example 9 shows that fp need not converge uniformly to f^; indeed, e 0 and

 limt_>jfp(t) = oo, p > 1 in this example.

 Example 8. Consider the step function <j> defined on [0, a + b] by <p = hl^ aj. For
 p > 1, the best L -approximation to <f> by nondecreasing functions is given by the

 ïr

 constant function <ļ>^ = hp I [g a+ļjļ, where

 u _ h
 p " i r 1 1 ir

 : + I r Lp-IJ
 h^ = 0 if a < b.

 For n > 2, put afl = K^^^ln^n)-^", bn = K(n^ln^n)-^ and cn=an+t>n> where

 L>2cn = ' Put hn = n + l< un = 2 + Ik>nck ^ define * on " by

 * = L>2''+V*a+1+^ * 6 V
 On [un+1, un] the best nondecreasing Lp-approximation to <j> is the constant

 function Ir „ i! hence, é = I , .
 K+i'V „ i! hence, vp = (i,i] ,

 Since the map g ^ g is order preserving on L [4], we can modify (p to obtain
 r r

 f e Ap with f(x) = 0, X e (0, and f > <f>. Then fp(x) = 0, x e (0, and

 fp(x) > 1, x e [ķ 1).

 Example 9. Let an remain as in Example 8. Put tfl = (ļn nū_ ļK n > 1, and

 modify bfl:

 bn = K exp {(In tn)_1/2ln tn}/[n^p+1^ln2n].

 Again put cn = an 4- bn and specify K by the equation ^n>2cn = Put

 un = 1 - Ik>nck' hn = n md * = In^Vfu^+aJ' Then * Ě V °n
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 [un, ufl+1), the best iiondecreasing ^-approximation to <f> is en(t)I^u u where

 en(t) is a nondecreasing function of t on (1, p]. Let's look at en(pn) for pn - 1

 = (In tn)-1/2: 6n(pn) = ^ +nt ^ = In n ^ oo. Hence lim^^x) = «, 1 < t < p.

 Again, modify <f> to obtain f e Ap with f > <f> such that f^ = 0 and lim^jf^x) = oo,

 1 < t < p.
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