R. B. Darst and Shu Sheng Fu, Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523.

APPROXIMATION OF INTEGRABLE, APPROXIMATELY CONTINUOUS FUNCTIONS ON (0, 1)ⁿ BY NONDECREASING FUNCTIONS

For $n \ge 1$, let Ω denote the open unit n-cube, $(0, 1)^n$. Let μ denote Lebesgue measure, let Σ consist of the Lebesgue measurable subsets of Ω , and let $L_p = L_p(\Omega, \Sigma, \mu), p \ge 1$. Let A_p consist of the approximately continuous functions in L_p and let M_p consist of the strictly right continuous functions in the equivalence classes in L_p which contain nondecreasing functions. Finally, let $A_{1+} = \cup_{p>1} A_p$.

When $f \in A_1$, it is known [1] that there is a unique best L_1 -approximation, f_1 . to f in M_1 . Theorem 7 below asserts that if $f^n \in A_1$, $n \ge 1$, and $f^n \to f \in A_1$ in L_1 -norm, then $\|f_1^n - f_1\|_1 \to 0$. If $f \in L_p$, p > 1, then there is a unique function $f_p \in M_p$ with $\|f - f_p\|_p = d_p(f, M_p) = \inf_{h \in M_p} \|f - h\|_p$. According to Theorem 5. $f_p \to f_1$ a.e. and in L_1 -norm as $p \to 1$. When n = 1, it is shown after Theorem 7 that f_p converges uniformly to f_1 as $p \to 1$ on each closed subinterval of Ω ; however. to contrast with the case when f is bounded, examples are given to show that f_p need not be continuous when p > 1 (f_1 is continuous when n = 1) and to show that f_p need not be bounded when $f_1 \equiv 0$.

The case of bounded, approximately continuous functions, f, on the closed interval [0, 1] is considered in [2]; continuous functions, f, on the closed n-cube $[0, 1]^n$, $n \ge 1$, are considered in [3]. In each of these cases, there is a unique best L_1 -approximation f_1 by nondecreasing functions, and f_1 is continuous.

The proper setting for considering unbounded functions is Ω (cf. [1]). Existence and uniqueness of f_1 for $f \in A_1$ are established in [1]. When n = 1, the proof of Lemma 1 in [2] carries over to imply that f_1 is continuous. However, when n > 1, f_1 need not be continuous, even if f is bounded (cf. [1]).

For $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n) \in \Omega$, $x \leq y$ means $x_i \leq y_i$, $i \leq n$, and x < y means $x_i < y_i$, $i \leq n$. A function g: $\Omega \rightarrow R$ is nondecreasing on Ω if $x \leq y$ implies that $g(x) \leq g(y)$; g is strictly right continuous if $g(x) = \inf_{y > x} f(y)$, $x \in \Omega$. Let M denote the set of nondecreasing functions on Ω .

Let S be a measurable set in Ω . The upper metric density of S at a point p is $\lim_{n \to \infty} \sup_{Q} \left[\frac{\mu(S \cap Q \cap \Omega)}{\mu(Q \cap \Omega)} : \mu(Q) < \frac{1}{n} \right],$

where Q is an open n-cube containing p; the lower metric density is defined similarly. If they are equal, the common value is called the metric density of S at p.

A function from Ω to R is said to be approximately continuous at a point p if, for every open set G containing f(p), the set $f^{-1}(G)$ has metric density 1 at p. A function f is said to be approximately continuous on Ω if it is approximately continuous at every point of Ω . Lebesgue points of an integrable function are points of approximate continuity, and for bounded functions, the reverse is true.

When $f \in A_1$, f is the only element of A_1 which equals f a.e.. Moreover, there is a one-to-one correspondence between the integrable, strictly right continuous, nondecreasing functions g on Ω and the classes in L_1 which contain a nondecreasing function; each element of M_1 represents its class in L_1 .

Consider a nondecreasing function g on Ω . For $u \in \mathbb{R}^{n-1}$ and $t \in \mathbb{R}$, put $p(u, t) = (u,0) + t1_n$, $1_n = (1,...,1) \in \mathbb{R}^n$. Then put $g_u(t) = g(p(u,t))$ when $p(u,t) \in \Omega$. For each u, g_u is a nondecreasing function defined on a bounded, open, connected subset (perhaps empty) of R. Consequently, g_u has a countable set of discontinuities. Moreover, if $p(u, t) \in \Omega$ and g_u is continuous at t, then g is

continuous at p(u, t). Fubini's theorem permits us to assert that g is continuous a.e. on Ω . Let C_g denote the set of continuity points of g.

We will use the following four lemmas. The fourth is well known, so we omit a proof for it.

LEMMA 1. Let $f \in A_{1+}$. Then $d_p(f, M_p)$ is a nondecreasing function of p and $\lim_{p \to 1} d_p(f, M_p) = d_1(f, M_1)$.

Proof: We know that if ϕ is measurable on Ω and $1 \leq r < s$, then $\|\phi\|_{r} \leq \|\phi\|_{s} \leq \infty$. Since $f \in A_{1+}$, there exists $p_{f} > 1$ with $f \in A_{p_{f}}$. Consider $p \leq p_{f}$, then $d_{p}(f, M_{p})$ is nondecreasing and $\lim_{p \to 1} d_{p}(f, M_{p}) \geq d_{1}(f, M_{1})$. To establish the reverse inequality, let $\epsilon > 0$ and $h \in M_{1}$ with $\|f - h\|_{1} < d_{1}(f, M_{1}) + \epsilon$. Let h_{m} denote the m^{th} truncate of h: $h(x) = (m \land h(x)) \lor (-m)$, where $\|f - h_{m}\|_{1} < \|f - h\|_{1} + \epsilon$. Since $\lim_{p \to 1} \|f - h_{m}\|_{p} = \|f - h_{m}\|_{1}$, let q satisfy $\|f - h_{m}\|_{q} < \|f - h_{m}\|_{1} + \epsilon$. Then $d_{p}(f, M_{1}) \leq \|f - h_{m}\|_{p} < \|f - h\|_{1} + 2\epsilon < d_{1}(f, M_{1}) + 3\epsilon$, 1 .

LEMMA 2. Suppose $\{f_m\}$ is a pointwise bounded sequence in M. Then there exists a strictly right continuous, nondecreasing function h on Ω and a subsequence $\{f_{m_k}\}$ which converges to h on C_h .

Proof: Let \mathcal{X} denote the set of points in Ω all of whose coordinates are rational. Let $\{f_{m_k}\}$ converge on \mathcal{X} and put $g(x) = \lim_k f_{m_k}(x), x \in \mathcal{X}$. Extend g to $\Omega - \mathcal{X}$ by putting $g(y) = \inf(g(x): y \leq x \in \mathcal{X}), y \in \Omega - \mathcal{X}$. Then g is nondecreasing on Ω and it is straightforward to verify that $f_{m_k} \to g$ on C_g . Now, put $h(x) = \inf_{y > x} g(y), x \in \Omega$. Then h is strictly right continuous, h = g on C_g , and $C_h = C_g$. **LEMMA 3.** Suppose $\{f_i\}$ is a sequence of functions in M and $\{f_i\}$ is a Cauchy sequence in L_1 . Then there exists $h \in M$ such that $\|f_i - h\|_1 \to 0$ and $f_i \to h$ on C_h .

Proof: Let $\phi \in L_1$ with $\|f_i - \phi\|_1 \to 0$. Let $\{f_i\}$ be a subsequence of $\{f_i\}$ with $\|f_i - \phi\|_1 < 2^{-j}$. Then $|f_i| \leq g = |\phi| + \sum_j |f_i| - \phi| \in L_1$. Since an L_1 -bounded sequence in M is pointwise bounded, Lemma 2 applies. Thus, there exists a (unique) strictly right continuous $h \in M$ with $f_i \to h$ on C_h ; $\|h\| \leq g$ on C_h . The Dominated Convergence Theorem implies that $\|f_i - h\|_1 \to 0$, so $\phi = h$ a.e.. To show that $f_i \to h$ on C_h , let $x \in C_h$ and put $\lambda(t) = h(x+t1_n)$, $1_n = (1,...,1) \in \mathbb{R}^n$. Then λ is continuous at zero. Let $\epsilon > 0$ and choose $\delta > 0$ so that $|\lambda(t) - \lambda(0)| < \epsilon$ where $|t| \leq \delta$. Then $\|f_i - h\|_1 > \epsilon \delta^n$ if $|f_i(x) - h(x)| > 2\epsilon$; thus, $f_i(x) \to h(x)$.

LEMMA 4. (cf. [6, p. 90]) Let $\{\phi_i\}$ be a sequence of integrable functions. Suppose that ϕ is integrable, $\phi_i \rightarrow \phi$ a.e. and $\|\phi_i\|_1 \rightarrow \|\phi\|_1$. Then $\|\phi_i - \phi\|_1 \rightarrow 0$.

THEOREM 5. Let $f \in A_{1+}$. Then f_p converges to f_1 on C_{f_1} as p decreases to 1 and $||f_p - f_1||_1 \to 0$.

Proof: To show that $f_p \to f_1$ on $C = C_{f_1}$, it suffices to consider $g_m = f_{p_m}$, where $f \in A_{p_1}$ and p_m decreases to 1, and show that a subsequence $g_{m_k} \to f_1$ on C. Notice that $\|f-f_p\|_p \leq \|f-0\|_p = \|f\|_p$; thus, $\|f_{p_m}\|_{p_m} \leq \|f\|_{p_m} + \|f-f_{p_m}\|_{p_m} \leq 2\|f\|_{p_m}$ $\leq 2\|f\|_{p_1}$. Consequently, $\{f_{p_m}\}_m$ is pointwise bounded on Ω , so we apply Lemma 2 to obtain $h \in M$ with $g_{m_k} \to h$ on C_h . By Fatou's lemma, $\|f-h\|_1 \leq \underline{\lim}\|f-g_{m_k}\|_1$. Moreover, since $\|f-g_{m_k}\|_1 \leq \|f-g_{m_k}\|_{p_{m_k}}$, $\|f-h\|_1 \leq \underline{\lim}\|f-g_{m_k}\|_{p_{m_k}} = \lim\|f-g_{m_k}\|_{p_{m_k}}$ = $d_1(f, M_1)$ because of Lemma 1. By the uniqueness of best L_1 -approximation, $f_1 = h$. It remains to verify that $\|f_p - f_1\|_1 \to 0$ by showing that $\|f_{p_m} - f_1\|_1 \to 0$ when p_m decreases to one as follows. Put $\phi_m = f - f_{p_m}$ and $\phi = f - f_1$. Then $\phi_m \to \phi$ on C and $\|\phi_m\|_1 \to \|\phi\|_1$, so Lemma 4 applies to finish a proof of Theorem 5.

Before proceeding, we note that the uniqueness of f_1 , established in [1], and Theorem 2 in [5] imply that $||f_p - f_1||_1 \rightarrow 0$. Consequently, application of Lemma 3 gives another proof of Theorem 5.

We will show that L_1 -approximation is continuous on the set of integrable, approximately continuous functions. The following simple example from [2] illustrates that approximate continuity is "necessary" to ensure continuity of L_1 -approximation.

Let $I_{\underline{E}}$ denote the indicator function of a subset E of R: $I_{\underline{E}}(x)$ = 1, $x\in E,$ $I_{\underline{E}}(x)$ = 0, $x\notin E.$

Example 6. Put $f^{n}(x)=1$, $x \in [0, \frac{1}{2}(1-\frac{1}{n})]$, $f^{n}(x)=0$, $x \in [\frac{1}{2}, 1]$, and extend f^{n} to be linear on $[\frac{1}{2}(1-\frac{1}{n}), \frac{1}{2}]$. Put $g^{n}(x) = f^{n}(x)$, $x \in [0, \frac{1}{2}] \cup [\frac{1}{2}(1+\frac{4}{n}), 1]$, $g^{n}(x) = 1$, $x \in [\frac{1}{2}(1+\frac{1}{n}), \frac{1}{2}(1+\frac{3}{n})]$, and extend g^{n} to be linear on each of $[\frac{1}{2}, \frac{1}{2}(1+\frac{1}{n})]$, $[\frac{1}{2}(1+\frac{3}{n}), \frac{1}{2}(1+\frac{4}{n})]$. Then $f^{n} \leq g^{n}$, $g^{n}(0)=f^{n}(0)$, $\int_{0}^{1}(g^{n}-f^{n}) \rightarrow 0$, and $g_{1}^{n}-f_{1}^{n}=g_{1}^{n} \equiv 1$. Notice that $f^{n} \rightarrow I_{[0,1/2)}$ pointwise and $g^{n} \rightarrow I_{[0,1/2)}$ pointwise. $I_{[0,1/2)}$ is quasi-continuous and has only one point of discontinuity on [0, 1], so the following theorem is tight.

THEOREM 7. Let $f^m \in A_1$. Suppose $f \in A_1$ and $||f^m - f||_1 \rightarrow 0$. Then $||f_1^m - f_1||_1 \rightarrow 0$.

Proof: Suppose, on the contrary, that there exists $\epsilon > 0$ and a subsequence, $\{f^{m_k}\}$, such that $\|\|f_1^{m_k} - f_1\|_1 > \epsilon$. We will show that this supposition leads to a contradiction. A sequence of relabelings permits us to make some additional suppositions. First, we suppose $\|\|f_1^m - f_1\|_1 > \epsilon$. Since $\|\|f^m - f\|_1 \to 0$, there exists a subsequence with $\|\|f^m - f\|_1 < 2^{-k}$. Thus, $\|f^m k\| \le \|g\| = \|f\| + \sum_k \|f^m k - f\| \in L_1$;

moreover, [5, Lemma 3], $-g_1 \leq f_1^{m_k} \leq g_1$. Hence, we suppose $|f^m| \leq g$, so $|f_1^m| \leq g_1$. Next, we suppose $f^m \to f$ a.e.. Now we repeat the argument in Theorem 5 to find a subsequence $f_1^{m_k}$ which converges to $h \in M_1$ on C_h . Finally, suppose $f_1^m \to h$ on C_h . By the Dominated Convergence Theorem, $||f_1^m - h||_1 \to 0$, so $||f^m - f_1^m||_1 \to ||f - h||_1$. Also, $||f^m - f_1||_1 \to ||f - f_1||_1$. Thus, since $||f^m - f_1^m||_1 \leq ||f - f_1||_1$. By the uniqueness of best approximation, $h = f_1$; hence, we have a contradiction.

Henceforth, suppose n = 1 and $f \in A_{1+}$. To show that $f_p \to f_1$ uniformly on $[a, b] \in \Omega$, suppose on the contrary that there is $\epsilon > 0$ and a sequence p_m decreasing to one with $\|f_{p_m} - f_1\|_{\infty} \ge \epsilon$ on [a, b]. As in the proof of Theorem 7, Helly's Theorem gives us a subsequence $g_k = f_{p_m}$ that converges pointwise to a nondecreasing function g on [a, b]; as before, $g = f_1$ a.e. on [a, b]. But f_1 is continuous (cf. [2, Lemma 1]), so $g = f_1$ on [a, b]. Moreover, because g is continuous, we can conclude that $g_k \to g$ uniformly on [a, b]. This contradiction establishes the uniform convergence of f_p to f_1 on [a, b].

Two examples follow. Example 8 shows that f_p need not be continuous. Example 9 shows that f_p need not converge uniformly to f_1 ; indeed, $f_1 \equiv 0$ and $\lim_{t\to 1} f_p(t) = \infty$, p > 1 in this example.

Example 8. Consider the step function ϕ defined on [0, a + b] by $\phi = hI_{[0,a]}$. For p > 1, the best L_p -approximation to ϕ by nondecreasing functions is given by the constant function $\phi_p = h_p I_{[0,a+b]}$, where

$$\mathbf{h}_{\mathbf{p}} = \frac{\mathbf{h}}{\left[1 + \left[\frac{\mathbf{b}}{\mathbf{a}}\right]^{\left[\frac{1}{\mathbf{p}-1}\right]}\right]};$$

 $h_1 \equiv 0$ if a < b.

For $n \ge 2$, put $a_n = K(n^{(p+1)}\ln^2 n)^{-1}$, $b_n = K(n^2\ln^2 n)^{-1}$ and $c_n = a_n + b_n$, where $\sum_{n\ge 2}c_n = \frac{1}{2}$. Put $h_n = n + 1$, $u_n = \frac{1}{2} + \sum_{k\ge n}c_k$ and define ϕ on Ω by $\phi = \sum_{n\ge 2}h_nI[u_{n+1},u_{n+1}+a_n]; \phi \in L_p$.

On $[u_{n+1}, u_n]$ the best nondecreasing L_p -approximation to ϕ is the constant function $I_{[u_{n+1}, u_n]}$; hence, $\phi_p = I_{[\frac{1}{2}, 1]}$.

Since the map $g \to g_p$ is order preserving on L_p [4], we can modify ϕ to obtain $f \in A_p$ with f(x) = 0, $x \in (0, \frac{1}{2}]$ and $f \ge \phi$. Then $f_p(x) = 0$, $x \in (0, \frac{1}{2})$ and $f_p(x) \ge 1$, $x \in [\frac{1}{2}, 1)$.

Example 9. Let a_n remain as in Example 8. Put $t_n = (\frac{n}{\ln n - 1})$, n > 1, and modify b_n :

$$b_n = K \exp\{(\ln t_n)^{-1/2} \ln t_n\} / [n^{(p+1)} \ln^2 n].$$

Again put $c_n = a_n + b_n$ and specify K by the equation $\sum_{n\geq 2}c_n = \frac{1}{2}$. Put $u_n = 1 - \sum_{k\geq n}c_k$, $h_n = n$ and $\phi = \sum_{n\geq 2}h_nI_{[u_n,u_n+a_n]}$. Then $\phi \in L_p$. On

$$\begin{split} &[u_n, u_{n+1}), \text{ the best nondecreasing } L_t \text{-approximation to } \phi \text{ is } \epsilon_n(t)I_{[u_n, u_{n+1}]}, \text{ where} \\ &\epsilon_n(t) \text{ is a nondecreasing function of t on } (1, p]. \text{ Let's look at } \epsilon_n(p_n) \text{ for } p_n - 1 \\ &= (\ln t_n)^{-1/2}: \epsilon_n(p_n) = \frac{n}{(1+t_n)} = \ln n \to \infty. \text{ Hence } \lim_{x \to 1} \phi_t(x) = \infty, 1 < t \leq p. \end{split}$$
Again, modify ϕ to obtain $f \in A_p$ with $f \geq \phi$ such that $f_1 \equiv 0$ and $\lim_{x \to 1} f_t(x) = \infty, 1 < t \leq p.$ $1 < t \leq p. \end{split}$

REFERENCES

- 1. R. B. Darst and S. S. Fu, "Best L_1 -approximation of L_1 -approximately continuous functions on $(0, 1)^n$ by nondecreasing functions", *Proc. Amer. Math. Soc.*, 97 (1986), 262-264.
- 2. R. B. Darst and R. Huotari, "Best L₁-approximation of bounded approximately continuous functions on [0, 1] by nondecreasing functions", J. Approx. Theory 43 (1985), 178-189.
- R. B. Darst and R. Huotari, "Monotone L₁-approximation on the unit n-cube", Proc. Am. Math. Soc. 95 (1985), 425-428.
- D. Landers and L. Rogge, "Isotonic approximation in L_s", J. Approx. Theory 31 (1981), 199-223.
- 5. D. Landers and L. Rogge, "Natural choice of L₁-approximants", J. Approx. Theory 33 (1981), 268-280.
- 6. H. L. Royden, Real Analysis, 2nd Edition, Macmillan, New York, 1968.

Received January 13 1988