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APPROXIMATION OF INTEGRABLE, APPROXIMATELY CONTINUOUS
FUNCTIONS ON (0, 1) BY NONDECREASING FUNCTIONS

For n > 1, let Q denote the open unit n—cube, (0, l)n. Let p denote Lebesgue

measure, let X consist of the Lebesgue measurable subsets of 2, and let

Lp = Lp(Q, L, w,p 21 Let Ap consist of the approximately continuous functions
in Lp and let M_ consist of the strictly right continuous functions in the equivalence

Up>1Ap'

When f € A, it is known [1] that there is a unique best L, -approximation, f,.

p
classes in Lp which contain nondecreasing functions. Finally, let A, + =

to f in Ml‘ Theorem 7 below asserts that if f* € Al’ n>1, and f* - f € Al in
L,-norm, then |[fr11 - f1|l1 - 0. Iffe Lp, p > 1, then there is a unique function

fp € Mp with ||f - fp"p = dp(f, Mp) = infheMp”f - h”p‘ According to Theorem 3.
.fp - f1 a.e. and in Ll—norm as p - 1. When n = 1, it is shown after Theorem 7

that fp converges uniformly to f1 as p - 1 on each closed subinterval of ; however.
to contrast with the case when f is bounded, examples are given to show that fp
need not be continuous when p > 1 (f1 is continuous when n = 1) and to show that
fp need not be bounded when f1 = 0.

The case of bounded, approximately continuous functions, f, on the closed
interval [0, 1] is considered in [2]; continuous functions, f, on the closed n—cube
[0, l]n, n > 1, are considered in [3]. In each of these cases, there is a unique best
Ll—approximation f1 by nondecreasing functions, and f1 is continuous.

The proper setting for considering unbounded functions is € (cf. [1]). Existence

and uniqueness of f; for f € A, are established in [1]. When n = 1, the proof of
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Lemma 1 in [2] carries over to imply that f, is continuous. However, when n > 1,
f, need not be continuous, even if f is bounded (cf. [1]).

For x = (xl, ey xn) and y = (yl, vees yn) € Q, x <y means x; <y, i<,
and x < y means X, <yp i< A function g: @ - R is nondecreasing on § if

x <y implies that g(x) < g(y); g is strictly right continuous if g(x) = infy>xf(y),

x € Q. Let M denote the set of nondecreasing functions on .

Let S be a measurable set in . The upper metric density of S at a point p is

tim sup HE G- w@ < 1)

where Q is an open n-—cube containing p; the lower metric density is defined

similarly. If they are equal, the common value is called the metric density of S at
p.

A function from Q to R is said to be approximately continuous at a point p if,
for every open set G containing f(p), the set 1(G) has metric density 1 at p. A
function f is said to be approximately continuous on € if it is approximately
continuous at every point of 2. Lebesgue points of an integrable function are points
of approximate continuity, and for bounded functions, the reverse is true.

When f € Al’ f is the only element of A1 which equals f a.e.. Moreover, there
is a one-to-one correspondence between the integrable, strictly right continuous,
nondecreasing functions g on Q and the classes in L which contain a nondecreasing
function; each element of M, represents its class in Ll'

Consider a nondecreasing function g on Q. For u € R™! and t € R, put
p(u, t) = (u,0) + tl, 1, = (1,..,1) € R™. Then put gu(t) = g(p(u,t)) when
p(u,t) € Q. For each u, gy is a nondecreasing function defined on a bounded, open,
connected subset (perhaps empty) of R. Consequently, g, has a countable set of

discontinuities. = Moreover, if p(u, t) € @ and g, Is continuous at t, then g is
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continuous at p(u, t). Fubini's theorem permits us to assert that g is continuous
a.e. on . Let C g denote the set of continuity points of g.
We will use the following four lemmas. The fourth is well known, so we omit a

proof for it.

LEMMA 1. Let f€ A 1+ Then dp(j} Mp) is a nondecreasing function of p and

tim,d (5 M) = dy(f M,).

Proof: We know that if ¢ is measurable on Q and 1 < r < s, then [|g]l, < [Igll

o Since f € A there exists pf'> 1 with f € Ap. Consider p < Py, then

f
dp(f, Mp) > dy(f, M;). To establish the

1+’
dp(f, Mp) is nondecreasing and lim ol
reverse inequality, let ¢ > 0 and h € M; with [|f - hf|; < d,(f, M;) + e Let h

th

denote the m"" truncate of h: h(x) = (m ~ h(x)) v (-m), where ||f-h il < =0l

+ ¢ Since lim If - b ll;, let q satisfy ||f — hmllq <t =hll; +

¢. Then dp(f, M) < |if - hm"p < |If - hll; + 26 < d;(f, M]) + 3¢, 1 <p < q

LEMMA 2. Suppose { fm} is a pointwise bounded sequence in M. Then there ezists

a strictly right continuous, nondecreasing function h on Q and a subsequence { fmk}

which converges to h on Ch'

Proof: Let ? denote the set of points in Q all of whose coordinates are rational.

Let {fmk} converge on ® and put g(x) = limkfmk(x), x € . Extend g to @ — 7 by

putting g(y) = inf(g(x): y < x € B}, y € Q@ — 2 Then g is nondecreasing on Q and

it is straightforward to verify that fmk - g on Cg. Now, put h(x) = infy>xg(y),

x € . Then h is strictly right continuous, h = g on Cg’ and Ch =C g
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LEMMA 3. Suppose {f} is a sequence of functions in M and {f} is a Cauchy
sequence in L, Then there exists h € M such that ”fz’ - h||1 + 0 and f, - h on Cp.

Proof: Let ¢ € L, with [f; - ¢||1 - 0. Let {fi.} be a subsequence of {fi} with
J

If - ¢ll, <27 Then |f,| <g=|g| + )|f, - ¢| € L;. Since an L,-bounded
J J j J
sequence in M is pointwise bounded, Lemma 2 applies. Thus, there exists a (unique)

strictly right continuous h € M with f -+ h on Cp; |lh| < g on Cp. The
X
Dominated Convergence Theorem implies that ||f. - hfl; -+ 0, so ¢ = h ae. To
X
show that f, » h on Cy, let x € C and put A(t) = h(x+tl ), 1 = (1,..,1) € R™.

Then ) is continuous at zero. Let ¢ > 0 and choose § > 0 so that |A(t)-A(0)] < e

where |t| < & Then ||If; - hfl; > 6" if |f,(x) - h(x)| > 2¢ thus, f;(x) + h(x).

LEMMA 4. (cf. [6, p. 90]) Let {¢z} be a sequence of integrable functions. Suppose
that ¢ is integrable, ¢, - ¢ a.e. and ”¢z’"1 - ||¢||1. Then ”¢z’ - dll, -0

THEOREM 5. Let f€ A 14 Then fp converges to fI on Cf as p decreases to 1
1

and ”fp - f1”1 - 0.

Proof: To show that f - f. on C = C,, it suffices to consider g = , where
P 1 f1 m P

fe A D and P decreases to 1, and show that a subsequence gmk - f1 on C.

1

i £ < = : th f
Notice that || p||p < ||f—0||p ||f||p, thus, Ilp I

<N, A+ 1 < 2
m Pm Py P P

mpm m

< 2||f||p1. Consequently, {fp }rrl is pointwise bounded on €, so we apply Lemma 2
m

to obtain h € M with 8n " h on Ch. By Fatou's lemma, ||f—h||1 < _1i_m||f—gmk||1.
, k

170



Moreover, since |[f-g  [I; < It I, , lf=hily < limflf=g [l = lim[/f-g ||
my "1 My pmk 1 My pmk My pmk

= dl(f’Ml) because of Lemma 1. By the uniqueness of best L,-approximation,

f, = h. It remains to verify that ||fp - fjll{ » 0 by showing that ||fpm— fill; =0

when P decreases to one as follows. Put ¢m =f - fp and ¢ = f - fl' Then
m

¢y = ¢ on C and ||<sz||1 - ||¢||1, so Lemma 4 applies to finish a proof of Theorem
5.

Before proceeding, we note that the uniqueness of fl’ established in [1], and
Theorem 2 in [5] imply that ||f ~ f1||1 -+ 0. Consequently, applicﬁtion of Lemma 3
gives another proof of Theorem 5.

We will show that Ll—a,pproximation is continuous on the set of integrable,
approximately continuous functions. The following simple example from [2] illustrates
that approximate continuity is "necessary" to ensure continuity of L, —approximation.

Let IE denote the indicator function of a subset E of R: IE(x) = 1, x € E,
IE(x) =0,x ¢ E.

Example 6. Put f(x)=1, x € [0, 5(1 - D)), f(x)=0, x € [, 1], and extend " to be
linear on [3(1 - 1), 4. Put g"x) = '(x), x € [0, 3] U B + ), 1], g"x) = 1,

X € [%(1 + %), %(1 + %)], and extend g" to be linear on each of [%, %(1 + %)],

1
1 3y 1 4
(1 + 3, 51 + D] Then f* < g7, g"(0)=(0), Jo(gn-fn) + 0, and g)f)=g) = L.
Notice that f" - 1[0,1 /2) pointwise and g" - I[O,l /2) pointwise. I[O,l /2) is
quasi—continuous and has only one point of discontinuity on [0, 1], so the following

theorem is tight.
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THEOREM 7. Let f™ € A
”f’? - f1”1 =+ 0.

;- Suppose f € A, and IF™ -fll; - 0. Then

mr
Proof: Suppose, on the contrary, that there exists ¢ > 0 and a subsequence, {f l‘},

m
such that ||f lk - f1||1 > ¢e¢. We will show that this supposition leads to a
contradiction. =~ A sequence of relabelings permits us to make some additional
suppositions. First, we suppose ||fr{1-f1||1 > ¢ Since || - f||1 -+ 0, there exists a

m m m
subsequence with ||f k_ fll, < o7k, Thus, |f k| < gl = |f] + Elf k -fl e L;

k
my m
moreover, [5, Lemma 3], -8 < f1 < gy Hence, we suppose [f | < g, so

|fT| < g Next, we suppose f™ - f a.e.. Now we repeat the argument in Theorem

m
5 to find a subsequence f lk which converges to h € M1 on Ch‘ Finally, suppose
fI{l - h on Ch. By the Dominated Convergence Theorem, ||fIIl - h||1 - 0, so
1™ - £y

<™ = £lly, IIf = hlly < Iif - f;ll;- By the uniqueness of best approximation, h =

- Iif - hll;.  Also, [If* - fill; = lIf = f;ll;-  Thus, since It - £,

fl; hence, we have a contradiction.
Henceforth, suppose n = 1 and f € A1 " To show that f b f1 uniformly on
[a, b] C 9, suppose on the contrary that there is ¢ > 0 and a sequence P

decreasing to one with ||fp - fjll, 2 € on [a, b. As in the proof of Theorem 7,
m

Helly's Theorem gives us a subsequence Bk = fp that converges pointwise to a
m
k

nondecreasing function g on [a, b]; as before, g = f; ae on [a, b]. But f is
continuous (cf. [2, Lemma 1]), so g = f; on [a, b].  Moreover, because g is
continuous, we can conclude that g - g uniformly on [a, b]. This contradiction

establishes the uniform convergence of fp to f; on [a, b].

172



Two examples follow. Example 8 shows that fp need not be continuous.
Example 9 shows that fp need not converge uniformly to fl; indeed, f1 = 0 and

limt-»lfp(t) = w, p > 1 in this example.

Example 8. Consider the step function ¢ defined on [0, a + b] by ¢ = hI[0 a] For
p > 1, the best Lp—approxjmation to ¢ by nondecreasing functions is given by the

constant function ¢p = h pI[O,a +b]’ where

hp=

)

a

h1§0ifa<b.

Forn > 2, put a = K(n(p+1)ln2n)_1, b, = K(n21n2n)_1 and ¢ =a +b , where

2n>2cn = % Put hn =n+ 1, u = % + 2k>nck and define ¢ on Q by
¢ = h I ; @ € L.
2n22 n [un+1,un+1+an] p
On [un 41 un] the best nondecreasing Lp—a,pproximation to ¢ is the constant
function I ; hence, ¢ =1, .
[un+1’un] p [%,1]

Since the map g - g D is order preserving on Lp [4], we can modify ¢ to obtain
fe Ap with f(x) = 0, x € (0, %] and f > ¢. Then fp(x) = 0, x € (0, %) and
1
fp(x) > 1, x €[5 1)

n

(nn_l),n>1, and

Example 9. Let a, remain as in Example 8. Put t, =
modify bn:

b, = K exp{(in t )/ ¢ }/(PFVin’n.

n

Again put ¢, = a, + bIl and specify K by the equation 2n>2cn = % Put
u, =1 —sznck, h = n and ¢ = 2ﬂ22hn1[“n’“n +a ] Then ¢ € L. On
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[un, u +1), the best nondecreasing L -approximation to ¢ is e (t)I where

[un’un+1]’

en(t) is a nondecreasing function of t on (1, p]. Let's look at en(pn) for p .

= N(ln tn)_1/2: en(Pp) = (ﬁj =Inn -+« Hence lim_,4,(x) = o, 1 <t < p.
Again, modify ¢ to obtain f € Ap with f > ¢ such that f1 = 0 and limx_'lft(x) = ,

1<t<p.
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