Vasile Ene, Institute of Mathematics, str. Academiei 14, 70109 Bucharest, Romania

INTEGRALS OF LUSIN AND PERRON TYPE

In the first part of the present paper we study the relations between Lee's LDG- and LPG-integrals ([7]) and conditions [M], [\bar{M}] and [M]. Also we give similar results for other integrals introduced here. These results are then used to obtain change of variable formulas.

In the second part we introduce an integral of Perron type which is equivalent to the Foran integral.

In what follows we refer to the following classes of functions: $C,(N), N^{\infty}$, $N^{-\infty}, N^{+\infty},[\underline{M}],[\bar{M}],[M],[\underline{M} *],\left[\bar{M}_{*}\right],\left[M_{*}\right], A(N), B(N), \mathcal{B}, B, \varepsilon, A C, \bar{A} \bar{C}, \underline{A C}, V B$, $A C G, \bar{A} \bar{C} \bar{G}, A C G, V B G, D, D_{1}, B_{1}^{*}, D B_{1}^{*}, u C M, 1 C M, C M$. For all of these see [4]. Let $a_{1} \oplus a_{2}$ denote the semilinear space generated by the classes of functions α_{1} and α_{2}.

Some properties of the LPG- and LDG-integrals. Change of variables.

Definition 1. [8]. A function $f:[0,1] \rightarrow \mathbb{R}$ is said to be $\bar{A} \bar{C}_{*}$ on a set $\mathrm{E} \subset[0,1]$ if for every $\varepsilon>0$ there is a $\delta>0$ such that $\sum\left(f\left(b_{k}\right)-f\left(c_{k}\right)\right)<\varepsilon$ and $\quad \sum\left(f\left(c_{k}\right)-f\left(a_{k}\right)\right)<\varepsilon$ for each sequence of nonoverlapping intervals $\left\{\left(a_{k}, b_{k}\right)\right\}$ with endpoints in $E, a_{k} \leqslant c_{k} \leqslant b_{k}$ and $\sum\left(b_{k}-a_{k}\right)<\delta$ Let $\underline{A C_{*}}=\left\{f:-f \in \overline{A C}_{*}\right\}$ and $A C_{*}=\bar{A}_{*} \cap \underline{A C}$. The class $38 \quad \bar{A} \bar{C} \bar{G}_{*}$, ACG* and $A C G_{*}$ are defined analogously to ACG.

Defnition 2. [9]. A function $f:[0,1] \rightarrow \mathbb{R}$ is said to be $\left(N_{g}^{+\infty}\right)$ if $[0,1]$ is the union of a countable sequence of perfect sets P_{j} (except perhaps a countable set of points) such that:

1. The set $f\left(\left\{x \in P_{j}: f_{\left.\right|_{j}}(x)=+\infty\right\}\right)$ has measure 0 for each j;
2^{\cdot} On each perfect subset T_{j} of $P_{j}, f(x)$ satisfies an analogous condition. Let $\left(N_{g}^{-\infty}\right)=\left\{f:-f \in\left(N_{g}^{+\infty}\right)\right\}$ and let $\left(N_{g}\right)=\left(N_{g}^{+\infty}\right) \cap\left(N_{g}^{-\infty}\right)$.

Remark 1. Definition 2 can be simplified as follows:

Definition 2'. A function $f:[0,1] \rightarrow \mathbb{R}$ is said to be $\left(N_{g}^{+\infty}\right)$ if $|f(\{x \in P: f \mid P(x)=+\infty\})|=0$ for each perfect subset P of $[0,1]$.

Proof. Clearly Definition 2' implies Definition 2. Conversely, let P be a perfect subset of $[0,1]$ and let P_{j}. be the perfect sets of Definition 2. Let $A=\left\{x \in P:\left.f\right|_{P} ^{\prime}(x)=+\infty\right\}, \quad A_{j}=A \cap P_{j} \subset P \cap P_{j}=T_{j}$. Let $B_{j}=$ $\left\{x \in T_{j}:\left.f\right|_{T_{j}} ^{\prime}(x)=+\infty\right\}$. Clearly $A_{j} \subset B_{j}$. Since by $2^{\circ}, \quad\left|f\left(B_{j}\right)\right|=0$, it follows that $|f(A)|=0$.

Proposition 1. Let $F:[0,1] \rightarrow \mathbb{R}, F \in\left(N_{g}^{+\infty}\right)$. Then $F \in[\bar{M}]$ on $[0,1]$. If $F \in B_{1}^{*}$, then conditions $\left(N_{g}^{+\infty}\right)$ and $[\bar{M}]$ are equivalent.

Proof. Let $F \in\left(N_{g}^{+\infty}\right)$ and let P be a perfect subset of [0,1] such that $F \mid P \in V B \cap C$. We define $F_{1}(x)=F(x), x \in P$, and linearly on the closure of each interval contiguous to P. Clearly $F_{1} \in C \cap V B \cap N^{+\infty}$ on [0,1]. By Corollary 2 of [4], $F_{1} \in \bar{A} \bar{C}$ on [0,1]. Hence $F \in \bar{A} \bar{C}$ on P.

For the second part it suffices to show that $[\bar{M}] \cap B_{1}^{*} \subset\left(N_{g}^{+\infty}\right)$. Let P be a perfect subset of $[0,1]$. Since $F \in B_{i}^{*}, P=\left(U P_{j}\right) \cup\left\{a_{k}\right\}$ such that P_{j} are perfect subsets of P and $\left.F\right|_{P_{j}} \in C$. We define $F_{j}(x)=F(x), \quad x \in P_{j}$ and linearly on the closure of each interval contiguous to $P_{j} c[0,1]$. Then $F_{j} \in C \cap[\bar{M}]$ on $[0,1]$ and by Theorem 6 of [4], $F_{j} \in N^{+\infty}$ on [0,1]. Let $E_{j}^{+\infty}=\left\{x \in P_{j}:\left.F\right|_{P} ^{\prime}(x)=+\infty\right\}$. If $x \in E_{j}^{+\infty}$ is a bilateral accumulation point for P_{j}, then $F_{j}(x)=+\infty$. Hence $\left|F\left(E_{j}^{+\infty}\right)\right|=0$. Let $E^{+\infty}=$ $\left\{x \in P:\left.F\right|_{P} ^{\prime}(x)=+\infty\right\}$. Since $E^{+\infty} \cap P_{j} \subset E_{j}^{+\infty},\left|F\left(E^{+\infty}\right)\right|=0$. Hence $F \in\left(N_{g}^{+\infty}\right)$.

Proposition 2. Let Q be \underline{a} perfect subset of $[0,1], \quad a=\inf (Q)$, $b=\sup (Q)$ and let $F:[a, b] \rightarrow R$ be a bounded function. Then the following statements are equivalent: $1^{\bullet} F \in \underline{A C} \cap V B *$ on $Q ; 2^{\bullet}$ There exist $F_{1}, F_{2}:[a, b] \rightarrow \mathbb{R}$ such that $F=F_{1}+F_{2}, F_{1} \in A C_{*}$ on Q, F_{2} is increasing and $F_{2}^{\prime}(x)=0$ a.e. on $[a, b] ; 3^{\bullet} F$ is $A C *$ on Q.

Proof. We first show that 1° implies 2°. We define $f(x)=F(x), x \in Q$, and linearly on the closure of each interval contiguous to Q. Then $F \in \underline{A C}$ on [a,b]. By note 13, page 169, of [9], $f=f_{1}+f_{2}$, where $f_{1} \in A C, f_{2}$ is increasing on $[a, b]$ and $f_{2}^{\prime}(x)=0$ a.e. on $[a, b]$. Let $F_{2}(x)=f_{2}(x)$ on $[a, b]$ and $F_{1}(x)=F(x)-f_{2}(x)$ on $[a, b]$. Then $F_{1} \in V B *$ on Q and $F_{1}(x)=f_{1}(x)$ on Q. Hence F_{1} is also $A C$ on Q. By Theorem 8.8, page 233 of [11], F_{1} is $A C *$ on Q.

We now show that 2° implies 3°. Let $F=F_{1}+F_{2}$ such that 2° is satisfied. Let $\varepsilon>0$. Then there is a $\delta>0$ such that for each sequence of nonoverlapping intervals $\left\{I_{k}\right\}=\left\{\left(a_{k}, b_{k}\right)\right\}$ with $\sum\left(b_{k}-a_{k}\right)<\delta$, we have $\sum_{k} 0\left(F_{1} ;\left[a_{k}, b_{k}\right]\right)<\varepsilon$. For $a_{k} \leqslant c_{k} \leqslant b_{k}$ we have $\sum_{k}\left(F_{1}\left(c_{k}\right)-F_{1}\left(a_{k}\right)\right) \geq-\varepsilon$. Since $\quad \sum_{\mathbf{k}}\left(\mathrm{F}_{\mathbf{2}}\left(\mathrm{c}_{\mathbf{k}}\right)-\mathrm{F}_{\mathbf{2}}\left(\mathrm{a}_{\mathbf{k}}\right)\right) \geq 0, \quad \sum_{\mathbf{k}}\left(\mathrm{F}\left(\mathrm{c}_{\mathbf{k}}\right)-\mathrm{F}_{\mathbf{1}}\left(\mathrm{a}_{\mathbf{k}}\right)\right) \geq-\varepsilon . \quad$ Similarly $\sum_{\mathbf{k}}\left(\mathrm{F}\left(\mathrm{b}_{\mathbf{k}}\right)-\mathrm{F}\left(\mathrm{C}_{\mathbf{k}}\right)\right) \geq-\varepsilon$. Hence $\mathrm{F} \in \underline{\mathrm{AC}_{*}}$ on Q .

We finally show that 3° implies 1°. Since $F \in \underline{A C} *$ on $Q, F \in \underline{A C}$ on Q. Hence $F \in V B$ on Q. Since $F \in \underline{A C} *$ on Q, for $\varepsilon_{0}>0$ there is a natural number k_{0} such that for $I_{k}=\left[a_{k}, b_{k}\right]$, the intervals contiguous to Q, we have: $\sum_{k=k_{0}}^{\infty}\left(F\left(a_{k}\right)-F\left(c_{k}\right)\right)<\varepsilon_{0}$ and $\sum_{k=k_{0}}^{\infty}\left(F\left(c_{k}\right)-F\left(b_{k}\right)\right)<\varepsilon_{0}$, when $c_{k} \in\left[a_{k}, b_{k}\right]$. Hence $\sum_{k=k_{0}}^{\infty}\left|m_{k}-F\left(a_{k}\right)\right|=\sum_{k=k_{0}}^{\infty}\left(F\left(a_{k}\right)-m_{k}\right) \leq \varepsilon_{0} \quad$ and $\left.\sum_{k=k_{0}}^{\infty} \mid F\left(b_{k}\right)-M_{k}\right) \mid=\sum_{k=k_{0}}^{\infty}\left(M_{k}-F\left(b_{k}\right)\right) \in \varepsilon_{0}, \quad$ where $\quad m_{k}=\inf \left\{F(x): x \in I_{k}\right\}$, $M_{k}=\sup \left\{F(x): x \in I_{k}\right\}$. We have $\sum_{k=k_{0}}^{\infty} 0\left(F ; I_{k}\right) \leq \sum_{k=k_{0}}^{\infty}\left|m_{k}-F\left(a_{k}\right)\right|+$ $\sum_{k=k_{0}}^{\infty}\left|F\left(a_{k}\right)-F\left(b_{k}\right)\right|+\sum_{k=k_{0}}^{\infty}\left|F\left(b_{k}\right)-M_{k}\right| \leq 2 \cdot \varepsilon_{0}+V(F ; Q)$, where $V(F ; Q)$ is the variation of F on Q. Since F is bounded on $[a, b], \sum_{k=1}^{\infty} 0\left(F ; I_{n}\right)$ is convergent. By Theorem 8.5, page 232 of [11], F_{Q} is VB_{*}.

Corollary 1. a) A function F belongs to [M *] on a bounded closed set E if and only if F is $A C_{*}$ on each closed subset of E on which it is continuous and $V B_{*}$: b) $B_{1}^{*} \cap$ VBG* \cap [M*] c ACG* on a closed set E : c) $\mathrm{D} \cap \mathrm{VBG}_{*} \cap\left[\underline{M_{*}}\right]=\underline{A C G} * \cap \mathrm{DB}_{1}^{*}$ (since $\mathrm{D} \cap \mathrm{VBG}_{*} \subset \mathrm{~B}_{1}^{*}$, according to Lemma A of [4]).

Theorem 1. Let $h:[0,1] \rightarrow \mathbb{R}$ be such that $h \in([\underline{M}] \cap C)+\underline{A C}$ and $h^{\prime}(x) \geqslant 0$ a.e. where h is derivable. Then h is increasing on $[0,1]$.

Proof. Let $f \in[M] \cap C$ and $g \in A C$ such that $h=f+g$. By note 13, page 169 of [9], $g=g_{1}+g_{2}$, with $g_{1} \in A C, g_{2}$ increasing on $[0,1]$ and $g_{2}^{\prime}(x)=0$ a.e. on $[0,1]$. Then $h=f+g_{1}+g_{2}=h_{1}+g_{2}$. Clearly $h_{1} \in[\underline{M}] \cap C$ on $[0,1]$ and $h_{1}^{\prime}(x) \geqslant 0$ a.e. where h_{1} is derivable. By Theorem 10 of [4], h_{1} is increasing on [0,1]. Hence h is increasing on [0,1].

Theorem 2. Let $h:[0,1] \rightarrow \mathbb{R}$ be such that $h \in\left(\left(B_{1}^{*} n[\underline{M}]\right) \oplus\right.$ [ACG]) n uCM and $h^{\prime}(x) \geqslant 0$ a.e. where h is derivable. Then h is increasing on $[0,1]$.

Proof. Let $f \in[\underline{M}] \cap B_{1}^{*}$ and $g \in[A C G]$ such that $h=f+g$ on [0,1]. Then there exists a sequence of intervals $\left\{I_{n}\right\}$ whose union is dense in $[0,1]$ such that $f \in[M] \cap C$ on I_{n} and $g \in A C$ on I_{n}. Let [a_{n}, b_{n}] C_{n}. By Theorem 1, h is increasing on [a_{n}, b_{n}]. Hence h is increasing on I_{n}. The intervals I_{n} can be chosen to be maximal open intervals of monotonicity of h. Suppose to the contrary that $u I_{n} \neq(0,1)$ and let $Q=[0,1]-u I_{n}$. Snce $h \in u C M, Q$ is a perfect subset of $[0,1]$ (if necessary without 0 and 1). Let $a, b \in Q$ such that $Q \cap(a, b) \neq \varnothing$ and $f \mid Q \cap[a, b] \in[M] \cap C$ and $g \mid Q \cap[a, b] \in A C$. Let $f_{1}(x)=f(x)$; $g_{1}(x)=g(x) ; h_{1}(x)=h(x), x \in Q \cap[a, b]$. Extend f_{1}, g_{1}, h_{1} linearly on the closure of each interval contiguous to Q. We have $f_{1} \in C \cap$ [M] by the proof of [4], Theorem 11, $g_{1} \in \underline{A C}, h_{1}=f_{1}+g_{1}$ on [a,b]. If f_{1} in Theorem 11 of [4] is replaced by h_{1}, since condition (i) of Lemma 7 of [4] can be omitted, $h_{1}^{\prime}(x) \geqslant 0$ a.e. where $h_{1}^{\prime}(x)$ exists on [a,b]. Now by Theorem 1, h_{1} is increasing on [a,b]. Hence h is increasing on [a,b], a contradiction.

Remark 2. If $u C M$ is replaced by the Darboux property D, then Theorem 2 remains true (since $D \subset u C M$) and in addition h is also continuous.

Let $u L$ denote an upper semilinear space contained in uCM. Let $\ell L=\{F:-F \in u L\}$ and $L=u L \cap \ell L$.

Definition 3. A function M is said to be a LPB (respectively $\left.L_{0} P G ; L_{*} P G\right)$ - major function for a function $f:[0,1] \rightarrow R$ if: (i) $M(0)=0$; (ii) $M \in u L$; (iii) $\ell M_{a ́ p}^{\prime}(x) \geq f(x)$ (resp. $\& M^{\prime}(x) \geq f(x) ; \& M^{\prime}(x) \geq f(x)$) a.e. on [0,1]; (iv) $M \in$ [ACG] (resp. $M \in$ [ACG]; $M \in$ [ACG*]). m is a LPG (resp. $L_{0} P G ; L_{*} P G$) - minor function for f if $-m$ is a LPG (resp. $L_{0} P G ; L_{*} P G$) major function of F. A function f is LPG (resp. $L_{0} P G ; L_{*} P G$ integrable on $[0,1]$ if:
$1^{\circ} \quad f$ has LPG (resp. $L_{0} P G ; L_{*} P G$) major and minor functions on [0,1];
$2^{\text {• for each }} \varepsilon>0$ there exists a LPG (resp. $L_{0} P G ; L * P G$) major function M and a $L P G$ (resp. $L_{0} P G ; L * P G$) minor function m such that $M(x)-m(x) \leqslant \varepsilon, x \in[0,1]$. Then

$$
L P G\left(\text { resp. } L_{0} P G ; L_{*} P G\right) \int_{0}^{1} f(x) d x=\inf _{M}\{M(1)\}=\sup _{m}\{m(1)\}
$$

Remark 3. By [8] Theorem XVIII, page 252 and Theorem XI, page 245, a function which satisfies [ACG*] (resp. [ACG]) on [0,1] is derivable (resp. approximately derivable) a.e. on [0,1]. Hence in the definition of LPG (resp. $L_{*} P G$) condition (iii) can be replaced by (iii'): $M_{a p}^{\prime}(x) \geq f(x)$ (resp. $M^{\prime}(x) \geqslant f(x)$) a.e. on $[0,1]$.

Definition 4. A function $f:[0,1] \rightarrow \mathbb{R}$ is said to be LDG (resp. $L_{0} D G ; L * D G$ - integrable on $[0,1]$ if there is a function $F \in L \cap$ [ACG] (resp. $F \in L \cap[A C G] \cap \Delta_{a . e} ; F \in L \cap$ ACG*) such that $F_{a p}^{\prime}(x)=f(x) \quad$ (resp. $\left.F^{\prime}(x)=f(x) ; F^{\prime}(x)=f(x)\right)$ a.e. on $[0,1]$. In all these cases the integral of f over $[0,1]$ is defined to be $F(1)-F(0)$. (Δ a.e. $=\{F:[0,1] \rightarrow \mathbb{R}: F$ is derivable a.e. on $[0,1]\}$.)

Remark 4. a) The LDG and LPG integrals were introduced by Lee in [7] and he proved that these two integrals are equivalent if $u L$ is closed under uniform convergence. Using Theorem 1 of [7], we can prove that the $\mathrm{L}_{0} \mathrm{PG}$ (resp. $\mathrm{L} * \mathrm{PG}$) - integral is equivalent with the $\mathrm{L}_{0} \mathrm{DG}$ (resp. $\mathrm{L} * \mathrm{DG}$) integral.
b) If in Definition 4 L is the class of all approximately continuous functions on [0,1], then the LDG (resp. $L_{0} D G ; L * D G$) - integral is in fact the β (resp. $\beta_{o} ; \alpha$) - integral of Ridder. (See [10].)

For a function f on $[0,1]$ we define $f^{*}(x)=f^{\prime}(x)$ (resp. $f_{a p}^{*}(x)=$ $\left.f_{a p}^{\prime}(x)\right)$ where $f^{\prime}(x)$ (resp. $f_{a p}^{\prime}(x)$) exists and is finite and 0 elsewhere.

Theorem 3. Let α be a class of functions such that $\left(B_{1}^{*} \cap \alpha\right) \oplus u L \subset u C M$ on $[0,1]$. Let $F:[0,1] \rightarrow \mathbb{R}$ satisfy the following properties: $1^{\bullet} F \in(-\alpha) \cap B_{1}^{*}$ on $[0,1] ; 2^{\bullet} F \in[\bar{M}]$ on $[0,1]$;

3• $F_{a p}^{*}$ (resp. $F^{*} ; F *$) has a $L P G$ (resp. $L_{0} P G ; L_{*} P G$) - major function G on $[0,1]$. Then we have that:
a) F is $[\overline{A C} \bar{G}]$ (resp. $\left.[\bar{A} \bar{C} \bar{G}] ;\left[\bar{A} \bar{C} \bar{G}_{*}\right]\right)$ and $G-F$ is increasing on $[0,1] ;$
b) If in addition $F \in[M] \subset[\bar{M}]$, then $F \in[A C G]$ (resp. [ACG], [ACG*]) and $G-F$ is increasing on [0,1].

Proof. Let $H=G-F$. In the first and third case clearly $H^{\prime}(x) \geq 0$ a.e. where H is derivable. In the second case G is derivable a.e. on [0,1]-E, where $E=\left\{x: F^{\prime}(x)\right.$ exists and is finite\} by [11], Theorem 7.2, page 230 and Theorem 10.1, page 234. It follows that $H^{\prime}(x) \geq 0$ a.e. where H is derivable. Clearly $-F \in \alpha \cap B_{1}^{*} \cap[\underline{M}]$. Since $\alpha \oplus \quad u L \subset u C M$, by Theorem 2, H is increasing on [0,1]. Hence $F \in B_{1}^{*} \cap$ [VBG] (resp. $\left.B_{1}^{*} \cap[V B G] ; B_{1}^{*} \cap V B G_{*}\right)$.
a) Since $F \in[\bar{M}], F \in[\bar{A} \bar{C} \bar{G}]$ (resp. $[\bar{A} \bar{C} \bar{G}]$; $[\overline{A C} \bar{G}] \cap$ VBG* $=\left[\bar{A} \bar{C} \bar{G}_{*}\right]$ by Corollary 1).
b) Since $F \in[M], F \in[A C G]$ (resp. [ACG]; [ACG*]).

Remark 5. Theorem 3, a), b), the first and the third case remain true if 3^{\bullet} is replaced by "there exists a function $f:[0,1] \rightarrow \mathbb{R}$ such that $f(x)=$ $F_{a p}^{\prime}(x)$ a.e. where F is approximately derivable (resp. $f(x)=F^{\prime}(x)$ a.e. where F is derivable) and f has a LPG (resp. $L_{*} P G$) - major function on [0,1]".

Remark 6. a) In Theorem 3, a), b), α can be taken to be uL, where: 1) $u L=C ; 2) u L=\{F: F$ is approximately continuous $\} ; 3) u L=\{F: F$ is an exact nth Peano derivative\}; 4) $u L=\{F: F$ is an exact nth approximate Peano derivative\}. b) In Theorem 3, a), b), a can be taken to be D and $u L=C$ (since $D \subset u C M$ and $D B_{1}^{*} \oplus C=D B_{1}^{*}$, by [2]; Theorem VI, page 474). By Remark 2, $G-F \in C$. Hence $F \in C$.

Corollary 2. A function $F \in L$ (resp. $F \in D$) on $[0,1]$ is an indefinite LDG (resp. CDG) - integral if and only if $F \in B_{i}^{*} \cap[M]$ and there is a function $f:[0,1] \rightarrow \mathbb{R}$ which has a LPG (resp. CPG) - major function and $f(x)=F_{a ́ p}^{\prime}(x)$ a.e. where F is approximately derivable.

Proof. The necessity is evident and the sufficiency follows by Remark 5 and Remark 6.

Remark 7. The first part of Remark 5 extends Lemma B of [9] page 176 and the first part of Corollary 2 is an extension of Theorem VII of [9] page 178, since we give up the condition T_{2} and in Ridder's results L is the class of all approximately continuous functions. (Also see Proposition 1.)

Theorem 4. Let $F:[0,1] \rightarrow \mathbb{R}, F \in D B_{1} \cap T_{2} \cap\left[M_{*}\right]$. If F^{*} has a $C_{*} P G-$ major function, then $F \in A C G_{*} \cap C$ on $[0,1]$.

Proof. Since $N^{\infty}=\left[M_{*}\right]$ for Darboux functions (See [4], Theorem 6.) and $c \cap \mathrm{VBG}_{*} \cap\left[\mathrm{M}_{*}\right]=C \cap \mathrm{ACG}$, the theorem follows by the second part of Corollary 6 of [4].

Remark 8. Theorem 4 remains true if $T_{2} \cap\left[M_{*}\right]$ is replaced by Lusin's condition (N) according to Remark 1,k of [4].

A function F defined on an interval I is said to be strictly increasing* (resp. decreasing*) on a set $E \subset I$ if for any $x_{1}, x_{2} \in[\inf (E), \sup (E)]$, $x_{1}<x_{2}$, we have $F\left(x_{1}\right)<F\left(x_{2}\right)$ (resp. $F\left(x_{1}\right)>F\left(x_{2}\right)$), provided that at least one of the points x_{1}, x_{2} belongs to E [12]. If the function F is either strictly increasing* or strictly decreasing* on a set E, then F is said to be strictly monotone*.

Proposition 3. A function $f:[0,1] \rightarrow \mathbb{R}$ satisfies condition $\left[\bar{M}_{*}\right]$ (resp. $[\bar{M}]$) on a closed subset E of $[0,1]$ if and only if $f \in A C$ on any closed subset of E on which it is continuous and strictly increasing* (resp. continuous and strictly increasing).

Proof. Let $P=\bar{P} \subset E$ be such that $f \in V B_{*} \cap C$ on P. Let $a=\inf (P)$, $b=\sup (P)$ and $F(x)=f(x), \quad x \in P$. Extending F linearly on each interval contiguous to P we have F defined, continuous and $V B$ on [a,b]. Let $E_{1}^{+\infty}=\left\{x \in P: F^{\prime}(x)=+\infty\right\} ; E^{+\infty}=\left\{x \in P: f^{\prime}(x)=+\infty\right\} ; Z=\left\{x \in P: f^{\prime}(x)\right.$
does not exist finite or infinite\}. Then by Theorem 7.2 of [ll], page 230 it follows that $|f(Z)|=0$. Clearly $E_{1}^{+\infty} \subset E^{+\infty} \cup Z$. Let $E_{n}=\{x \in P$: $(f(x+h)-f(x)) / h>l, 0<|h| \leqslant l / n\}$ and let $E_{\text {in }}=[i / n,(i+1) / n] n E_{n}$. Since f is continuous on P, $(f(y)-f(x)) /(y-x) \geq 1$, for $y \in\left[\inf \left(E_{i n}\right), \sup \left(E_{i n}\right)\right], x \in \bar{E}_{i n}, x \neq y$. Hence f is strictly increasing* on $\bar{E}_{\text {in }}$. By hypothesis, $f \in A C$ on $\bar{E}_{\text {in }}$. Since $\left|E^{+\infty}\right|=0$ (See [11], Theorem 4.4, page 270.), $\left|f\left(\mathrm{E}^{+\infty}\right)\right|=0$ and $\left|F\left(\mathrm{E}_{1}^{+\infty}\right)\right|=0$. Hence $F \in C \cap V B \cap N^{+\infty}=\overline{A C}$ on [a,b] by Corollary 2 of [4] and $f \in\left[\bar{M}_{*}\right]$ on E. The converse is evident.

We prove the second part. Suppose that $f \in V B \cap C$ on P. Let a, b, F and $E_{1}^{+\infty}$ be defined as above. Let $E_{n}^{1}=\{x \in P:(F(x+h)-F(x)) / h>l$, $0<|h| \leqslant 1 / n\}$ and let $E_{\text {in }}^{1}=[i / n,(i+1) / n] \cap E_{n}^{1}$. Since $f \in C$ on P, $(f(y)-f(x)) /(y-x) \geq 1$, for $x, y \in \bar{E}_{\text {in }}^{1}, x \neq y$. Hence f is strictly increasing on $\bar{E}_{\text {in }}^{1}$. By hypothesis $f \in A C$ on $\bar{E}_{\text {in }}^{1}$. It follows that $\left|F\left(\mathrm{E}_{1}^{+\infty}\right)\right|=0$ and $F \in V B \cap N^{+\infty} \cap C=\overline{A C}$ on $[a, b]$. Hence $f \in[\bar{M}]$ on E. The converse is evident.

Corollary 3. A function $f:[0,1] \rightarrow \mathbb{R}$ satisfies condition [$M *$ (resp. [M]) on a closed subset E of $[0,1]$ if and only if $f \in A C$ on any closed subset of E on which it is continuous and strictly monotone* (resp. continuous and strictly monotone).

Proposition 4. Let $g:[0,1] \rightarrow \mathbb{R}, f: g([0,1]) \rightarrow \mathbb{R}$.
a) If $f, g \in\left[M_{*}\right] \cap D$, then $f \cdot g \in\left[M_{*}\right] \cap D$;
b) If $f, g \in[M] \cap B_{1}^{*}$, then $f \cdot g \in[M] \cap B_{1}^{*}$.

Proof. a) Let $F=f$. g. Then $F \in D$. Let $P=\bar{P} \subset[0,1]$ such that F is strictly increasing* on P, for example. By Lemma A of [4], F is continuous on P. Hence $Q=F(P)$ is a compact set. Clearly $F \mid P$, $G \mid P$ and $\left.f\right|_{Q}$ are injective. We prove that g is strictly monotone* on P. Suppose on the contrary that there exist $x_{1}<x_{2}<x_{3}, x_{1}, x_{3} \in P$, such that $g\left(x_{2}\right)$ does not belong to the interval with endpoints $g\left(x_{1}\right)$ and $g\left(x_{3}\right)$. Suppose, for example, that $g\left(x_{1}\right)<g\left(x_{3}\right)$. Then $g\left(x_{2}\right)$ does not belong to $\left(g\left(x_{1}\right), g\left(x_{3}\right)\right)$. Hence we have two possibilities: (i) $g\left(x_{2}\right) \leqslant g\left(x_{1}\right)<g\left(x_{3}\right)$ or (ii) $g\left(x_{1}\right)<g\left(x_{3}\right)<g\left(x_{2}\right)$. We treat only the case (i). Since $g \in D$, there exists $c \in\left[x_{2}, x_{3}\right)$ such that $g(c)=g\left(x_{1}\right)$. Then $F(c)-F(x), a$
contradiction. By Corollary $3 \quad g \in A C$ on P. Clearly f is strictly monotone on Q. Suppose that f is strictly increasing on Q. We prove that f is strictly increasing* on Q. Let $y_{1}<y_{2}<y_{3}, y_{1}, y_{3} \in Q$. Let $x_{1}, x_{3} \in P$ such that $g\left(x_{1}\right)=y_{1}, g\left(x_{3}\right)=y_{3}$. Then $x_{1}<x_{3}$. Since $g \in D$, there exists $x_{2} \in\left(x_{1}, x_{3}\right)$ such that $g\left(x_{2}\right)=y_{2}$. Since F is strictly increasing* on $P, F\left(x_{1}\right)<F\left(x_{2}\right)<F\left(x_{3}\right)$. Hence $f\left(y_{1}\right)<f\left(y_{2}\right)<f\left(y_{3}\right)$. By Corollary 3, $f \in A C$ on Q. It follows that $F \in(N)$ on P. By Theorem 6.7 of [11] page 227, F is $A C$ on Q.
b) Clearly $F \in B_{1}^{*}$ on $[0,1]$. Let $K=\bar{K} \subset[0,1]$ be such that F is continuous and strictly monotone on K. Since $f, g \in B_{1}^{*}, K=U K_{n}$ such that $\left.{ }^{g}\right|_{K_{n}} \in C,\left.f\right|_{g\left(K_{n}\right)} \in C$. Let $g_{n}(x)=g(x), x \in K_{n} ; \quad g_{n}$ is linear on the closure of each interval contiguous to $K_{n} ; F_{n}(x)=F(x), x \in K_{n} ; \quad F_{n}$ is linear on the closure of each interval contiguous to $K_{n} ; f_{n}(x)=f(x)$, $x \in \hat{g}\left(K_{n}\right) ; f_{n}$ is linear on the closure of each interval contiguous to $g\left(K_{n}\right)$. Then g_{n}, F_{n} and f_{n} are continuous. Hence g_{n}, F_{n} and f_{n} are strictly monotone. (See the proof of a).) Therefore $\left.g\right|_{K_{n}}$ and $\left.f\right|_{g\left(K_{n}\right)}$ are continuous and strictly monotone. By Corollary $\left.3 \quad g\right|_{K_{n}} \in A C$ and $\left.f\right|_{g\left(K_{n}\right)} \in A C$. Hence $\mathrm{F}_{\mathrm{K}_{\mathrm{n}}} \in(\mathrm{N})$. By Theorem 6.7 of [11] page 227, $\mathrm{F} \in \mathrm{AC}$ on K_{n}. Hence $\mathrm{F} \in \mathrm{ACG}$ on K. Likewise $F \in A C$ on K.

Theorem 5. If F and g are $D_{1} \cap T_{2} \cap[M *], g$ is defined on [0,1], F is defined on the range of g, and if both F^{*} and ($F \cdot g$)* have $c_{*} P G$ - major functions, then

$$
c_{*} D \mathrm{DG} \int_{0}^{1}\left(\mathrm{~F}^{*} \cdot g\right)(x) \cdot g^{*}(x) \mathrm{dx}=c_{*} \mathrm{DG} \int_{g(0)}^{g(1)} \mathrm{F}^{*}(x) \mathrm{dx} .
$$

Proof. By Theorem 4, F is differentiable a.e. on $g([0,1])$ and $F(g(1))-F(g(0))=c_{*} D \int_{g(0)}^{g(1)} F^{*}(x) d x$. By Goodman's theorem of [6] or [5]. (If g is continuous a.e. on [a,b], $F \in(N)$ and is defined and differentiable a.e. on the range of g, then ($F \cdot g)^{*}=\left(F^{*} \cdot g\right) \cdot g^{*} \quad$ a.e. on $[a, b].),(F \cdot g)^{*}=\left(F^{*} \cdot g\right) \cdot g^{*}$ a.e. on $[0,1]$. Since $F \in C$, $F \cdot g \in D B_{1} \cap\left[M_{*}\right]$ on [0,1]. (See [1], page 16, Theorem 3.5 and Proposition 4.a).) $\quad F \in C \cap$ (N) implies $F \in T_{2}$ by [11], Theorem 7.3, page 284. Hence $F \cdot g \in T_{2}$. (Indeed, let $A=\{z$:
$\{y: F(y)=z\}$ is nondenumerable\}. Then $|A|=0$. Let $B=\{y:$ $\{x: g(x)=y\}$ is nondenumerable\}. Then $|B|=0$. Since $F \in(N)$, $|F(B)|=0$. Let $C=\{z:\{x: F(g(x))=z\}$ is nondenumerable $\}$. Then $C \subset A \cup F(B)$. Hence $|C|=0$.) By Theorem 4
$c_{*} D G \int_{0}^{1}\left(F^{*} \cdot g\right)(x) \cdot g^{*}(x) d x=c_{*} D G \int_{0}^{1}(F \cdot g)^{*}(x) d x=F(g(1))-F(g(0))$.
Remark 9. If in Theorem 5, $\mathrm{DB}_{1} \cap \mathrm{~T}_{2} \cap\left[\mathrm{M}_{*}\right]$ is replaced by $C \cap[\mathrm{~N}]$, we have Goodman's change of variables formula. (See [6] or [5].)

Theorem 6. a) Let $g:[0,1] \rightarrow \mathbb{R}, g([0,1]) \rightarrow I, F: I \rightarrow \mathbb{R}$, where I is an interval. Let $F, g \in[M] \cap B_{1}^{*}$ and let $F, F \cdot g \in L$. If $F A p$ (resp. $F^{*} ; F^{*}$) has a LPG (resp. $L_{o} P G \cap \Delta_{a . e} ; L_{*} P G$) - major function on I and $(F \cdot g)_{a p}^{*}\left(\underline{\text { resp. }}(F \cdot g)^{*} ;(F \cdot g)^{*}\right)$ has a LPG (resp. $L_{0} P G \cap$ a a.e.; $\mathrm{L} * \mathrm{PG})$ - major function on $[0,1]$, then

$$
\begin{aligned}
& \text { LDG } \int_{0}^{l}\left(F_{a p}^{*} \cdot g\right)(x) \cdot g_{a p}^{*}(x) d x=L_{D G} \int_{g(0)}^{g(1)} F_{a p}^{*}(x) d x \text { (resp. } \\
& L_{0} D G \int_{0}^{l}\left(F^{*} \cdot g\right)(x) \cdot g^{*}(x) d x=L_{c} D G \int_{g(0)}^{g(1)} F^{*}(x) d x ; \\
& \left.L_{*} D G \int_{0}^{l}\left(F^{*} \cdot g\right)(x) \cdot g^{*}(x) d x=L_{*} D G \int_{g(0)}^{g(1)} F^{*}(x) d x\right) .
\end{aligned}
$$

b) a) remains true if condition $" F, F \cdot g \in L$ " is replaced by $" F, g \in D$ " and L is considered to be C.

Proof. a) By Proposition 4, $F \cdot g \in[M] \cap B_{1}^{*}$. By the first part of Theorem 3, b) and Remark 6, a), $F \in A C G, F$ is approximately differentiable a.e. on I and

$$
F(g(1))-F(g(0))=\operatorname{LDG} \int_{g(0)}^{g(1)} F_{a p}^{*}(x) d x
$$

By Foran's Theorem 0 of [5] (If $g:[a, b] \rightarrow \mathbb{R}, F \in(N)$ and F is defined on an interval containing the range of g and is apprimately differentiable a.e. on the range of g, then $(F \cdot g)_{a p}^{*}(x)=\left(F_{a p}^{*} \cdot g\right)(x) \cdot g_{a p}^{*}(x)$ a.e. on
$[a, b])$, we have $(F \cdot g)_{a p}^{*}(x)=\left(F_{a p}^{*} \cdot g\right)(x) \cdot g_{a p}^{*}(x)$ a.e. on $[0,1]$. By the first part of Theorem 3, b) and Remark 6, a),

$$
\operatorname{LDG} \int_{0}^{l}\left(F_{a p}^{*} \cdot g\right)(x) \cdot g_{a p}^{*}(x) d x=\operatorname{LDG} \int_{0}^{1}(F \cdot g)_{a p}^{*}(x) d x=F(g(1)-F(g(0)) .
$$

The proof of the second and the third part is analogous to the proof of Theorem 5.
b) If $F \in C$ and $g \in D B_{1}^{*}$, then $F \cdot g \in D B_{1}^{*}$. Now the proof follows using Theorem 3, b) and Remark 6, b) as in a).

Remark 10. In the first part of Theorem 6, a), b), "Fap has a LPG major function" can be replaced by "F* has a $L_{0} P G$ major function" and " (F • g) ${ }_{\text {ap }}^{*}$ has a LPG major function" can be replaced by " $\left.\mathrm{F} \cdot \mathrm{g}\right)^{*}$ has a L_{0} PG major function".

Remark 11. The first part of Theorem 6, b) and Remark 10 extend Foran's change of variables formula for the Denjoy integral.

An integral of Perron type for the Foran integral

Definition 5. Let $0_{+}(f ; E)=\sup (f(y)-f(x): x, y \in E, x \leqslant y\} ; 0_{-}(f ; E)=$ $\inf (f(y)-f(x): x, y \in E, x \in y\} ; O(f ; E)=\max \left\{O_{+}(f ; E), \quad\left|O_{-}(f ; E)\right|\right\}$. Clearly $0_{-}(f ; E) \leqslant 0 \leqslant 0_{+}(f ; E)$.

Definition 6. Given a natural number N and a set E, a function f will be said to be $\underline{A}(N)$ on E if for every $\varepsilon>0$ there is a $\delta>0$ such that if $\left\{I_{k}\right\}$ is a sequence of nonoverlapping intervals with $E \cap I_{k} \neq \varnothing$ and $\sum\left|I_{k}\right|<\delta$, then there exist sets $E_{k n}, n=1,2, \ldots, N$, such that

$$
{\underset{n=1}{N}}_{U_{k n}} E_{k} \cap I_{k} \text { and } \sum_{k} \sum_{n=1}^{N}\left|0_{-}\left(f ; E_{k n}\right)\right|<\varepsilon .
$$

Let $\bar{A}(N)=\{f:-f \in \underline{A}(N)\}$. If $0_{-}\left(f ; E_{k n}\right)$ is replaced by $0\left(f ; E_{k n}\right)$ we obtain a condition which can be seen to be equivalent to Foran's condition $A(N)$ on E. Clearly $\underline{A}(1)=$ AC.

Definition 7. A function F is said to be $A^{\prime}(N)$ on a set E, if $F=$ $F_{1}+F_{2}, F_{1} \in A(N)$ and $F_{2} \in \underline{A C}$ on E.

Definition 8. Given a natural number N and a set Q, a function f will be said to be $\underline{E}(N)$ on Q if for every $S \subset Q,|S|=0$, and for every $\varepsilon>0$ there exist a sequence of nonoverlapping intervals $\left\{I_{k}\right\}$ and a sequence of sets $\left\{S_{k n}\right\}, n=1,2, \ldots, N$ such that

$$
\begin{gathered}
S \subset V_{k}^{U} I_{k}, S \cap I_{k}=\underset{n=1}{N} S_{k n} \text { and } \\
N \cdot \sum_{k=1}^{\infty}\left|I_{k}\right|+\sum_{k=1}^{\infty} \sum_{n=1}^{N}\left|O_{-}\left(f ; S_{k n}\right)\right|<\varepsilon .
\end{gathered}
$$

Let $\bar{E}(N)=\{f:-f \in E(N)\}$. If $O_{-}\left(f ; S_{k n}\right)$ is replaced by $0\left(f ; S_{k n}\right)$, we obtain a condition which can be seen to be equivalent to condition $E(N)$ on Q.

Definition 9. Let $\overline{\mathcal{F}}$ (resp. $\overline{\mathcal{F}}^{\prime} ; \bar{\varepsilon}$) be the class of all functions f defined on a closed interval I for which there exist a sequence of sets $\left\{Q_{n}\right\}$ and natural numbers $\left\{N_{n}\right\}$ such that $I=\cup Q_{n}$ and f is $\bar{A}\left(N_{n}\right)$ (resp.
 $\underline{\varepsilon}=\{\mathbf{f}:-\mathbf{f} \in \bar{\varepsilon}\}$.

Definition 10. A function M is said to be a LFP (resp. LF'P) - major function for a function f on [0,1] if: $1^{\bullet} M(0)=0 ; 2^{\bullet} M \in u L$ on [0,1]; $3^{\bullet} \& M_{a p}^{\prime}(x) \geq f(x)$ a.e. on $[0,1] ; 4^{\bullet} M \in \underline{\mathcal{Z}} \cap B_{1}^{*}$ (resp. $M \in \underline{J}^{\prime} \cap B_{1}^{*}$). m is a LFP (resp. LF'P) - minor function for f if $-m$ is a LFP (resp. LF'P) - major function for $-f$ on [0,1].

A function f is LFP (resp. LF'P) integrable on [0,1] if: (i) f has LFP (resp. LF'P) major and minor functions on [0,1]; (ii) for each $\varepsilon>0$ there exist a LFP (resp. LF'P) major function M and a LFP (resp. LF'P) minor function m such that $M(x)-m(x) \leqslant \varepsilon, x \in[0,1]$. Then LFP (resp. LF'P) $\int_{0}^{1} f(x) d x=\inf _{M}\{M(1)\}=\sup _{m}\{m(1)\}$.

Definition 11. A function f is said to be $L F$ integrable on [0,1] if there exists a function $F \in L \cap B_{i}^{*} \cap \mathcal{F}$ such that $F_{a p}^{\prime}(x)=f(x)$ a.e. on [0,1]. In this case the LF integral of f over [0,1] is defined to be $F(1)-F(0)$.

Let C be the Cantor ternary set. Each point $x \in C$ is uniquely represented by $\sum c_{i}(x) / 3^{i}$. Let $\varphi(x)$ be the Cantor ternary function.

Example 1. Let $F:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $F(x)=$ (1/2) $\sum_{k=0}^{\infty} \sum_{i=j_{k}+1}^{j_{k+1}-1} c_{i}(x) / 2^{i-k}, \quad x \in C$ and $F(x)$ is linear on each interval contiguous to C, where $\left\{j_{k}\right\}$ is an increasing sequence of natural numbers, $j_{0}=0,(1 / 2) \cdot\left(1 / 3^{j_{k}}\right) \geq 1 / 2^{j_{k+1}-k}$, for each k. Then: a) F is $\underline{A}^{(2)}$ on C; b) $F \notin T_{2}$ on C c $\quad F \notin B$ on C.

Proof. a) Let $I \subset[0,1]$ be a closed interval with endpoints in C, and let n be the natural number such that $1 / 3^{n+1} \leqslant|I|<1 / 3^{n}$. Let k be the natural number such that $j_{k} \leqslant n<j_{k+1}$. Since $|I|<1 / 3^{n}$, there exist $c_{1}, c_{2}, \ldots, c_{n} \in\{0,2\}$ such that for each $x \in I \cap C$, $c_{i}(x)=c_{i}$, $i=1,2, \ldots, n$. Let $a=\sum_{i=1}^{j_{k}} c_{i} / 3^{i}$ and $b=a+1 / 3^{j_{k}}$. Then $I c[a, b]$. Let $E_{1}=\left\{x \in[a, b] \cap C: c_{j_{k+1}}(x)=0\right\} ; E_{2}=\left\{x \in[a, b] \cap C: c_{j_{k+1}}(x)=2\right\}$. Let $x, y \in E_{1}, x<y . \quad$ Then we have three situations: $\quad 1^{\bullet} y-x>1 / 3^{j_{k+2}-1}$; $2^{\bullet} y-x=1 / 3^{j_{k+2}-1} ; \quad 3^{\bullet} y-x<1 / 3^{j_{k+2}-1}$. 1^{\bullet} Let $j_{k}+1 \leqslant i_{0} \leqslant j_{k+2}-1$ such that $c_{i}(y)=c_{i}(x)=c_{i}, \quad i \leqslant i_{0}-1$; $c_{i_{0}}(x)=0 ; \quad c_{i_{0}}(y)=2$. clearly $\quad i_{o} \neq j_{k+1} . \quad$ Let $\quad a_{\infty}=a+\sum_{i=j_{k}+1}^{i_{0}-l} c_{i} / 3^{i}$. Then $x=a_{1}+\sum_{i=i_{0}+1}^{\infty} c_{i}(x)$ and $y=a_{1}+2 / 3^{i}+\sum_{i=i_{0}+1}^{\infty} c_{i}(y)$. We have two cases.
(i) $j_{k}+1 \leqslant i_{0} \leqslant j_{k+1}-1$. Then $F(y)-F(x) \geqslant F\left(a_{1}+2 / 3^{i_{0}}\right)-$ $F\left(a_{1}+\sum_{i=i_{0}+1}^{\infty} 2 / 3^{i}\right)=F\left(a_{1}\right)+1 / 2^{i_{0}-k}-F\left(a_{1}\right)-1 / 2^{i_{0}-k}=0$.
(ii) $j_{k+1}+1 \leq i_{o} \leq j_{k+2}-1$. Then $F(y)-F(x) \geq F\left(a_{1}+2 / 3^{i_{0}}\right)-$ $F\left(a_{1}+\sum_{i=i_{0}+1}^{\infty} 2 / 3^{i}\right)=F\left(a_{1}\right)+1 / 2^{i_{0}-k-1}-F\left(a_{1}\right)-1 / 2^{i_{0}-k-1}=0$.
Hence $\quad F(y)-F(x) \geqslant 0$.
2^{\bullet} We have two possibilities.
(i) $x=\sum_{i=1}^{j_{k+2}-2} c_{i} / 3^{i}+\sum_{i=j_{k+2}}^{\infty} 2 / 3^{i}$ and $y=\sum_{i=1}^{j_{k+2}-2} c_{i} / 3^{i}+2 / 3^{j_{k+2}-1}$.

Then $F(y)-F(x)=0$.
(ii) $x=\sum_{i=1}^{j_{k+2}-2} c_{i} / 3^{i}$ and $y=\sum_{i=1}^{j_{k+2}-2} c_{i} / 3^{i}+\sum_{i=j_{k+2}}^{\infty} 2 / 3^{i}$.

$$
\text { Then } F(y)-F(x) \geq 1 / 2^{j_{k}+2-k-1} \text {. Hence } F(y)-F(x) \geq 0
$$

3. Let $a_{2}=a+\sum_{i=j_{k}+1}^{j_{k+2}-1} c_{i} / 3^{i}$. Then $x=a_{2}+\sum_{i=j_{k+2}}^{\infty} c_{i}(x) / 3^{i}, \quad y=$ $a_{2}+\sum_{i=j_{k+2}}^{\infty} c_{i}(y) / 3^{i} ; F\left(a_{2}\right) \leq F(x) \leq F\left(a_{2}+\sum_{i=j_{k+2}}^{\infty} 2 / 3^{i}\right)=F\left(a_{2}\right)+1 / 2^{j_{k+2}-k-1}$ and $F\left(a_{2}\right) \leqslant F(y) \leqslant F\left(a_{2}\right)+1 / 2^{j_{k+2}-k-1}$. Hence $|F(y)-F(x)| \leq 1 / 2^{j_{k+2}-k-1}$ and $F\left(y_{1}\right)-F\left(x_{1}\right)=-1 / 2^{j_{k+2}-k-1}$, where $x_{1}=a_{2}+\sum_{i=j_{k+2}+1}^{\infty} 2 / 3^{i}$ and $y_{1}=$ $\mathbf{a}_{2}+2 / 3^{j_{k+2}}$. By $1^{\bullet}, 2^{\bullet}$ and $3^{\bullet},\left|0_{-\left(F ; E_{1}\right)}\right|=1 / 2^{j_{k+2}-k-1} \leq(1 / 2) \cdot\left(1 / 3^{j_{k+1}}\right) \leq$ $(1 / 2) \cdot\left(1 / 3^{n+1}\right) \leq|I| / 2$. Analogously $\left|0_{-}\left(F ; E_{2}\right)\right| \leq|I| / 2$. Hence $F \in \underset{A}{A}(2)$ on C .
b) Let $y \in[0,1]$. Then y is uniquely represented by $\sum_{i=1}^{\infty} y_{i} / 2^{i}$ where we always take the infinite representation. Let $c_{i}=2 y_{i-k}$, for $j_{k} \leqslant i \leqslant j_{k+2}-2$. Clearly $j_{k}-k \leqslant i-k \leqslant j_{k+1}-k-2$. Let $C_{y}=\{x \in C$: $\left.c_{i}(x)=C_{i}, j_{k} \leq i \leq j_{k+1}-2\right\}$. Clearly C_{y} is a perfect set and $F^{-1}(y)=$ C_{y}. Hence $F \& T_{2}$ on C.
c) Since $F \notin T_{2}, F \notin B$ by [4], Theorem 1,f).

Theorem 7. a) $\overline{\mathrm{A}}(\mathrm{N}) \cap C$ c $\overline{\mathrm{A}} \overline{\mathrm{C}}$ on $[0,1]$; b) $\overline{\mathcal{F}} \cap \underline{\boldsymbol{\jmath}}=\boldsymbol{z}$ on $[0,1]$; c) $\overline{\mathcal{F}} \cap \underline{\varepsilon} \subset \varepsilon$ on $[0,1]$; d) $\overline{\mathcal{F}} \oplus \overline{\mathcal{F}}$ on $[0,1]$; e) If $F_{1} \in \overline{\mathcal{F}}, \mathrm{~F}_{2} \in \overline{\mathcal{F}}$ and $0 \leqslant F_{i}(x) \leqslant A, i=1,2$, then $F_{1} \cdot F_{2} \in \overline{\mathcal{F}} ; \quad$ f) $\overline{\mathcal{F}} \oplus \bar{\varepsilon}=\bar{\varepsilon}$ on $[0,1] ;$ g) $\overline{\mathrm{A} C \bar{G}} \subset \overline{\mathcal{F}}^{\prime} \subset \overline{\mathrm{F}} \subset \bar{\varepsilon} \subset[\overline{\mathrm{M}}] \subset\left[\overline{\mathrm{M}}_{*}\right]$ strictly on $[0,1]$.

Proof. a) Let $F \in \bar{A}(N) \cap C$ on $[0,1]$ and let $I c[0,1]$ be a closed interval such that $I=\underset{\sim}{N}=E_{n}$. It suffices to show

$$
\begin{equation*}
0_{+}(F ; I) \leq \sum_{n=1}^{N} 0_{+}\left(F ; E_{n}\right) \tag{1}
\end{equation*}
$$

Since $F \in C, 0_{+}\left(F ; E_{n}\right)=0_{+}\left(F ; \bar{E}_{n}\right)$. Let $\varepsilon>0$ and let $a, b \in I$ such that $a<b$ and $F(b)-F(a)=0_{+}(F ; I)$. We may suppose $F(b)>F(a)$. Let $z_{0}=b \in E_{n_{1}}$ for some $n_{1} \in\{1,2, \ldots, N\}$. Let $m_{1}=\inf \{F(x):$ $\left.x \in\left[a, z_{0}\right] \cap \bar{E}_{n_{1}}\right\} \quad$ and $\quad x_{1}=\inf \left\{x \in[a, b] \cap \bar{E}_{n_{1}}: F(x)=m_{1}\right\}$. If
$F(a)<m_{1}-\varepsilon / N$, let $z_{1} \in\left[a, x_{1}\right]$ such that $F\left(z_{1}\right) \in\left(m_{1}-\varepsilon / N, m_{1}\right)$. Clearly $z_{1} \in E_{n_{2}}-E_{n_{1}}$ for some $n_{2} \in\{1,2, \ldots, N\} \backslash\left\{n_{1}\right\}$. Let $m_{2}=\inf \{F(x)$: $\left.x \in\left[a, z_{1}\right] \cap E_{n_{2}}\right\}$ and $x_{2}=\inf \left\{x \in\left[a, z_{1}\right] \cap \bar{E}_{n_{2}}: F(x)=m_{2}\right\}$. If $F(a)<$ $m_{2}-\varepsilon / N$, we continue as above. (We have at most N steps.) Hence there exists a natural number $k \leqslant N-1$ such that $b=z_{0} \geq x_{1}>z_{1}>x_{2}>z_{2}>\ldots$ $>x_{k}>z_{k}>x_{k+1} \geq a ; \quad F\left(z_{0}\right) \geq F\left(x_{1}\right)>F\left(z_{1}\right) \geq F\left(x_{2}\right)>F\left(z_{2}\right) \geq \cdots \geq F\left(x_{k}\right)>$ $F\left(z_{k}\right) \geq F\left(x_{k+1}\right)$ and $F(a) \geq F\left(x_{k+1}\right)-\varepsilon / N$. Then $F(b)-F(a)$ a $\quad F(b)-$ $F\left(x_{k+1}\right)+\varepsilon / N \leqslant(k+1) / N+\sum_{i=0}^{k}\left(F\left(z_{i}\right)-F\left(x_{i+1}\right)\right) \varepsilon \varepsilon+\sum_{i=1}^{N} 0_{+}\left(F ; E_{n_{i}}\right)$. Letting $\varepsilon \rightarrow 0$, we have (1).
b) It suffices to show that if F satisfies $\bar{A}(N)$ and $\underline{A}^{\prime}\left(N^{\prime}\right)$ on a set $E \subset[0,1]$, then $F \in A\left(N \cdot N^{\prime}\right)$ on E. Let $\varepsilon>0, \varepsilon_{1}=\varepsilon / 2 N^{\prime}, \varepsilon_{2}=\varepsilon / 2 N$. For ε_{1} and ε_{2} let δ_{1} and δ_{2} be the δ given by the facts that $F \in \bar{A}(N)$ and $F \in \underline{A}\left(N^{\prime}\right)$ on E. Let $\delta_{0}=\min \left\{\delta_{1}, \delta_{2}\right\}$. If $I_{k}, k=1,2, \ldots$ are nonoverlapping intervals with $I_{k} \cap E \neq \varnothing$ and $\sum\left|I_{k}\right|<\delta_{0}$, then there exist sets $E_{k n}, \quad n=1,2, \ldots, N, \quad E \quad n \quad I_{k}={\underset{V}{U}=1}_{N}^{N} E_{k n} \quad$ and sets $E_{k n}^{\prime}$, $n^{\prime}=1,2, \ldots, N^{\prime}, E \cap I_{k}=\underset{n^{\prime}=1}{U^{\prime}} E_{k n^{\prime}}$, such that $\sum_{k} \sum_{n=1}^{N} 0_{+}\left(F ; E_{k n}\right)<\varepsilon_{1} \quad$ and
 $\left(O_{+}\left(F ; E_{k n}\right)+\left|0_{-}\left(F ; E_{k n}^{\prime}\right)\right|\right) \leqslant \varepsilon$. Hence $F \in A\left(N \cdot N^{\prime}\right)$ on E.
c) It suffices to show that if $F \in \bar{A}(N) \cap \underline{E}\left(N^{\prime}\right)$ on a set $Q \subset[0,1]$, then $F \in E\left(N \cdot N^{\prime}\right)$ on Q. Let $\varepsilon>0, \varepsilon_{1}=\varepsilon /\left(N+N^{\prime}\right)$. Let $S \in E,|S|=0$ and let δ_{1} be the δ determined by ε_{1} and the fact that $F \in \bar{A}(N)$ on Q. Let $\varepsilon_{2}=\min \left\{\varepsilon_{1}, \delta_{1}\right\}$. Then there exist a sequence of non-overlapping intervals $I_{k}, I_{k} \cap S \neq \varnothing, S \subset \cup I_{k}$, and a sequence of sets $\left\{S_{N_{n}^{\prime}}^{\prime}\right\}, n^{\prime}=1, \ldots, N^{\prime}$, such that $N^{\prime} \cdot \sum_{k}\left|I_{k}\right|+\sum_{k} \sum_{n^{\prime}=1}^{N}\left|O_{-}\left(F ; S_{k n^{\prime}}^{\prime}\right)\right|<\varepsilon_{2}$. Since $F \in \overline{\mathbf{A}}(N)$, there exists a sequence of set $\left\{S_{k n}\right\}, n=1,2, \ldots, N$, such that $\sum_{k} \sum_{n=1}^{N} 0_{+}\left(F ; S_{k n}\right)<\varepsilon$. Then we have $N \cdot N^{\prime} \cdot \sum_{k}\left|I_{k}\right|+\sum_{k} \sum_{n=1}^{N} \sum_{n^{\prime}=1}^{N^{\prime}} 0\left(F ; S_{k n} \cap S_{k n^{\prime}}^{\prime}\right) \leqslant N \cdot N^{\prime} \cdot \sum_{k}\left|I_{k}\right|+$ $\sum_{k} \sum_{n=1}^{N} \sum_{n^{\prime}=1}^{N^{\prime}}\left(0_{+}\left(F ; S_{k n}\right)+\left|0_{-}\left(F ; S_{k n^{\prime}}^{\prime}\right)\right|\right) \leqslant \varepsilon . \quad$ Hence $F \in E\left(N \cdot N^{\prime}\right)$ on \dot{Q}.
d) It suffices to show that if $F_{1} \in \bar{A}(N)$ and $F_{2} \in \bar{A}\left(N^{\prime}\right)$ on a set $E \subset[0,1]$, then $F_{1}+F_{2} \in \bar{A}\left(N \cdot N^{\prime}\right)$ on E. Let $\varepsilon>0, \varepsilon_{1}=\varepsilon / 2 N^{\prime}, \quad \varepsilon_{2}=$ $\varepsilon / 2 N$. Let δ_{1} and δ_{2} be the δ determined by ε_{1} respectively ε_{2} and the facts that $F_{1} \in \bar{A}(N)$ and $F_{2} \in \bar{A}\left(N^{\prime}\right)$. Let $\delta_{0}=\min \left(\delta_{1}, \delta_{2}\right)$. If I_{k}, $k=1,2, \ldots, \quad$ are nonoverlapping intervals, $\quad I_{k} \cap E \neq \varnothing, \quad \sum\left|I_{k}\right|<\delta_{0}, \quad$ then there exist sets $\left\{E_{k n}\right\}, \quad n=1, \ldots, N, \underset{n=1}{U} E_{k n}=E \cap I_{k}$ and sets $\left\{E_{k n}\right\}$, $n^{\prime}=1, \ldots, N^{\prime}, \underset{n^{\prime}=1}{U^{\prime}} E_{k n}^{\prime}=E \cap I_{k} \quad$ such that $\sum_{k} \sum_{n=1}^{N} 0_{+}\left(F_{1} ; E_{k n}\right)<\varepsilon_{1}$ and $\sum_{k} \sum_{n^{\prime}=1}^{N^{\prime}} 0_{+}\left(F_{2} ; E_{k n}^{\prime}\right)<\varepsilon_{2} . \quad$ Since $0_{+}\left(F_{1}+F_{2} ; X\right) \leq 0_{+}\left(F_{1} ; X\right)+0_{+}\left(F_{2} ; X\right), \quad X \subset E$, it follows that $\sum_{k} \sum_{n=1}^{N} \sum_{n^{\prime}=1}^{N^{\prime}} \quad 0_{+}\left(F_{1}+F_{2} ; E_{k n} \cap E n^{\prime}\right) \leqslant \sum_{k} \sum_{n=1}^{N} \sum_{n^{\prime}=1}^{N^{\prime}}$ $0_{+}\left(F_{1} ; E_{k n} \cap E_{k n^{\prime}}\right)+\sum_{k} \sum_{n=1}^{N} \sum_{n^{\prime}=1}^{N^{\prime}} 0_{+}\left(F_{2} ; E_{k n} \cap E_{k n}^{\prime}\right) \leqslant \varepsilon_{1} \cdot N^{\prime}+\varepsilon_{2} \cdot N=\varepsilon$.
e) It suffices to show that if $F_{1} \in \bar{A}(N)$ and $F_{2} \in \bar{A}\left(N^{\prime}\right)$ on $E \subset[0,1]$, then $F_{1} \cdot F_{2} \in \bar{A}\left(N \cdot N^{\prime}\right)$. Since $0_{+}\left(F_{1} \cdot F_{2} ; X\right)=$ $\sup \left\{F_{1}(y) \cdot F_{2}(y)-F_{1}(x) \cdot F_{2}(x): x, y \in X, x \in y\right\}=\sup \left\{F_{2}(y) \cdot\right.$ $\left.\left(F_{1}(y)-F_{1}(x)\right)+F_{1}(x) \cdot\left(F_{2}(y)-F_{2}(x)\right): x, y \in X, x \leqslant y\right\} \leqslant A \cdot O_{+}\left(F_{1} ; X\right)+$ $A \cdot O_{+}\left(F_{2} ; X\right), X \in E$, the proof is similar to that of d).
f) It suffices to show that if $F_{1} \in \bar{A}(N)$ and $F_{2} \in \bar{E}\left(N^{\prime}\right)$ on $Q \subset[0,1]$, then $F_{1}+F_{2} \in \bar{E}\left(N \cdot N^{\prime}\right)$ on Q. Let $S \subset Q,|S|=0$. Let $\varepsilon>0, \quad \varepsilon_{1}=$ $\varepsilon /\left(N+N^{\prime}\right)$. Let δ_{1} be the δ determined by ε_{1} and the fact that $F_{1} \in \bar{A}(N)$ on Q. Let $\varepsilon_{2}=\min \left\{\varepsilon_{1}, \delta_{1}\right\}$. Then there exist a sequence of nonoverlapping intervals $\left\{I_{k}\right\}, I_{k} \cap S \neq \varnothing, S \subset \cup I_{k}$, and N^{\prime} a sequence of sets $\left\{S_{k n}^{\prime}\right\}, \quad n^{\prime}=1, \ldots, N^{\prime}, \quad$ such that $\quad N^{\prime} \cdot \sum_{k}\left|I_{k}\right|+\sum_{k} \sum_{n^{\prime}=1} 0_{+}\left(F_{2} ; S_{k n^{\prime}}^{\prime}\right)<\varepsilon_{2}$. Since $F_{1} \in \bar{A}(N)$, there exists a sequence of sets $\left\{S_{k n}\right\}, n=1, \ldots, N$, such that $\quad \sum_{k} \sum_{n=1}^{N} 0_{+}\left(F_{1} ; S_{k n}\right),\left\langle\varepsilon_{1} . \quad\right.$ Hence $\left.N \cdot N^{\prime} \cdot \sum_{k}\right| I_{k} \mid+\sum_{k} \sum_{n=1}^{N} \sum_{n^{\prime}=1}^{N^{\prime}}$ $0_{+}\left(F_{1}+F_{2} ; S_{k n} \cap S_{k n}{ }^{\prime}\right)<N \cdot \varepsilon_{2}+N^{\prime} \cdot \varepsilon_{1}=\varepsilon$.
g) We show that $\bar{\varepsilon} \subset[\bar{M}]$. Let $F \in \bar{\varepsilon}$ on [0,1]. Let $P=\bar{P} c[0,1]$ be such that $F \mid P$ is continuous and increasing. Since $F \in \bar{\varepsilon}$ and $0_{+}(F ; X)=0(F ; X)$ on a set X, if F is increasing on $X, F \in \varepsilon$ on P.

Hence $F \in(N)$ on P. By [11] (Theorem 6.7, page 227), $F \in A C$ on P. By Theorem 3 of $[4], F \in[\bar{M}]$.

We show that $\bar{\exists} \subset \bar{\varepsilon}$. It suffices to show that if $F \in \bar{A}(N)$, then $F \in \bar{E}(N)$ on a set Q. Let $\varepsilon>0$ and let δ be determined by ε and the fact that F satisfies $A(N)$ on Q. Let $S c[0,1],|S|=0$. Select a sequence of nonoverlapping intervals $\left\{I_{k}\right\}$ such that $S \subset v I_{k}$ and $\sum\left|I_{k}\right|$ < $\min \{\varepsilon, \delta\}$. Let $S_{k n}{ }^{\prime} n=1, \ldots, N$, be sets such that $S \cap I_{k}=\begin{aligned} & N \\ & U\end{aligned} S_{k n}$ and $\sum_{k=1}^{\infty} \sum_{n=1}^{N} 0_{+}\left(F ; S_{k n}\right)<\varepsilon . \quad$ Then $N \cdot \sum_{k=1}^{\infty}\left|I_{k}\right|+\sum_{k=1}^{\infty} \sum_{n=1}^{N} 0_{+}\left(F ; S_{k n}\right)<\varepsilon \cdot(N+1)$. Hence $F \in \bar{E}(N)$ on Q. The other inclusions are evident. It remains to show that they are also strict. We show that $\overline{\operatorname{ACG}}$ is strictly contained in $\overline{\overline{\mathcal{F}}}$. Let $F, G:[0,1] \rightarrow \mathbb{R}, F \in \mathcal{F}, G \in(N)$ such that $F+G=\varphi$. (See [3], the the proof of Theorem 4, page 205.) Then $-G=F-\varphi \in \overline{\mathcal{F}}^{\prime}$. Suppose on the contrary that $-G \in \overline{A C G} \subset$ VBG. Since $-G \in(N), G \in A C G$ ([11], Theorem 8.8, page 233). Hence $\varphi=F+G \in \mathcal{F}^{\prime}$, a contradiction. Thus $\overline{\mathcal{F}^{\prime}}-\mathrm{ACG} \neq \varnothing$. We show that $\overline{\mathcal{F}}$ is strictly contained in $\overline{\mathcal{F}}$. Clearly $\overline{\mathcal{F}}^{\prime}$ c $\mathrm{B} \subset \mathrm{T}_{2}$. (See [4], Theorem 1, c).) Let F be the function constructed in Example l. Then $-F \in \overline{\mathcal{F}}-T_{2}$. Hence $-F \notin \overline{\mathcal{F}}^{\prime}$.

We show that $\overline{\mathcal{J}}$ is strictly contained in $\bar{\varepsilon}$. Let $F_{1}, F_{2}:[0,1] \rightarrow \mathbb{R}$ be the functions defined in [3] (Theorem $5, a$)), $F_{1}+F_{2}=\varphi, F_{1}, F_{2} \in \varepsilon$. Suppose on the contrary that $\left.F_{1} \in \bar{\jmath} . \quad B y \quad f\right) \varphi=F_{1}+F_{2} \in \bar{\varepsilon}$. But $\bar{\varepsilon} c$ [\bar{M}]. Hence we have a contradiction.

We show that $\bar{\varepsilon}$ is strictly contained in $[\bar{M}]$. Let $F, G:[0,1] \rightarrow \mathbb{R}$, $F \in \exists, G \in(N) \subset[\bar{M}], F+G=\varphi$ ([3]). Suppose on the contrary that $G \in \bar{\varepsilon}$. By f) $\varphi=F+G \in \bar{\varepsilon} \subset[\bar{M}]$; a contradiction.

We show that $[\bar{M}]$ is strictly contained in [$\left.\bar{M}_{*}\right]$. We consider the function g constructed in the Example of [4]. Then $g \in\left[M_{*}\right]=\left[\bar{M}_{*}\right] \cap\left[M_{*}\right]$. By Theorem 3 of $[4], g \notin[\bar{M}]$.

Remark 12. Let $f:[0,1] \rightarrow \mathbb{R}, f(x)=0, x \in C, f(x)=1, x \notin C$. Then f is lower semicontinuous, $f \in A(2)$ and $f \notin A C$ on [0,1]. Hence we cannot give up the continuity condition in Theorem 7, a).

Lemma 1. Let $F_{1}, F_{2}:[0,1] \rightarrow \mathbb{R}$, and let P be a closed subset of $[0,1]$. If $F_{1} \in \underline{A}^{\prime}(N)$ on P, for some natural number $N, F_{2} \in \bar{\varepsilon}$ (resp. ε)

Proof. $F_{2}=F_{1}-H=f_{1}-h_{1}-H$, where $f_{1} \in A(N)$ and $h_{1} \in \underline{A C}$ on P. Then $F_{2}-f_{1}=h_{1}-H$ is VB $\cap \bar{\varepsilon}$ (resp. VB $\cap \varepsilon$) on P, by Theorem 7 (resp. [3], Theorem 5,c), page 208). Hence $F_{2}-f_{1}$ is $\overline{A C}$ (resp. AC) on P by Theorem 7 (resp. [3], Theorem 5,c), page 208) and $F_{2} \in \bar{A}^{\prime}(N)$ (resp. $A(N)$) on P.

Theorem 8. Let $F_{1}, F_{2}:[0,1] \rightarrow \mathbb{R}, F_{1} \in \underline{\mathcal{F}}^{\prime} \cap B_{1}^{*}, \quad F_{2} \in \bar{\varepsilon} \cap B_{1}^{*} \quad$ (resp. $\left.F_{2} \in \varepsilon \cap B_{1}^{*}\right), F_{1}-F_{2} \in \operatorname{VBG}$ on $[0,1]$. Then $F_{2} \in \mathcal{F}^{\prime} \cap B_{1}^{*}$ (resp. $F_{2} \in \mathcal{F} \cap B_{1}^{*}$) on $[0,1]$.

Proof. Let $\left\{P_{k}\right\}$ be a sequence of closed subsets of $[0,1]$ such that $\cup P_{k}=[0,1], \quad F_{1}\left|P_{\underline{k}} \in C \cap \underline{A}^{\prime}\left(N_{k}\right), \quad F_{2}\right| P_{k} \in C \cap \bar{\varepsilon} \quad$ and $\quad F_{1}-F_{2} \in \mathrm{VB} . \quad \mathrm{By}$ Lemma 1, $\quad F_{2} \mid P_{k} \in \bar{A}^{\prime}\left(N_{k}\right) \quad$ (resp. $A\left(N_{k}\right)$). Hence $F_{2} \in \mathcal{F}^{\prime} \cap B_{1}^{*} \quad$ (resp. $F_{2} \in \mathcal{F} \cap B_{1}^{*}$) on $[0,1]$.

Lemma 2. Let $M_{n}:[0,1] \rightarrow \mathbf{R}$ and let P be a closed subset of [0,1]. Let $F:[0,1] \rightarrow R$ such that $H_{n}(x)=M_{n}(x)-F(x)$ is increasing on P and $H_{n} \rightarrow 0$ [unif] on P. If there exists a natural number N such that $M_{n} \in \underline{A}(N)$ on P, then $F \in \underline{A}(N)$ on P.

Proof. Let $\varepsilon>0$ and let n be a natural number such that $H_{n}(x) \leqslant \varepsilon / 2 N, x \in P$. Let $\delta(n, \varepsilon)$ be the δ determined by $\varepsilon / 2$ and the fact that $M_{n} \in \underline{A}(N)$ on P. Let $\left\{I_{k}\right\}$ be a sequence of nonoverlapping intervals, $I_{k} \cap P \neq \varnothing, \Sigma\left|I_{k}\right|<\delta(n, \varepsilon)$. Let $E_{k j}, j=1, \ldots, N$ be sets such that

$$
\begin{equation*}
\underset{j=1}{N} \quad E_{k j}=I_{k} \cap P \quad \text { and } \quad \sum_{k} \sum_{j=1}^{N}\left|0-\left(M_{n} ; E_{k j}\right)\right|<\varepsilon / 2 \text {. } \tag{2}
\end{equation*}
$$

Let $a_{k j}, b_{k j} \in E_{k j}, a_{k j} \leqslant b_{k j}$. Then $\sum_{k}\left(F\left(b_{k j}\right)-F\left(a_{k j}\right)\right)=\sum_{\mathbf{k}}\left(M_{\mathbf{n}}\left(b_{k j}\right)-\right.$ $\left.M_{n}\left(a_{k j}\right)\right)-\sum_{k}\left(H_{n}\left(b_{k j}\right)-H_{n}\left(a_{k j}\right)\right) \geq \sum_{k}\left(M_{n}\left(b_{k j}\right)-M_{n}\left(a_{k j}\right)\right)-\varepsilon / 2 N . \quad B y$ (2) we have $\sum_{k} \sum_{j=1}^{N}\left(F\left(b_{k j}\right)-F\left(a_{k j}\right)\right) \geq-\varepsilon / 2-\varepsilon / 2=-\varepsilon$. Hence $F \in \underline{A}(N)$ on P.

Theorem 9. Let $u L$ be an upper semilinear space contained in uCM which is closed under uniform convergence. Then the LF integral is equivalent with the LF'P integral on $[0,1]$.

Proof. If f is LF integrable on $[0,1]$ and F is an indefinite LF integral of f on [0,1], then $F(x)-F(0)$ serves as both, a LF'P - major and minor function for f on [0,1]. Hence f is LF'P integrable with F an indefinite LF'P integral. Conversely, let f be an LF'P integrable function with F an indefinite LF'P integral. Let M_{i} and m_{j} denote respectively LF'P - major and minor functions for f on [0,1] with the following properties:

$$
\begin{align*}
& M_{i}(a)=m_{i}(a)=0 ; \quad M_{i}(x)-m_{i}(x) \leqslant 1 / i, \quad x \in[0,1] \tag{3}\\
& \left(M_{i}\right)_{a p}^{\prime}(x) \geqslant f(x) \geq\left(m_{j}\right)_{a p}^{\prime}(x) \quad \text { a.e. on }[0,1]
\end{align*}
$$

Clearly $F(x)=\sup _{j}\left\{m_{j}(x)\right\}=\inf _{i}\left\{M_{i}(x)\right\}$. By Theorem 11 of [4], $\quad M_{i}-m_{j}$ is increasing, and by (3), $M_{i} \rightarrow F$ [unif], $m_{j} \rightarrow F$ [unif]. Hence $M_{i}-F$ and $F-m_{j}$ are increasing on $[0,1]$. Let $\left\{P_{k}\right\}$ be a sequence of closed subsets of $[0,1]$ such that $M_{i} \mid P_{k} \in C \cap \underline{A}^{\prime}\left(N_{i k}\right)$ and $m_{j \mid P_{k}} \in C \cap \bar{A}^{\prime}\left(N_{j k}^{\prime}\right)$. Let $N_{k}=N_{1 k}$. Then $\left.M_{1}\right|_{P_{k}} \in \underline{A}^{\prime}\left(N_{k}\right)$. Since $m_{j} \in \overline{\mathcal{F}}^{\prime} \subset \bar{\varepsilon}$ on P_{j}, for each j, by Lemma $1, m_{j} \in \bar{A}^{\prime}\left(N_{k}\right)$ and $M_{i} \in \underline{A}\left(N_{k}\right)$ on P_{k}, for each i and j. By Lemma 2, $F \in \underline{A}\left(N_{k}\right) \cap \bar{A}\left(N_{k}\right)=A\left(N_{k} \cdot N_{k}\right)$ on P. Hence $F \in \mathcal{F}^{\prime} \cap B_{i}^{*}$ on [0,1]. Since $M_{i} \rightarrow F$ [unif], $m_{j} \rightarrow F$ [unif] and $u L$ is closed under uniform convergence, it follows that $F \in L$. Since $M_{i}-F, F-m_{i}$ and $M_{i}-m_{i}$ are increasing on $[0,1], \quad\left(M_{i}\right)_{\mathrm{ap}}^{\prime}(x) \geq F_{\mathrm{ap}}^{\prime}(x) \geq\left(m_{i}\right){ }_{\mathrm{ap}}(x) . \quad B y \quad(3)$ and (4) $\int_{0}^{1}\left|F_{a p}^{\prime}(x)-f(x)\right| d x \leqslant \int_{0}^{1}\left|\left(M_{i}\right) \dot{a p}(x)-\left(m_{i}\right) \dot{a p}^{\prime}(x)\right| d x \leqslant M_{i}(1)-m_{i}(1) \leqslant 1 / i$. Hence $\int_{0}^{1}\left|F_{a p}^{\prime}(x)-f(x)\right| d x=0$. Therefore $F_{a p}^{\prime}(x)=f(x)$ a.e. on $[0,1]$.

Example 2. Let $\left\{j_{k}\right\} \quad$ be an increasing sequence of natural $\frac{\text { numbers }}{j_{2 k+4}^{-p}} \frac{j^{2 k+4}-k}{}$ and let p be a natural number such that: $j_{0}=0$ and $2^{j_{2 k+4}^{p}} \geq 2^{j_{2 k+4}} \geq$ $3^{j_{2 k+2}}, \quad k \geqslant p$. Let $F, G_{p}:[0,1] \rightarrow \mathbb{R}$ be two continuous functions defined as follows: $F(x)=\sum_{i=0}^{\infty} \sum_{k=j_{2 i}+1}^{j_{2 i+1}} c_{k}(x) / 2^{k+1}, \quad x \in C$ and F is linear on each interval contiguous to $C ; G_{p}(x)=F(x)+(1 /(2 p-1)) \cdot \varphi(x)$. Then we have
a) $G_{p}^{\prime}=F^{\prime}$ a.e. on $[0,1]$ and $G_{p} \rightarrow F$ [unif], $p \rightarrow \infty$;
b) $G_{p} \in \underline{A}\left(2^{p}\right)$ on C, hence $G_{p} \in \underline{\mathcal{Z}}$ on [0,1];
c) F and G_{p} belong to the class $~ B ;$
d) $F \in \varepsilon-\mathcal{F}$ on $[0,1]$. Moreover, $F \notin \mathcal{Z}$ and $F \notin \mathcal{F}$.

Proof. a) is evident.
b) Let $\varepsilon>0, \quad \delta_{p}=\min \left\{\varepsilon, 1 / 3^{j_{2 p}+1}\right\}$. Let $I c[0,1]$ be an interval with endpoints in C such that $|I|<1 / 3^{j_{2 p}}$. Let n be a natural number such that $1 / 3^{n+1} \leqslant|I|<1 / 3^{n}$, and let k be a natural number such that $j_{2 k} \leqslant n<j_{2 k+2}$. Clearly $k \geqslant p$. Since $|I|<1 / 3^{n}$, there exist $c_{1}, c_{2}, \ldots, c_{n} \in\{0,2\}$ such that $c_{i}(x)=c_{i}, i=1,2, \ldots, n, x \in I \cap C$. Let $a=\sum_{i=1}^{j_{2 k}} c_{i} / 3^{i}$ and $b=a+1 / 3^{j_{2 k}}$. Let $d_{i} \in\{0,2\}, i=1,2, \ldots, p$, and let $E_{d_{1}} \ldots d_{p}=\left\{x \in[a, b] \quad n C: c_{j_{2 k+2}}(x)=d_{1} ; \quad c_{j_{2 k+2}-1}(x)=d_{2} ; \ldots ;\right.$ $\left.c_{j_{2 k+2}}-p+1=d_{p}\right\}$. Let $x, y \in E_{d_{1}} \cdots d_{p}, x<y$. Then we have three situations:

1) $y-x>1 / 3^{j_{2 k+3}}$;
2) $y-x=1 / 3^{j_{2 k+3}}$;
3) $y-x<1 / 3^{j_{2 k+3}}$.
4) Let $j_{2 k}+1 \leqslant i_{0} \leqslant j_{2 k+3}$ such that $c_{i}(x)=c_{i}(y)=c_{i}$, $i \leqslant i_{0}-1$; $c_{i_{0}}(x)=0 ; \quad c_{i_{0}}(y)=2 . \quad$ Clearly $\quad i_{o} \in\left\{j_{2 k+2}, j_{2 k+2}-1, \ldots, j_{2 k+2}-p+1\right\}$. Then $x=a_{1}+\sum_{i=i_{0}+1}^{\infty} c_{i}(x) / 3^{i}, \quad y=a_{1}+2 / 3^{i_{0}}+\sum_{i=i_{0}+1}^{\infty} c_{i}(y) / 3^{i}, \quad a_{1}=$ $\sum_{i=1}^{i_{0}-1} c_{i} / 3^{i}$. We have three possibilities: (i) $j_{2 k}+1 \leqslant i_{0} \leqslant j_{2 k+1}$; (ii) $j_{2 k+1}+1 \leqslant i_{0} \leqslant j_{2 k+2}-p ; \quad$ (iii) $j_{2 k+2}+1 \leqslant i_{o} \leqslant j_{2 k+3}$.
(i) $G_{p}(y)-G_{p}(x)=F(y)-F(x)+(\varphi(y)-\varphi(x)) /\left(2^{p}-1\right) \geq F(y)-F(x) \geq$ $F\left(a_{1}+2 / 3^{i_{0}}\right)-F\left(a_{1}+\sum_{i=l_{0}+1}^{\infty} 2 / 3^{i}\right)>0$.
(ii) $G_{p}(y)-G_{p}(x) \geq G_{p}\left(a_{1}+2 / 3^{i_{0}}+\sum_{i=j_{2 k+2}-p+1}^{j_{2 k+2}}\left(d_{i}-j_{2 k+2}+p\right) / 3^{i}\right)-$ $G_{p}\left(a_{1}+\sum_{i=i_{0}+1}^{j_{2 k+2}-p} 2 / 3^{i}+\sum_{i=j_{2 k+2}-p+1}^{j_{2 k+2}}\left(d_{i}-j_{2 k+2}-p\right) / 3^{i}+\sum_{i=j_{2 k+2}}^{\infty} 2 / 3^{i}\right)=$ $G_{p}\left(2 / 3^{i_{0}}\right)-G_{p}\left(\sum_{i=i_{0}+1}^{j_{2 k+2}-p} 2 / 3^{i}+\sum_{i=j_{2 k+2}+1}^{\infty} 2 / 3^{i}\right)=F\left(2 / 3^{i_{0}}\right)-F\left(\sum_{i=i_{o}+1}^{j_{2 k+2}^{-p}} 2 / 3^{i}\right)$
$F\left(\sum_{i=j_{2 k+2}+1}^{\infty} 2 / 3^{i}\right)+(1 /(2 p-1)) \cdot\left[\left(\varphi\left(2 / 3^{i_{0}}\right)-\varphi\left(\sum_{i=i_{0}+1}^{j_{2 k+2}-p} 2 / 3^{i}\right)-\right.\right.$ $\left.\varphi\left(\sum_{i=j_{2 k+2}+1}^{\infty} 2 / 3^{i}\right)\right)=-F\left(\sum_{i=j_{2 k+2}}^{\infty} 2 / 3^{i}\right)+(1 /(2 P-1)) \cdot\left[\left(1 / 2^{j_{2 k+2}-P}-\right.\right.$ $\left.\left.1 / 2^{j_{2 k+2}}\right)\right]>-1 / 2^{j_{2 k+2}}+\left(1 /\left(2^{P}-1\right)\right) . \quad\left(2^{P}-1\right) / 2^{j_{2 k+2}}=0$.
(iii) $G_{p}(y)-G_{p}(x)>0$ (the proof is analogous to that of (i)). $j_{2 k+3}-1$
5) Let $a_{2}=\sum_{i=1} c_{i} / 3^{i}$. We have two possibilities:
(i) $x=a_{2}+1 / 3^{j_{2 k+3}}, y=a_{2}+2 / 3^{j_{2 k+3}}$. Then $G_{p}(y)-G_{p}(x)=F(y)-$ $\mathrm{F}(\mathrm{x})>0$.
(ii) $x=a_{2}, y=a_{2}+1 / 3^{j_{2 k+3}}$ and $G_{p}(y)-G_{p}(x)>0$.
6) Let $i_{0} \geq j_{2 k+3}+1$ such that $c_{i_{0}-1}(x)=0, c_{i_{0}}(y)=2, c_{i}(x)=c_{i}(y)=$ $c_{i}, i=1,2, \ldots, i_{0}-1$. Let $a_{3}=\sum_{i} c_{i} 3^{i}$. Then $G_{p}(y)-G_{p}(x) \geqslant G_{p}\left(a_{3}+\right.$ $\left.2 / 3^{i_{0}}\right)-G_{p}\left(a_{3}+1 / 3^{i_{0}}\right)=F\left(2 / 3^{i_{0}}\right)-F\left(1 / 3^{i}\right)$. Let m be a natural number such that $j_{2 k+m+2}+1<i_{0} \leqslant j_{2 k+m+4}$. We have two possibilities:
(i) m is even. Then $F\left(2 / 3^{i_{0}}\right)-F\left(1 / 3^{i_{0}}\right)=-F\left(\sum_{i=j_{2 k+m+4}+1}^{\infty} 2 / 3^{i}\right)>$ $-\varphi\left(1 / 3^{j_{2 k+m+4}}\right)=-1 / 2^{j_{2 k+m+4}}$.
(ii) m is odd. Then $F\left(2 / 3^{i_{o}}\right)-F\left(1 / 3^{i_{o}}\right)>0$. By 1), 2), 3) it follows that $\left|0_{j}\left(G_{p} ; E_{d_{1}} \ldots d_{p}\right)\right| \leqslant 1 / 2^{j_{2 k+4}}$. Since $|I|>1 / 3^{n+1} \geq 1 / 3^{j_{2 k+2}-1} \geqq$ $2 P / 2^{j_{2 k+4}}, k \geq p$ (by hypothesis), $\quad \sum_{d_{1}} \quad \sum_{d_{2}} \cdots \sum_{d_{p}}\left|0-\left(G_{p} ; E_{d_{1}} \ldots d_{p}\right)\right|<|I|$. Now the proof follows by defintion.
c) See the lemma on page 198 of [3].
d) If $3^{j_{i}}<2^{j_{i+1}}$, then both F and $f=甲-F$ belong to $\varepsilon-\mathcal{F}$. (See [3], page 208, the functions F_{1}, F_{2}.) Suppose on the contrary that $F \in \overline{\mathcal{F}}$. Then by Theorem 7, f), g$), \quad \mathrm{F}+\mathrm{f}=\varphi \in \bar{\varepsilon} \subset[\overline{\mathrm{M}}]$, a contradiction (since $\varphi \notin[\bar{M}]$). Hence $F \in \overline{\mathcal{F}}$. We show that $F \notin \underline{\exists}$. It is sufficient to prove that $F \in \underline{A}\left(2^{N}-1\right)$ for some natural number N, on no portion of C.

Let P be a portion of C. Suppose on the contrary that $F \in \underset{A}{A}\left(2^{N}-1\right)$ on P. Let $\left[a_{0}, b_{0}\right]$ be a closed interval retained in the Cantor ternary process from the qth step such that $\left[a_{0}, b_{0}\right] \cap C \subset P$. (We take the first q with this property.) Then $F \in \underline{A}\left(2^{N}-1\right)$ on $\left[a_{0}, b_{0}\right] \cap C$. We may suppose that $j_{2 k+1}\left\langle j_{2 k+2}-N\right.$ and $j_{2 k+2}-N>q$. Let $n_{i}=j_{i+1}-j_{1}$. Then $N-n_{2 k+1}<0$. Let $I=[a, b]$ be a closed interval retained in the Cantor ternary process from the step $j_{2 k+2}-N, I \subset\left[a_{0}, b_{0}\right]$. (We have $2^{j_{2 k+2}-N-q}$ such intervals.) Then $a=\sum_{i=1}^{j_{2 k+2}-N} c_{i} / 3^{i}, \quad b=a+1 / 3^{j_{2 k+2}-N}$. Let $\left\{E_{n}\right\}, n=1,2, \ldots, 2^{N}-1$, 2^{N}-1
be sets such that $E_{n}=\bar{E}_{n} \subset I \cap C, \underset{n=1}{U} E_{n}=I \cap C$. Then

$$
\begin{array}{cc}
\sum_{n=1}^{2^{N}-1} & \left|0-\left(F ; E_{n}\right)\right|>2 / 2^{j_{2 k+2}+2} . \quad \text { Hence } \sum_{I} \sum_{n=1}^{2^{N}-1}\left|0-\left(F ; E_{n}\right)\right| \tag{5}\\
& >2^{j_{2 k+2}-N-q} \cdot\left(2 / 2^{j_{2 k+2}+2}\right)=1 / 2^{N+q+1} .
\end{array}
$$

Since $|I| \cdot 2^{j_{2 k+2}-N-q} \rightarrow 0, k \rightarrow \infty$, it follows that $F \notin \underline{A}\left(2^{N}-1\right)$ on $\left[a_{0}, b_{0}\right] n c$, a contradiction. Hence $F \notin \underline{A}\left(2^{N}-1\right)$ on P. It remains to show (5). Let $I_{n}=\left[a_{n}, b_{n}\right], n_{n} 1, \ldots, 2^{N}, a_{1}=a$, be the closed intervals retained in the Cantor ternary process from the step $j_{2 k+2}$ which are contained in I (numbered from left to right). We observe that $\left|I_{n}\right|=1 / 3^{j_{2 k+2}}$ and $F\left(a_{n}+x\right)=F(a+x)$ for each x belonging to $\left[0,1 / 3^{j_{2 k+2}}\right] \cap C, n=$ $1,2, \ldots, 2^{N}$. Let $R_{i}=E_{i}-\underset{t=1}{U} I_{t}, i=1,2, \ldots, 2^{N}-1$. Clearly there exists $i \in\left\{1, \ldots, 2^{N}-1\right\}$ such that $b_{i} \in E_{i}$ and $R_{i} \neq \varnothing$. Let i_{1} be the first i with this property. Let $x_{i}=b_{i}, i=1,2, \ldots, i_{1}$. Let $m_{i_{1}}=\inf \{F(x)$: $\left.x \in R_{i_{1}}\right\}$. Then $\left|O_{-}\left(F ; E_{i_{1}}\right)\right| \geqslant M_{i_{1}}-m_{i_{1}}$, where $M_{i_{1}}=F\left(x_{i_{1}}\right)$.

$$
2^{N}-1
$$

a_{1}) If $m_{i_{1}}=F(a), \quad$ then $\sum_{n=1}\left|O_{-}\left(F ; E_{n}\right)\right|>\left|O_{-}\left(F ; E_{1}\right)\right| \geq M_{i_{1}}-m_{i_{1}}=$ $=F(b)-F(a) ;$
$\left.b_{1}\right)$ If $m_{i_{1}}>F(a), \quad$ let $p_{i}^{(l)}=\sup \left\{x \in I_{i}: F(x) \leqslant m_{i_{1}}\right\}, \quad i=i_{1}+1$, $i_{1}+2, \ldots, 2^{N}$. Clearly $F\left(p_{1}^{(1)} 1_{1}+1\right)=\cdots=F\left(p_{2^{N}}^{(1)}\right)$. Let $i_{2} \in\left\{i_{1}+1, \ldots, 2^{N}-1\right\}$ be the first index such that $R_{i_{2}} \neq \varnothing$
and $p_{i_{2}}^{(1)} \in E_{i_{2}}$. Let $x_{i}=p_{i}^{(1)}, i=i_{1}+1, \ldots, i_{2}$. Let $m_{i_{2}}=\inf \left\{F(x): x \in R_{i_{2}}\right\}$. Then $\left|O_{-}\left(F ; E_{i_{2}}\right)\right| \geq M_{i_{2}}-m_{i_{2}}$, where $M_{i_{2}}=F\left(X_{i_{2}}\right)$;

$$
\begin{aligned}
& \left.\mathbf{a}_{2}\right) \quad \text { If } m_{i_{2}}=F(a), \quad \text { then } \sum_{n=1}^{2^{N}-1}\left|0_{-}\left(F ; E_{n}\right)\right| \geq\left|0_{-}\left(F ; E_{i_{1}}\right)\right|+\left|0_{-}\left(F ; E_{i_{2}}\right)\right| \\
& \quad \geq F(b)-F(a)-\left(m_{i_{2}}-M_{i_{2}}\right) .
\end{aligned}
$$

$$
b_{2} \text {) If } m_{i_{2}}>F(a), \text { let } p_{i}^{(2)}=\sup \left\{x \in I_{i}: F(x)<m_{i_{2}}\right\}
$$

$$
i=i_{2}+1, \ldots, 2^{N} . \quad \text { Clearly } F\left(p_{1_{2}+1}^{(2)}\right)=\cdots=F\left(p_{2}^{(2)}\right) . \quad \text { Let }
$$ $i_{3} \in\left\{i_{2}+1, \ldots, 2^{N}-1\right\}$, be the first index such that $R_{i_{3}} \neq \varnothing$ and $p_{i_{3}}^{(2)} \in E_{i_{3}}$. Let $x_{i}=p_{i}^{(2)}, i=i_{2}+1, \ldots, i_{3}$. Let $m_{i_{3}}=\inf \left\{F(x): x \in R_{i_{3}}\right\}$. Then $\left|0_{-}\left(F ; E_{i_{3}}\right)\right| \geqq M_{i_{3}}-m_{i_{3}}$, where $M_{i_{3}}=F\left(X_{i_{3}}\right)$;

$$
\left.a_{3}\right)
$$

b_{3})

There exists some $j_{0} \in\left\{1, \ldots, 2^{N}-1\right\}$ such that $R_{i_{j}} \neq \varnothing$ and $R_{i}=\varnothing$, $i>i_{j_{0}}$. Then $a_{2}{ }_{N} \in R_{i_{j_{0}}}$. (Indeed, since $a_{2}{ }_{N} \notin E_{i}$ for $R_{i}=\varnothing$, it follows that $a_{2}{ }_{N} \in E_{i_{0}}$ with $R_{i_{0}} \neq \varnothing$, for some i_{o}. Hence $i_{o}=i_{j_{0}}$) $a_{i_{j}}$) It follows that $m_{j_{0}}=F\left(a_{2}{ }_{N}\right)=F(a)$. We have

$$
\begin{align*}
& \sum_{n=1}^{2^{N}-1}\left|0_{-}\left(F ; E_{n}\right)\right| \geq \sum_{t=1}^{j_{o}}\left|0_{-}\left(F ; E_{i_{t}}\right)\right| \geq F(b)-F(a)- \tag{6}\\
& \left.\sum_{t=1}^{j_{0}-1}\left(m_{i_{t}}-M_{i_{t+1}}\right)\right\rangle(F(b)-F(a)) / 2 \geq 2 / 2^{j_{2 k+2}+2} .
\end{align*}
$$

Hence we have (5). It rerains to show (6). Let $Q=F(I \cap C)=F\left(I_{1} \cap C\right)=$ $\cdots=F\left(I_{n} \cap C\right)$. If $m_{i_{t}} \neq M_{i_{t+1}}, \quad t=1, \ldots, j_{o}-1$, then $\left(M_{i_{t+1}}, m_{i_{t}}\right)$ are intervals contiguous to $Q \in[F(a), F(b)]$. Let $I_{m}^{\prime}=\left[a_{m}^{\prime}, b_{m}^{\prime}\right]$, $m=1, \ldots, 2^{n_{2 k+2}}$, be the closed intervals contained in I_{n}, retained from the
 $F\left(b_{m}^{\prime}\right)=A$, where $A=2 / 2^{j_{2 k+3}+1}-B$. Clearly $A>B$ and $\quad\left(F\left(b_{m}^{\prime}\right), \quad F\left(a_{m+1}^{\prime}\right)\right)$ are intervals contiguous to $Q \subset[F(a), F(b)]$ with length $A, m=$ $1,2, \ldots, 2^{n_{2 k+2}}-1 . \quad$ Since $N<n_{2 k+1}$, it follows that $j_{0}-1<2^{N}-2<$ $2^{n_{2 k+2}}-2$. Hence $2 \cdot\left(2^{N}-2\right)<2^{n_{2 k+1}+1}-4<2^{n_{2 k+2}}-1$ (since n_{i} is strictly increasing). We observe that: $F(b)-F(a)=2^{n_{2 k+2}} \cdot B+\left(2^{\left.n_{2 k+2}-1\right)}\right.$ - $A>2 \cdot\left(2^{N}-2\right) \cdot A$. Hence $\left(2^{N}-2\right) \cdot A<(F(b)-F(a)) / 2$. Also, $\sup \sum_{t=1}^{j_{0}-1}\left(m_{i_{t}}-M_{i_{t}}\right) \leq\left(2^{N}-2\right) \cdot A \quad$ and $\sum_{n=1}^{2^{N}-1}\left|0_{-}\left(F ; E_{n}\right)\right| \geq F(b)-F(a)-$ $\left(2^{N}-2\right) \cdot A>(F(b)-F(a)) / 2$ and we have (6).

Open Problem. Clearly if f is LF integrable, then f is LFP integrable. Is Theorem 9 true if the LF'P integral is replaced by the LFP integral?

Remark 13. a) Theorem 8 does not remain true if the function F_{1} is supposed to be $\underline{f} \cap B_{1}^{*}$. (Each function G_{p} constructed in Example 2 is a counterexample, since $\left.G_{p} \in(\underline{f} \cap B)-\underline{\mathcal{F}}^{\prime}.\right)$
b) Let G_{p} be the functions constructed in Example 2. Suppose that N_{p} is the first natural number such that $G_{p} \in \underline{A}\left(N_{p}\right)$ on C. Clearly $N_{p} \leq 2 p$. By Lemma 2 it follows that the sequence $\left\{N_{p}\right\}$ is not bounded.

We are indebted Professor Solomon Marcus for his help in preparing this article.

REFERENCES

[1] Bruckner, A.M.: Differentiation of Real Functions. Lecture Notes in Mathematics. 659, Springer-Verlag, New York, 1978.
[2] Ellis, H.W.: Darboux Properties and Applications to nonabsolutely convergent integrals. Canad. Journal. Math., 3, 1951, 471-485.
[3] Ene, V.: A Study of Foran's Conditions $A(N)$ and $B(N)$ and his class 7. Real Analysis Exchange, 10, 1985, 194-211.
[4] Ene, V.: Monotonicity Theorems. Real Analysis Exchange. 12 (1986-87), 420-454..
[5] Foran, J.: A Chain Rule for the Approximate Derivative and Change of Variables for the v-integral. Real Analysis Exchange, 8, (1982-83), 443-454.
[6] Goodman, G.S.: N-functions and integration by substitution. Rend. Sem. Fis. Milano, 47 (1978), 123-134.
[7] Lee, C.M.: An analogue of the theorem of Hake-Alexandroff-Looman. Fund. Math., C, (1978), 69-74.
[8] Ridder, J.: Uber den Perronschen Integralbegriff und seine Beziehung zu den R-, L- und D- Integralen. Math. Ztschr., 34 (1931), 234-269.
[9] Ridder, L.: Uber die T - und N - Bedingungen und die approximativ stetigen Denjoy-Perron Integrale. Fund. Math., 22 (1934), 163-179.
[10] Ridder, J.: Uber die gegenseitigen Beziehungen verschiedener approximativ stetiger Denjoy-Perron Integrale. Fund. Math. 22 (1934), 136-162.
[11] Saks, S.: Theory of the Integral. 2nd. rev. ed. Monografie Matematyczne, 7 (1937), PWN, Warsaw.
[12] Krzyzewski, K.: On change of variable in the Denjoy-Perron Integral. II, Coll. Math., 9 (1962), p. 317.

