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 INTEGRALS OF LUSIN AND PERRON TYPE

 In the first part of the present paper we study the relations between

 Lee's LDG- and LPG-integrals ([7]) and conditions [M], [M] and [M]. Also we

 give similar results for other integrals introduced here. These results are

 then used to obtain change of variable formulas.

 In the second part we introduce an integral of Perron type which is

 equivalent to the Foran integral.

 In what follows we refer to the following classes of functions: C, (N),

 N- , N+-, [M], [M], [M], [M*], [M*], [M*], A(N), B(N), ?, B, £, AC, ĀČ, AC, VB,
 ACG, ĀČG, ACG. VBG, D, DB1( Bf, DBf, uCM, 1CM, CM. For all of these see [4].
 Let dļ ® aa denote the semilinear space generated by the classes of

 functions Q, and G2.

 Some properties of the LPG- and LDG- integrals. Change
 of variables.

 Definition 1. [8]. A function f : [0,1] - * R is said to be AC* on a set

 E c [0,1] if for every e > 0 there is a S > 0 such that

 I(f(bk) - f(ck)) < e and Tífíc^) - f(aķ)) < c for each sequence of

 nonoverlapping intervals {(aķjbķ)} with endpoints in E, ak * ck * bk and

 Ï (bk - ak) < 6' Let AC* = {f : -f e AC*} and AC* = AC* n AC*. The
 clas?3s ACG*, ACG* and ACG* are defined analogously to ACG.

 Defnition 2. [9], A function f : [0,1] - » F is said to be (N^®) if [0,1]
 is the union of a countable sequence of perfect sets Pj (except perhaps a
 countable set of points) such that:

 115



 1* The set f({x € Pj : f|£,(x) = +»}) has measure 0 for each j;
 2* On each perfect subset Tj of Pj, f(x) satisfies an analogous

 condition. Let (Nģ®) = {f : -f e. (N^®)} and let (Ng) = (N^®) n (Nģ™) .

 Remark 1. Definition 2 can be simplified as follows:

 Definition 2 ' . A function f: [0,1] - * IR is said to be (N¿®) if
 I f (ix € P : f|É(x) = +®})| = 0 for each perfect subset P of [0,1].

 Proof. Clearly Definition 2' implies Definition 2. Conversely, let P be a

 perfect subset of [0,1] and let Pj be the perfect sets of Definition 2. Let

 A = {x € P : f|p(x) = +»}, Aj = A n Pj C P n Pj = Tj. Let Bj =
 {x € Tj : f|^.(x) = +»}. Clearly Aj c Bj. Since by 2*, |f(Bj)| = 0, it
 follows that ^|f(A)| =0.

 Proposition 1. Let F : [0,1] - » IR, Fe (Ng®). Then F e [M] oņ [0,1].
 If F c B?, then conditions (N¿®) and [M] are equivalent.

 Proof. Let F € (Nj|®) and let P be a perfect subset of [0,1] such
 that F|p e VB n C. We define Fi (x) = F(x), x € P, and linearly on the

 closure of each interval contiguous to P. Clearly Fx e C n VB n N+® on

 [0,1]. By Corollary 2 of [4], Ft e AC on [0,1]. Hence F e AC on P.

 For the second part it suffices to show that [M] n B? c (Ng™) . Let P
 be a perfect subset of [0,1]. Since F € Bf, P = (u Pj) u {a^} such that Pj
 are perfect subsets of P and € C. We define Fj(x) = F(x), x e Pj
 and linearly on the closure of each interval contiguous to Pj c [0,1]. Then
 Fj € C n [M] on [0,1] and by Theorem 6 of [4], Fj € N"4"® on [0,1]. Let
 E j" = {x € Pj : F|p(x) = +«}. If x e E^® is a bilateral accumulation point
 for Pj, then Fj(x) = +®. Hence |F(Ej®)| = 0. Let E+® =
 {x « P : F|p(x) = +«}. Since E+® n Pj c gj®, |F(E+®)| = 0. Hence F e (N¿®) .

 Proposition 2. Let Q be a perfect subset of [0,1], a = inf(Q),

 b = sup(Q) and let F : [a,b] -»IR be § bounded function. Then the

 following statements are equivalent: 1* F € AÇ n VB* on Q; 2* There exist
 Fj, Fj : [a,b] -* R such that F = Fj + F2, Fi c AC* on Q. F» is

 increasing and F'2(x) = 0 a.e. on [a,b]; 3* F is AC* oņ Q.
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 Proof. We first show that 1* implies 2*. We define f(x) = F(x), x € Q,
 and linearly on the closure of each interval contiguous to Q. Then F € AC

 on [a,b]. By note 13, page 169, of [9]» f = fi + f2, where fx € AC, f2 is

 increasing on [a,b] and f¿(x) = 0 a.e. on [a,b]. Let Fa(x) = f2(x) on

 [a,b] and Fi(x) = F(x) - fa(x) on [a,b]. Then Fi € VB* on Q and

 Fx(x) = fj(x) on Q. Hence Ft is also AC on Q. By Theorem 8.8, page

 233 of [11], Ft is AC* on Q.

 We now show that 2* implies 3*. Let F = Ft + Fa such that 2* is

 satisfied. Let e > 0. Then there is a 6 > 0 such that for each sequence

 of nonoverlapping intervals {Ik} = {(ak,bk)} with Z(bk - ak) < <5, we have

 I 0(Fļ; [ak,bk] ) < e. For aķ < c]{ < bk we have Z (F,(ck) - FjCa^)) * -e.
 k k

 Since Z (F2 (ck) - F2(ak)) * 0, Z (F(ck) - Fx(ak)) * -e. Similarly
 k k

 I (F(bk) - F(ck)) * -e. Hence F € AC* on Q.
 k

 We finally show that 3* implies 1*. Since F e AC* on Q, F e AC on Q.
 Hence F € VB on Q. Since F € AC* on Q, for c0 > 0 there is a natural

 number k0 such that for Ik = [ak,bk] , the intervals contiguous to Q, we
 00 00

 have: Z (F(ak) - F(cjt)) < e0 and Z (F(ck) - F(bk)) < e0, when
 k=k0 k=k0

 00 00

 ck « [ajobfc] . Hence Z |mk - F(ak) | = I (F(ak) - mk) * e0 and
 k=kc k=k0

 00 CO

 Z |F(bk) - Mlč) f = Z (Mk - F(bk)) * «o. where mk = inf{F(x) : x € Ik},
 k=k0 k=k0 œ w
 Mk = sup{F(x) : x € Ijt> . We have Z 0(F;Ik) * Z |mk - F(ak) I +

 k=k0 k=k0
 00 00

 Z |F(ak) - F(bk) I + z I F(bk) - Mk| * 2>*0 + V(F;Q), where V(F;Q) is
 k=k0 k=k0

 00

 the variation of F on Q. Since F is bounded on [a,b] , Z 0(F;In) is
 k=l

 convergent. By Theorem 8.5, page 232 of [11], F|q is VB^.

 Corollary 1. a) A function F belongs to [M*] on a bounded closed set

 E if and only if F is AC* on each closed subset of E on which it is

 continuous and VB*: b) B* « VBG* n [M*l c AOĢ* on a closed set E:
 c) D n VBG* n [M*] = ACG* n DB* (since D n VBG* c B*, according to
 Lemma A of [4]).
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 Theorem 1. Let h : [0,1] -»IR be such that h e ([M] n c) + AC and

 h'(x) ^ 0 a.e. where h is derivable. Then h is increasing on [0,1].

 Proof. Let f € [M] n C and g e AC such that h = f + g. By note 13,

 page 169 of [9], g - g i + g2» with gì € AC, g2 increasing on [0,1] and

 gá(x) = 0 a.e. on [0,1]. Then h = f + gt + g2 = hi + g2. Clearly

 hi e [M] n C on [0,1] and hļ(x) * 0 a.e. where hx is derivable. By-

 Theorem 10 of [4], hi is increasing on [0,1]. Hence h is increasing on

 [0,1].

 Theorem 2. Let h : [0,1] - * F be such that h € ((B* n [M]) ® [ACG])
 n uCM and h'(x) * 0 a.e. where h is derivable. Then h is increasing

 on [0,1].

 Proof. Let f € [M] n B* and g € [ACG] such that h = f + g on

 [0,1]. Then there exists a sequence of intervals (In) whose union is dense

 in [0,1] such that f e [M] n c on In and g e AÇ on In. Let

 [an,bn] c In. By Theorem 1, h is increasing on [an>^n^ Hence h is

 increasing on In. The intervals In can be chosen to be maximal open

 intervals of monotonicity of h. Suppose to the contrary that u In i- (0,1)

 and let Q = [0,1] - u ln. Snce h € uCM, Q is a perfect subset of [0,1]

 (if necessary without 0 and 1). Let a,b € Q such that Q n (a,b) t <t>

 and f I Q o [a,b] € [M] n C and g|Q n [a,b] € AÇ. Let fi(x) = f(x);
 S i(*) = g(x); ht(x) = h(x), X € Q n [a,b]. Extend ft, gt, hi linearly on the

 closure of each interval contiguous to Q. We have f, c C n [M] by the proof

 of [4], Theorem 11, g! € AC. ht = f* + gi on [a,b]. If fj in Theorem 11

 of [4] is replaced by ht, since condition (i) of Lemma 7 of [4] can be

 omitted, h{(x) * 0 a.e. where hi(x) exists on [a,b]. Now by Theorem 1,

 hi is increasing on [a,b]. Hence h is increasing on [a,b], a

 contradiction.

 Remark 2. If uCM is replaced by the Darboux property D, then

 Theorem 2 remains true (since D c uCM) and in addition h is also

 continuous.

 Let uL denote an upper semilinear space contained in uCM. Let

 ÄL = {F : -F € uL) and L : uL n <L.
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 Definition 3. A function M is said to be a LPB (respectively

 L0PG; L*PG) - major function for a function f : [0,1] - ► R if: (i) M(0) = 0;

 (ii) M € uL; (iii) *M¿p(x) * f(x) (resp. ÍM'(x) * f(x); ÄM'(x) * f(x)) a.e. on
 [0,1]; (iv) M € [AGG] (resp. M € [AÇÇ]; M € [AÇG*]). m is a LPG

 (resp. L0PG; L*PG) - minor function for f if -m is a LPG (resp.

 L0PG; L*PG) major function of F. A function f is LPG (resp.

 L0PG; L*PG) integrable on [0,1] if:

 1* f has LPG (resp. L0PG; L*PG) major and minor functions on
 [0,1];

 2* for each c > 0 there exists a LPG (resp. L0PG; L*PG) major

 function M and a LPG (resp. L0PG; L*PG) minor function m

 such that M(x) - m(x) < e, x e [0,1]. Then

 LPG (resp. L0PG; L#PG) f f(x)dx = inf (M(l) } = sup {m(l)} .
 0 M m

 Remark 3. By [8] Theorem XVIII, page 252 and Theorem XI, page 245, a

 function which satisfies [ACG*] (resp. [ACG]) on [0,1] is derivable (resp.

 approximately derivable) a.e. on [0,1]. Hence in the definition of LPG (resp.

 L*PG) condition (iii) can be replaced by (iii'): M¿p(x) * f(x) (resp.
 M'(x) * f(x)) a.e. on [0,1].

 Definition 4. A function f : [0,1] - » F is said to be LDG (resp.

 L0DG; LgDG) - integrable on [0,1] if there is a function F e L n [ACG]

 (resp. F € L n [ACG] n ¿a.e.> F € L n ACG*) such that F¿p(x) = f(x) (resp.
 F'(x) = f(x); F'(x) = f(x)) a.e. on [0,1]. In all these cases the integral of f

 over [0,1] is defined to be F(l) - F(0). (Aa.e. = ÍP : [0»1] - * IR : F is

 derivable a.e. on [0,1]}.)

 Remark 4. a) The LDG and LPG integrals were introduced by Lee in

 [7] and he proved that these two integrals are equivalent if uL is closed

 under uniform convergence. Using Theorem 1 of [7], we can prove that the

 L0PG (resp. L*PG) - integral is equivalent with the L0DG (resp. L*DG) -

 integral.

 b) If in Definition 4 L is the class of all approximately continuous

 functions on [0,1], then the LDG (resp. L0DG; L*DG) - integral is in fact

 the ß (resp. ß0; a) - integral of Ridder. (See [10].)
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 For a function f on [0,1] we define f*(x) = f'(x) (resp. fãp(x) ~
 f¿p(x)) where f'(x) (resp. f¿p(x)) exists and is finite and 0 elsewhere.

 Theorem 3. Let Q be a class of functions such that

 (B* n a) © uL c uCM on [0,1]. Let F : [0,1] - * IR satisfy the following

 properties: 1* Fe (-0) n B* on [0,1]; 2* F € [M] oņ [0,1];

 3* Fap (resp. F*; F*) has a LPG (resp. L0PG; L*PG) - major function G
 on [0,1]. Then we have that:

 a) F is [ACG] (resp. [ACG]; [ACG*]) and G - F is increasing

 on [0,1];

 b) IÍ In addition F « [M] c [M], then F c [ACG] (resp. [ACG],

 [ACG*]) and G - F is increasing on [0,1].

 Proof. Let H = G - F. In the first and third case clearly H'(x) * 0

 a.e. where H is derivable. In the second case G is derivable a.e. on

 [0,1] - E, where E = (x : F'(x) exists and is finite} by [11], Theorem 7.2,

 page 230 and Theorem 10.1, page 234. It follows that H'(x) * 0 a.e. where

 H is derivable. Clearly -F e G n B* n [M]. Since a © uL c uCM, by
 Theorem 2, H is increasing on [0,1]. Hence F c B* o [VBG] (resp.
 Bf n [VBG]; Bf n VBG*).

 a) Since F c [M], F € [ĀČG] (resp. [ĀČG]; [ĀČG] n VBG* = [ĀČG*]
 by Corollary 1).

 b) Since F e [M], F € [ACG] (resp. [ACG]; [ACG*]).

 Remark 5. Theorem 3, a), b), the first and the third case remain true if

 3* is replaced by "there exists a function f : [0,1] - * R such that f(x) =

 F¿p(x) a»©« where F is approximately derivable (resp. f(x) = F'(x) a.e.
 where F is derivable) and f has a LPG (resp. L*PG) - major function on

 [0,1]".

 Remark 6. a) In Theorem 3, a), b), a can be taken to be uL, where:

 1) uL = C; 2) uL = (F : F is approximately continuous}; 3) uL = {F : F is

 an exact nth Peano derivative}; 4) uL = {F : F is an exact nth approximate

 Peano derivative}, b) In Theorem 3, a), b), a can be taken to be D and

 uL = C (since D c uCM and DB* © C = DB*, by [2], Theorem VI, page 474).
 By Remark 2, G - F € C. Hence F e C.
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 Corollary 2. A function F e L (resp» F c D) on [0,1] is an indefinite

 LDG (resp. CDG) - integral if and only if F c B* n [M] and there is a
 function f : [0,1] - ► IR which has a LPG (resp. CPG) - major function and

 f(x) = F¿p(x) a.e. where F is approximately derivable.

 Proof. The necessity is evident and the sufficiency follows by Remark 5

 and Remark 6.

 Remark 7. The first part of Remark 5 extends Lemma B of [9] page 176

 and the first part of Corollary 2 is an extension of Theorem VII of [9] page

 178, since we give up the condition Ta and in Ridder's results L is the

 class of all approximately continuous functions. (Also see Proposition 1.)

 Theorem 4. Let F : [0,1] - ► IR, Fe DB! n Ta n [M*]. If F* has a
 C*PG - major function, then F € ACG* n C on [0,1].

 Proof. Since N" = [M*] for Darboux functions (See [4], Theorem 6.) and

 C n VBG* n [M*] = C n ACG*, the theorem follows by the second part of

 Corollary 6 of [4].

 Remark 8. Theorem 4 remains true if Ta n [M*] is replaced by Lusin's

 condition (N) according to Remark l,k of [4].

 A function F defined on an interval I is said to be strictly increasing«

 (resp. decreasing«) on a set E c I if for any xlt xa e [inf(E), sup(E)],

 Xi < xa, we have F(xj) < F(xa) (resp. F^) > F(xa)), provided that at

 least one of the points xlf xa belongs to E [12]. If the function F is

 either strictly increasing* or strictly decreasing* on a set E, then F is

 said to be strictly monotone».

 Proposition 3. A function f : [0,1] - * IR satisfies condition [M*] (resp.

 [M]) ori a closed subset E of [0,1] if and only if f € AC oņ any closed

 subset of E oņ which it is continuous and strictly increasing* (resp.

 continuous and strictly increasing).

 Proof. Let P = P c E be such that f e. VB# n C on P. Let a = inf(P),

 b = sup(P) and F(x) = f(x), x e P. Extending F linearly on each interval

 contiguous to P we have F defined, continuous and VB on [a,b]. Let

 E+» = {x € P : F'(x) = +»}; E+w = {x € P : f ' (x) = +•} ; Z = {x e P : f'(x)
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 does not exist finite or infinite}. Then by Theorem 7.2 of [11], page 230 it

 follows that |f(Z)| = 0. Clearly E+® c E+<0 u Z. Let En = {x c P :

 (f(x+h) - f(x))/h >1, 0 < |h| * 1/n} and let Eļn = [i/n, (i+l)/n] n En.
 Since f is continuous on P, (f(y) - f(x))/(y-x) * 1, for

 y € [inf(Ein), sup(E¿n)], x € E1n, x f y. Hence f is strictly increasing«

 on Ein. By hypothesis, f € AC on E1n. Since |E+W| = 0 (See [11],

 Theorem 4.4, page 270.), |f(E+<°)| = 0 and | FiE'J"®®) | = 0. Hence
 F € C n VB n N"1"® = AC on [a,b] by Corollary 2 of [4] and f € [M#] on E.
 The converse is evident.

 We prove the second part. Suppose that f e VB n C on P. Let a, b, F

 and E"ļ"™ be defined as above. Let E^ = {x e P : (F(x+h) - F(x))/h > 1,
 0 < |h| < 1/n} and let EÎ = [i/n, (i+l)/n] n E1. Since f € C on P,

 (f (y)-f (x) )/(y - x) * 1, for x,y € Eļn, x f y. Hence f is strictly in-
 creasing on Eļn- By hypothesis f € AC on It follows that
 |F(E+")| = 0 and F € VB n N"1"® n C = AC on [a,b]. Hence f c [M] on E.
 The converse is evident.

 Corollary 3. A function f : [0,1] - > R satisfies condition [M*] (resp.

 [M]) on a closed subset E of [0,1] if and only if f e AC on any closed

 subset of E on which it is continuous and strictly monotone« (resp.

 continuous and strictly monotone).

 Proposition 4. Let g : [0,1] -»IR, f : g([0,l]) - » IR.

 a) If f ,g e [M*] n D, then f • g € [M*] n D;

 b) If f,g € [M] n Bf, then f • g c [M] n ßf.

 Proof, a) Let F = f • g. Then F e D. Let P = P c [0,1] such that

 F is strictly increasing« on P, for example. By Lemma A of [4], F is

 continuous on P. Hence Q = F(P) is a compact set. Clearly F|p, g|p

 and f I q are injective. We prove that g is strictly monotone« on P.
 Suppose on the contrary that there exist x, < x2 < x3, xlf x3 € P, such

 that g(x2) does not belong to the interval with endpoints g(xt) and g(x3).

 Suppose, for example, that g(x.i) < g(x3). Then g(x2) does not belong to

 (£(xi),g(x3)). Hence we have two possibilities: (i) g(x2) á g(xt) < g(x3) or

 (ii) g(x¡) < g(x3) * g(x2). We treat only the case (i). Since g e D, there

 exists c e [x3,x3) such that g(c) = g(xt). Then F(c) - F(x), a
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 contradiction. By Corollary 3 g € AC on P. Clearly f is strictly

 monotone on Q. Suppose that f is strictly increasing on Q. We prove that

 f is strictly increasing* on Q. Let yi < ya < ya» y i»y3 « Q* Let

 xi,x3 € P such that g(xj) = yj, g(x3) = y3. Then xt < x3. Since g € D,

 there exists xa e (xltx3) such that g(x2) = y a« Since F is strictly

 increasing* on P, F(xx) < F(x2) < F(x3). Hence f(yx) < f(y2) < f(ys)' By

 Corollary 3, f € AC on Q. It follows that F € (N) on P. By Theorem 6.7

 of [11] page 227, F is AC on Q.

 b) Clearly F c B? on [0,1]. Let K = K c [0,1] be such that F is
 continuous and strictly monotone on K. Since f,g c Bf, K = U such that

 g|K^ e C, f|g(Kn) € c' Let ín(*) = Ä(x)> * € Kn; gn is linear on the
 closure of each interval contiguous to Kn; Fn(x) = F(x), x c Kn; Fn is

 linear on the closure of each interval contiguous to Kn; fn(x) = f(x),

 X € g(Kn) ; fn is linear on the closure of each interval contiguous to g(Kn) .

 Then gn, Fn and fn are continuous. Hence gn, Fn and fn are strictly

 monotone. (See the proof of a).) Therefore g|^ and f | ) are con Sinuous

 and strictly monotone. By Corollary 3 g|^ € AC and ) € Hence
 F|„ e (N). By Theorem 6.7 of [11] page 227, F € AC on Kn. Hence F e ACG

 ,Kn

 on K. Likewise F € AC on K.

 Theorem 5. If F and g are DBt n Ta n [M*], g is defined on [0,1],

 F is defined on the range of g, and if both F* and (F • g)* have
 C*PG - major functions, then

 fl Ml)
 C*DG (F** g)(x) • g*(x)dx = C#DG F*(x)dx .
 0 g(0)

 Proof. By Theorem 4, F is different iab le a. e. on g([0,l]) and
 f«(l)

 F(g(l)) - F(g(0)) = C*DG F*(x)dx. By Goodman's theorem of [6] or [5].
 i(0)

 (If g is continuous a.e. on [a,b], F e (N) and is defined and

 differentiable a.e. on the range of g, then (F • g)* = (F* • g) • g* a.e.
 on [a,b].), (F • g)* = (F* • g) • g* a.e. on [0,1]. Since F € C,
 F • g « DBj n [M*] on [0,1]. (See [1], page 16, Theorem 3.5 and

 Proposition 4. a).) F € C n (N) implies F c T2 by [11],

 Theorem 7.3, page 284. Hence F • g e T2. (Indeed, let A = {z :
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 {y : F(y) = z) is nondenumerable} . Then |A| = 0. Let B = {y :

 {x : g(x) = y} is nondenumerable}. Then |B| = 0. Since F c (N),

 I F(B) I = 0. Let C = {z : {x : F(g(x)) = z} is nondenumerable} . Then

 C c A u F(B). Hence |C| =0.) By Theorem 4

 r1 r1
 C#DG (F** g)(x ) ' g*(x)dx = C# DG (F • g)*(x)dx = F(g(l )) - F(g(0)) .
 0 0

 Remark 9, If in Theorem 5, DB, « T2 n [M*] is replaced by C n [N],

 we have Goodman's change of variables formula. (See [6] or [5].)

 Theorem 6. a) Let g : [0,1] - > F, g([0,l]) -»I, F : I - > F, where I

 is an interval. Let F, g € [M] n B* and let F, F • g c L. If F|[p (resp.
 F*; F*) has a LPG (resp. L0PG n L*PG) - major function on I and

 (F * *)ap (resp. (F • S)*i (F * S )*) has a LPG (resp. L0PG n Aa.e.;
 L*PG) - major function on [0,1], then

 ,1 ,«(1)
 LDG I (F|p • g) (x) ♦ g|p(x)dx = LDG J F|p(x)dx (resp.
 0 g(0)

 ,1 ,«(1)
 L0DG (F* • g)(x) • g*(x)dx = LCDG F*(x)dx ;
 0 g(0)

 ,1 ,g(l)
 L#DG J (F* • g)(x) • g*(x)dx = L#DG I F*(x)dx) .
 0 g(0)

 b) a) remains true if condition "F, F • g € L" is replaced by "F, g c D"

 and L is considered to be C.

 Proof, a) By Proposition 4, F • g e [M] n B*. By the first part of
 Theorem 3, b) and Remark 6, a), F € ACG, F is approximately differentiable

 a.e. on I and

 ,g(l)
 F(g(l)) - F(g(0) ) = LDG I F|p(x)dx .

 g(0)

 By Foran's Theorem 0 of [5] (If g : [a,b] - » F, F € (N) and F is defined

 on an interval containing the range of g and is apprximately differentiable

 a.e. on the range of g, then (F • g)ap(x) = (Fap * g)(x) ' Āap(x) a-e» on
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 [a,b]), we have (F • g) £p(x) = (F|p • g)(x) • gfp(x) a.e. on [0,1]. By the
 first part of Theorem 3, b) and Remark 6, a),

 r1 r1
 LDG I (F|p . g)(x) - g|p(x)dx = LDG I (F • g)Ip(x)dx = F(g(l) - F(g(0)) .
 J0 J0

 The proof of the second and the third part is analogous to the proof of

 Theorem 5.

 b) If F € C and g e DB*, then F • g e DB*. Now the proof follows
 using Theorem 3, b) and Remark 6, b) as in a).

 Remark 10. In the first part of Theorem 6, a), b), "F^p has a LPG
 major function" can be replaced by "F* has a L0PG major function" and

 "(F • g)ap has a LPG major function" can be replaced by "(F • g)* has a
 L0PG major function".

 Remark 11. The first part of Theorem 6, b) and Remark 10 extend Foran's

 change of variables formula for the Denjoy integral.

 An integral of Perron type for the Foran integral

 Definition 5. Let 0+(f;E) = sup{f(y) - f(x) : x,y e E, x ¿ y}; 0_(f;E) =

 infíf(y) - f(x) : x,y € E, x < y}; 0(f;E) = max{0+(f;E), |0_(f;E)|}. Clearly

 0_(f;E) * 0 * 0+(f;E).

 Définition 6. Given a natural number N and a set E, a function f

 will be said to be Ą(N) on E if for every « > 0 there is a <5 > 0 such

 that if (Ifc) is a sequence of nonoverlapping intervals with E n iķ / ^ and

 I I Ik I < <5, then there exist sets Eķn, n = 1,2,. ..,N, such that

 N N

 U Ekn = E n I and I I |0_(f;E )| < e .
 n=l k n=l

 Let A(N) = {f : -f e A(N)}. If 0_(f;Eķn) is replaced by 0(f;Ekn) we obtain
 a condition which can be seen to be equivalent to Foran's condition A(N) on

 E. Clearly A(l) = AC.

 Definition 7. A function F is said to be A'(N) on a set E, if F =

 Fi + F2, F, € A(N) and F2 € AC on E.
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 Definition 8. Given a natural number N and a set Q, a function f

 will be said to be E(N) on Q if for every S c Q, |S| = 0, and for every

 e > 0 there exist a sequence of nonover lapping intervals {Iķ} and a

 sequence of sets (Skn}, n = 1,2,. ..,N such that

 N

 S c U Ik , S n I = u Skn and
 k n=l

 a> o N

 N • I |Ik| + I I |0_(f;Slm) I < * .
 k=l k=l n=l

 Let E(N) = {f : -f € E(N)}. If 0_(f;Sļcn) is replaced by 0(f;Sķn), we obtain
 a condition which can be seen to be equivalent to condition E(N) on Q.

 Definition 9. Let J (resp. J'; £) be the class of all functions f

 defined on a closed interval I for which there exist a sequence of sets (Qn)

 and natural numbers (Nn) such that I = u Qn and f is A(Nn) (resp.

 Ā'(Nn); Ë(Nn)) on Qn. Let ļ = {f : -f c ?}; 1' = {f : -f e ?'};
 £ = if : -f c £}.

 Definition 10. A function M is said to be a LFP (resp. LF'P) - major

 function for a function f on [0,1] if: 1* M(0) =0; 2* M c uL on [0,1];

 3* ÍM¿p(x) * f(x) a.e. on [0,1]; 4* M € ļ n B* (resp. M e ļ' n B* ). m is
 a LPP (resp. LF'P) - minor function for f if -m is a LFP (resp.

 LF'P) - major function for -f on [0,1].

 A function f is LFP (resp. LF'P) integrable on [0,1] if: (i) f has

 LFP (resp. LF'P) major and minor functions on [0,1]; (ii) for each e > 0

 there exist a LFP (resp. LF'P) major function M and a LFP (resp. LF'P)

 minor function m such that M(x) - m(x) * «, x e [0,1]. Then LFP

 (resp. LF'P) Í f(x)dx = inf {M(l)} = sup {m(l)}.
 J0 M ®

 Definition 11. A function f is said to be LF integrable on [0,1] if

 there exists a function F € L « B* n J such that F¿p(x) = f(x) a.e. on
 [0,1]. In this case the i^F integral of f over [0,1] is defined to be

 F(l) - F(0).

 Let C be the Cantor ternary set. Each point x e C is uniquely

 represented by I cļ(x)/31. Let V(x) be the Cantor ternary function.

 126



 Example 1. Let F : [0,1] -»IR be a continuous function such that F(x) =

 » jk+i-1
 (1/2) • I Z ci(x)/2x X € C and F(x) jls linear on each interval

 k=0 i=jk+l

 contiguous to C, where {jk} is an increasing sequence of natural numbers ,

 j0 = 0, (1/2) • (l/3^k) i l/2^k+1 k, for each k. Then: a) F is A(2) on

 C; b) F i Ta oņ C; c) F i B on C.

 Proof, a) Let I c [0,1] be a closed interval with endpoints in C, and

 let n be the natural number such that l/3n+1 |I| < 1/3". Let k be the

 natural number such that jk * n < jk+i. Since |I| < 1/3", there exist

 Ci,c2,...,c„ € {0,2} such that for each x c I n C, c¿(x) = c¿,

 i = 1,2,.., n. Let a = J cj/31 and b = a + 1/3 . , Then I c [a,b]. Let
 i=l

 Ei = {x € [a,b] n C : cjk+ļ(x) =0}; Ea = {x € [a,b] n C : cjfc+ļ(x) = 2}. Let
 x,y € Ej, x < y. Then we have three situations: 1* y - x > l/3^k+2

 2* y - x = 1/3^ k+a-1; 3* y - x < l/3jk+a~1.

 1* Let jk + 1 < i0 * jic+2 ~ 1 such that cj(y) = cļ(x) = Cļ, i < i0 - 1;
 io-1

 cio(x) = 0; ci (y) = 2. Clearly i0 f jk+j- Let ax = a + Z cj/31.
 ® . « i=jk+l

 Then x = at + I cj(x) and y = at + 2/31® + Z «H (y). We have two
 i=i0+l i=io+l

 cases.

 (i) jk + 1 * io * jk+i - 1. Then F(y) - F(x) * F(a, + 2/3lc) -
 00

 F(ax + I 2/3i) = F(a, ) + l/2lo~k - F(at) - l/2lo_k = 0.
 i=i0+l

 (ii) jk+i + 1 * io é jk+2 - 1. Then F(y) - F(x) » F(at + 2/31"0) -
 CO

 F(a, + I 2/31) = F(at> + l/2lo~k_1 - F(ax) - l/2lo"k_1 = 0.
 i=i0+l

 Hence F(y) - F(x) * 0.

 2* We have two possibilities.

 jk + 2- 2 00 jk + 2- 2 • _i
 (i) X = l Ci/31 + I 2/31 and y = I cļ/31 + 2/3Jk+2 1 .

 i=l i=jk+2 i=l

 Then F(y) - F(x) = 0.
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 jk + 2 2 jk + 2 2 »
 (ii) x = I Ci/31 and y = I ci/31 + I 2/31 .

 i=l i=l i=jk+2

 Then F(y) - F(x) i l^"*2"*"1. Hence F(y) - F(x) * 0.
 jk+2-1 •

 3* Let a2 = a + Z cj/31. Then x = a2 + E cj^xJ/S1, y =
 „ Í=jk+1 „ Í= j k + 2

 a2 + I ci(y)/3i; F(aa) * F(x) * F(aa + I 2/3*) = F(aa) + l/Z0^2'^1
 Í=Jk+2 Í=Jk+2

 and F(aa) < F(y) * F(a2) + l/2'ik+a~k~1. Hence |F(y) - F(x) | * 1/2^ k+2"k~1
 a>

 and F(y!) - F(xj) = -1/2^ k+2 k where xx = aa + E 2/3* and y1 =
 Ì=Jk+2+l

 a2 + 2/3jk+2. By l', 2* and 3*. |0_(F;E,)| = 1/2J k+2~k_1 ¿ (1/2) • (l/3Jk+1 ) ¿

 (1/2) • (l/3n+1) * |I|/2. Analogously 1 0_ ( F ; E 2 ) | ¿ |I|/2. Hence F € A(2)
 on C.

 a>

 b) Let y € [0,1]. Then y is uniquely represented by Ï yi/2*
 i=l

 where we always take the infinite representation. Let cļ = 2yļ_]0 for

 jk é i é Jk+2 ~ 2. Clearly jk-kíi-kí jk+i - k - 2. Let Cy = {x € C :
 Cļ(x) = Cļ, jk * i < jk+i ~ 2}. Clearly Cy is a perfect set and F~*(y) =
 Cy. Hence F i Ta on C.

 c) Since F t T2, F i B by [4], Theorem l,f).

 Theorem 7. a) A(N) n C c AC on [0,1]; b) ? n ļ = J on [0,1];

 c) jF n £ c £ oņ [0,1]; d) 7 ® J on [0,1]; e) If Fj € ?, F2 e ? and

 0 ¿ Fi(x) ^ A, i = 1,2, then Fi*F2 € ?; f) ? © £ = £ oņ [0,1]; g)

 ĀCG c J' c J c £ c [M] c [M*] strictly oņ [0,1].

 Proof, a) Let F € A(N) n C on [0,1] and let I c [0,1] be a closed
 N

 interval such that I = U En. It suffices to show
 n=l

 N

 (1) 0+(F;I) * 1 0+(F;E ) .
 n=l n

 Since F e C, 0+(F;En) = 0+(F;En). Let e > 0 and let a,b « I such that

 a < b and F(b) - F(a) = 0+(F;I). We may suppose F(b) > F(a). Let

 z0 = b € Enļ for some nj € {1,2,...,N}. Let m, = inf{F(x) :
 x € [a,z0] n Eni) and xx = inf{x € [a,b] n Enļ : F(x) = m,}. If

 128



 F(a) < mi - e/N, let zx € [a,Xi] such that F(zx) € (mt - e/N, mx). Clearly

 zi € En2 - for some n2 e {1,2, . . . »NJXinx} . Let m2 = inf{F(x) :
 X e [a,2|] n En^} and x2 = inf{x € [a,Zj] n Ena : F(x) = m2}. If F(a) <
 m2 - e/N, we continue as above. (We have at most N steps.) Hence there

 exists a natural number k < N - 1 such that b = z0 * xx > zx > x2 > z2 > " •

 > xj{ > zk > xjt+j i a; F(z0) * FCxJ > F(zx) * F(x2) > F(z2) * ••• * F(xj{) >

 F(zļ{) * FCxjt+i) and F(a) * Fix^+i) - e/N. Then F(b) - F(a) < F(b) -
 k N

 Fixk+J + e/N * (k + 1)/N + I (F(zi) - F(xi+1)) * e + E 0+(F;En. ). Letting
 i=0 i=l 1

 e 0, we have (1).

 b) It suffices to show that if F satisfies A(N) and A(N') on a set

 E <= [0,1], then F c A(N • N') on E. Let e > 0, ex = e/2N' e2 = e/2N.

 For e ! and e2 let 6ļ and ô2 be the 6 given by the facts that

 F € A(N) and F € A(N') on E. Let 60 = min{¿1,¿2}. If Ifc, k = 1,2,...

 are nonoverlapping intervals with Ij< n E ý <t> and E ļljJ < Ä0, then there
 k n

 exist sets Ekn, n = 1,2,...,N, E n 1^ = u Ejm and sets E¿ 101 , n=l 101
 N' N

 n' = 1,2,...,N', E n Iķ = U E¿n' , such that E E 0+(F;E}ai) < and
 N' n'=1 NN' k n=1 N N'

 E l |0_(F;E¿n) I < e2. Then E E E 0(F;Ekn n E¿n') *11 Z
 k n'=l k n=l n'=l k n=l n'=l

 (O+CFjEjtn) + |0_(F;E¿n)|) * e. Hence F c A(N • N') on E.

 c) It suffices to show that if F € A(N) n E(N') on a set Q c [0,1],

 then F € E(N • N') on Q. Let e > 0, ex = e/(N + N'). Let S c E, |S| = 0

 and let 6 2 be the 6 determined by e, and the fact that F e A(N) on Q.

 Let e2 = min{e1,d,}. Then there exist a sequence of non-overlapping intervals

 ^k» ^k n S f 0, S c u Ijj, and a sequence of sets {S¿n'}» n' = 1,...,N', such
 N'

 that N' • E ļlļjļ + E J 1 0_(F; S¿n' ) | < e2. Since F € A(N), there exists
 k k n'=l „

 M

 a sequence of set (S^n), n = 1, 2,...,N, such that I I O+iFjSju,) < e.
 NN' k n=1

 Then we have N • N' • E |Ikl + E E E OiFjS^n n S¿n') * N • N' • E I Ik I +
 jj. k k n=l n'=l k

 E E E (0+(F; Sjoj) + |0_(F;S¿n')|) * Hence F c E(N • N') on Q.
 k n=l n'=l
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 d) It suffices to show that if Fi e A(N) and F2 e A(N') on a set

 E c [0,1], then Fl + F2 e Ā(N • N') on E. Let t > 0, t, = e/2N' , c2 =
 e/2N. Let öi and <S2 be the S determined by -respectively e2 and

 the facts that Fj € A(N) and F2 € A(N'). Let 60 = min(ôltô3) . If Iķ,

 k = 1,2,.., are nonoverlapping intervals, Ifc n E f 0, Z IIjJ < â0, then
 N

 there exist sets (Elm), n = 1,...,N, U Eļ{n = E n Iķ and sets (Etn) »
 n=l

 N' N

 n' = 1,...,N', U E¿n = E n Ifc such that J) J O+CFxjEfcn) < Cj and
 n 1 =1 k n=l

 N'

 Z Z 0+(F2;E¿n) < *2. Since 0+(F, + F2;X) * 0+(Fi;X) + 0+(F2;X), X c E,
 k n'=l

 NN' NN'

 it follows that II Z 0+(Fx + Fa; Ejjn n E¿n') * Z Z Z
 k n=l n'=l k n=l n'=l

 N N'

 0+ ( F i ; Eļfjļ n E¿n ' ) + Z Z Z 0+ ( F2 ; Ejm n Ej^n ') < «i • N' + ®2 * N = e .
 k n=l n'=l

 e) It suffices to show that if Ft € A(N) and F2 e A(N') on

 E c [0,1], then Fx • F2 c Ā(N • N'). Since 0+(Ft • Fa; X) =
 sup{Ft(y) • Fa(y) - F^x) • F2(x) : x,y € X, x * y} = sup{F2(y) •

 (Fi(y) - Fł(x)) + Fi(x) • (Fa(y) - F2(x)) : x,y € X, x < y) < A • O+ÍF^X) +

 A • 0+(F2;X), X c E, the proof is similar to that of d).

 f) It suffices to show that if Fx € A(N) and F2 c E(N') on Q c [0,1],

 then F, + Fa e Ē(N • N') on Q. Let S «= Q, |S| = 0. Let e > 0, =
 e/(N + N'). Let be the õ determined by and the fact that

 Fj € A(N) on Q. Let e2 = minfcj,^}. Then there exist a sequence of non-

 overlapping intervals {Ik)» Ik n S ^ 0, Sculjt, and a sequence of sets
 N'

 {S¿n}, n' = 1,...,N' such that N' • Z Ukl + I I 0+(F2; S¿n<) < e2.
 k k n'=l

 Since Ft e A(N), there exists a sequence of sets {Skn}, n = 1,...,N, such
 N NN'

 that Z Z O+fF^Sfcn) < ex. Hence N • N' • Z |Ikl + Z Z Z
 k n=l k k n=l n ' =1

 0+(Fj + F2; Sjfij n Sjļjj') < N • e2 + N' • «j = e.

 g) We show that £ c [M]. Let F € £ on [0,1]. Let P = P c [0,1]

 be such that F | p is continuous and increasing. Since F £ £ and
 0+(F;X) = 0(F;X) on a set X, if F is increasing on X, F e £ on P.
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 Hence F € (N) on P. By [11] (Theorem 6.7, page 227), F € AC on P. By

 Theorem 3 of [4], F € [M],

 We show that J c C. It suffices to show that if F e A(N), then

 F e E(N) on a set Q. Let e > 0 and let 6 be determined by c and the

 fact that F satisfies A(N) on Q. Let S c [0,1], |S| = 0. Select a

 sequence of nonover lapping intervals {Ik} such that S c u lk and E |Ik| <
 N

 min{e,¿}. Let Sj^' n = 1,...,N, be sets such that S n lk = u Skn and
 » N CO 00 N

 I I 0+(F; Skn) < E. Then N • Z |Ik| +11 0+(F;Skn) < e • (N + 1).
 k=l n=l k=l k=l n=l

 Hence F e E(N) on Q. The other inclusions are evident. It remains to show

 that they are also strict. We show that ACG is strictly contained in J'.

 Let F, G : [0,1] - * IR, F € J, G c (N) such that F + G = V. (See [3], the

 the proof of Theorem 4, page 205.) Then -G = F - <P € J'. Suppose on the

 contrary that -G € ACG c VBG. Since -G € (N), G € ACG ([11], Theorem 8.8,

 page 233). Hence 9 = F + G e a contradiction. Thus J' - ACG f <t>. We

 show that J' is strictly contained in J. Clearly J' c B c T2. (See [4],

 Theorem l,c).) Let F be the function constructed in Example 1. Then

 -F c J - Ta. Hence -F i J'.

 We show that J is strictly contained in £. Let Flt Fa : [0,1] - * IR be

 the functions defined in [3] (Theorem 5, a)), Fx + Fa = <P, F,, Fa € £.

 Suppose on the contrary that Fx e J. By f) <P = Fx + Fa € £. But £ c

 [M]. Hence we have a contradiction.

 We show that £ is strictly contained in [M]. Let F,G : [0,1] - > IR,

 F e J, Ge (N) c [M], F + G = <P ([3]). Suppose on the contrary that G e £.

 By f) <P = F + Ge£c [M], a contradiction.

 We show that [M] is strictly contained in [M*]. We consider the

 function g constructed in the Example of [4], Then g e [M*] = [M*] n [M*].

 By Theorem 3 of [4], g i [M].

 Remark 12. Let f : [0,1] - » R, f(x) = 0, x € C, f(x) = 1, x i C. Then f

 is lower semicontinuous, f € A(2) and f i AC on [0,1]. Hence we cannot

 give up the continuity condition in Theorem 7, a).

 m



 Lemma 1. Let Pj, Fa : [0,1] - * IR, and let P be a closed subset of

 [0,1]. If Fj e Ą'(N) oņ P, for some natural number N, Fa e £ (resp. £)

 on P and if H = Fx - Fa e VB on P, then Fa|p c A'(N) (resp. A(N)).

 Proof. F2 = F! - H = fj - hx - H, where e A(N) and hx € AC on

 P. Then Fa - fj = hj - H is VB n £ (resp. VB n £) on P, by Theorem

 7 (resp. [3], Theorem 5,c), page 208). Hence F2 - fi is AC (resp. AC) on

 P by Theorem 7 (resp. [3], Theorem 5,c), page 208) and F2 e A'(N) (resp.

 A(N)) on P.

 Theorem 8. Let Flf F2 : [0,1] - » R, Fj € 1' n Bf, Fa e £ n Bf (resp.
 F2 € £ n B*), Fi - F2 € VBG on [0,1]. Then F2 € J' n B* (resp.
 Fa € J n B*) on [0,1].

 Proof. Let {Pk} be a sequence of closed subsets of [0,1] such that

 u Pk = [0,1], Fi|Pk € G n A'CNk), F2|pk € C n £ and F» - Fa € VB. By
 Lemma 1, Fa | € A'(Nk) (resp. A(Nk)). Hence Fa € J' n ßf (resp.
 Fa € J n B?) on [0,1].

 Lemm« 2. Let Mn : [0,1] - > R and let P be a closed subset of [0,1].

 Let F : [0,1] - » R such that Hn(x) = Mn(x) - F(x) is increasing on P and

 Hn - > 0 [unif] on P. If there exists a natural number N such that

 Mn € A(N) oņ P, then F c A(N) oņ P.

 Proof. Let e > 0 and let n be a natural number such that

 Hn(*) * */2N, X € P. Let 6( n,«) be the 6 determined by t/2 and the

 fact that Mn € A(N) on P. Let {Iķ} be a sequence of nonoverlapping

 intervals, n P ï E |Iķ| < ¿(n,e). Let E^j» j = 1,...,N be sets such
 that

 N N

 (2) U E, = I n P and I I |0-(M ;E, ) | < «/2 .
 j=l KJ K k j=l n KJ

 Let ajtj, bjtj e Ekj, ajjj * bkj. Then Z (F(bkj) - F(akj)) = I (MnC^kj) ~
 k k

 Mn(akj) ) ~ E (Hn(^kj) ~~ ®n(akj)) * E (Mn(bfcj) - Mn(&kj)) "" C/2N. By (2) we
 Nk k

 have I I (F(bkj) ~ ^(akj)) * -«/2 - e/2 = -e. Hence F € A(N) on P.
 k j=l
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 Theorem 9. Let uL be an upper semilinear space contained in uCM

 which is closed under uniform convergence. Then the LF integral is

 equivalent with the LF'P integral on [0,1].

 Proof. If f is LF integrable on [0,1] and F is an indefinite LF

 integral of f on [0,1], then F(x) - F(0) serves as both, a LF'P - major

 and minor function for f on [0,1]. Hence f is LF'P integrable with F

 an indefinite LF'P integral. Conversely, let f be an LF'P integrable

 function with F an indefinite LF'P integral. Let Mj and mj denote
 respectively LF'P - major and minor functions for f on [0,1] with the

 following properties:

 (3) M^a) = m^a) = 0; M^x) - m^x) * l/i, x € [0,1];

 (4) (M. )' (x) ^ f(x) i (m.)' (x) a. e. on [0,1] .
 i ap j ap

 Clearly F(x) = sup{mj(x)} = inf{Mi(x)}. By Theorem 11 of [4], Mļ - mj is
 j i

 increasing, and by (3), Mļ - » F [unif], mj - * F [unif]. Hence - F and
 F - mj sure increasing on [0,1]. Let {Pļj} be a sequence of closed subsets

 of [0,1] such that ^i|Pļ{ € ^ n à' (Nik) "Jl^k € ^ n 'et
 Nk = Nxk- Then Mi|pk € A' (Nk). Since mj e ?' c £ on Pj, for each j, by
 Lemma 1, mj € A' (Nk) and Mļ € A(Nk) on Pk, for each i and j. By
 Lemma 2, Fe A(Nk) n A(Nk) = A(Nk • Nk) on P. Hence F € ?' n ß'f on [0,1].
 Since Mi - » F [unif], mj - > F [unif] and uL is closed under uniform
 convergence, it follows that F € L. Since Mļ - F, F - mi and Mļ - mi are

 increasing on [0,1], (Mi)¿p(x) * F¿p(x) * (mi)¿p(x). By (3) and (4)

 J |F4p(x) - f (x) |dx * J |(Mi)4p(x) - (mi)4p(x)|dx ¿ Mi(l) - mi(l) ¿ 1/i.
 0 j 0
 Hence J |F¿p(x) - f(x)|dx = 0. Therefore Fáp(x) = f(x) a.e. on [0,1].

 Example 2. Let { j } be an increasing sequence of natural numbers and

 J2k+*~P j2k+4~k
 let p be a natural number such that : j0 = 0 and 2 * 2 *
 j , -1

 2 k + , 2

 3 , k * p. Let F, Gp : [0,1] - > R be two continuous functions def ined
 » ^2Í+1

 as follows: F(x) = Z E ck(x)/2 , x € C and F is linear on each
 i=0 k=j2.+l

 interval contiguous to C; Gp(x) = F(x) + (1/(2P - 1)) • f(x). Then we have
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 a) Gp = F' a.e. oņ [0,1] and Gp - > P [unif], p - » »;
 b) Gp € A(2P) on C, hence Gp e í on [0,1];
 c) F and Gp belong to the class B;
 d) F € £ - J oņ [0,1]. Moreover. F i ļ and F i ?.

 Proof, a) is evident.

 j +1
 b) Let e > 0, dp = min{e, 1/3 2P }. Let I c [0,1] be an interval

 j2p
 with endpoints in C such that | I | < 1/3 . Let n be a natural number

 such that l/3n+1 * |I| < 1/3", and let k be a natural number such that

 j 2 k * n < j2k+2. Clearly k * p . Since |I| < 1/3", there exist

 clt c2,...,cn € {0,2} such that cļ(x) = cļ, i = l,2,...,n, x e I n C. Let

 j2k
 a = I cļ/31 and b = a +. 1/3 . Let d¿ e {0,2}, i = l,2,...,p, and let

 i=l

 ^d, . . .dp = {x € [a,b] nC: cj2k+2(x) = dx ; cj2l(+2-l(x) = d2>* • ••;

 cj2k+2_p+ļ = dp}. Let x,y € E^...^, x < y. Then we have three situations:
 ^2 k + 3 ^ j 2 L+a ^jt a + 3

 1) y - x > 1/3 k + 3 ; 2) y - x = 1/3 j 2 L+a ; 3) y - x < 1/3 a + 3 .

 1) Let j2le + 1 * i0 * jait+3 such that cļ(x) = c±(y) = cļ, i * i0 - 1;

 Cio(x) = 0; cio(y) = 2. Clearly i0 € {j2lt+2, j2k+2-l, ..., j2k+2-P + !}•
 00 00

 Then x = ax + E cì(x)/3Ì, y = al + 2/31® + I ci(y)/3i, ax =
 , i=i0+l i=i0+l

 io J-

 Z ci/31. We have three possibilities: (i) j2k+l é io * Jak+1>
 i=l

 (ii) Jak+i + 1 * io * Òzk+a - p; (iii) jak+2 + 1 * io * Ja k+3 ♦

 (i) Gp(y) - Gp(x) = F(y) - F(x) + (<P(y) - <P(x))/(2P - 1) i F(y) - F(x) *
 00

 F(a! + 2/31®) - F(at + l 2/31) > 0.
 i=lo+l ,

 2 k + 2

 (ii) Gp(y) - Gp(x) i Gp(ax + 2/31® + I (dļ - j2k+a + P)/3X) -
 j - d P j ^""'ik+a 2k+2 - d P 2 k + 2 «>

 Gp(a, + x 2/31 + I (di - jak+a-p)^1 + I 2/31)
 i=i0+l i^ak+a-^1 i=Jak+a

 ^ak+a ^ . e» ''ak+a ^
 Gp(2/3l0) - Gp( l 2/3 1 + I 2/31) = F(2/3lo> - F( l 2/31)

 i=i0+l i= Jj k+a+1 i=io+l
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 » ^ 2 k+2 ^
 F( I 2/31) + (1/(2P - 1)) • [(<P(2/3l0) - 9>( I 2/31)
 i=j2k+2+1 i=i°+1
 ® , » , j - p

 n l 2/31)) = -F( I 2/31) + (1/(2P - 1)) • [(1/2 "+ł
 i=j2.+.+1 i=j„,+1+1

 1/2J"+')] > -1/2J"+Ï + (1/(2P - 1)). (2p - 1)/2J"+I = 0.

 (iii) Gp(y) - Gp(x) > 0 (the proof is analogous to that of (i)).
 j Jk+3 j. "! Jk+3 j.

 2) Let a2 = Z ci/31. We have two possibilities:
 i=l

 ^ 2 fc + 3 ^2 k + 3
 (i) X = aa + 1/3 , y = a2 + 2/3 . Then Gp(y) - Gp(x) = F(y) -

 F(x) > 0.
 ^2 fc+3

 (ii) x = a2, y = a2 + 1/3 and Gp(y) - Gp(x) > 0.

 3) Let i0 i j2ic+3+l such that cj (x) = 0, cļ (y) = 2, cļ(x) = cļ(y) =
 io"1 ° . °

 cļ, i = l,2,...,i0 - 1. Let a3 = Z cj/31. Then Gp(y) - Gp(x) * Gp(a3 +
 i=l

 2/3l0) - Gp(a3 + 1/31®) = F(2/31(>) - F(1/31d). Let m be a natural number
 such that j2ic«.m+2+l * i0 é jak+m*«« We have two possibilities:

 00

 (i) m is even. Then F(2/3l0) - F(l/3l0) = -F( I 2/31) >
 i=J2lc+ffl+4+l

 -9>(l/3Ja,t+m+4) = -1/2* 2k+m+* .

 (ii) m is odd. Then F(2/3lo> - F(l/3l0) > 0. By 1), 2), 3) it follows

 that |0_(Gp;Edļ. 1 . .d P )| * 1/2° 2k+* . Since |I| > l/3n+1 » 1/3 2k*2 * 1 . P

 2P/2 , k*p (by hypothesis), I I -■ I 1 0_(Gp; Ej ,...d_ )l < I1!- Now
 dx d2 dp ^

 the proof follows by defintion.

 c) See the lemma on page 198 of [3].

 d) If 3^' < 2^iłl, then both F and f = V - F belong to £ - ?.
 (See [3], page 208, the functions Fj , F2.) Suppose on the contrary that

 Fe?. Then by Theorem 7, f), g) , F+f=^€£c [M] , a contradiction

 (since <P i [M]). Hence F e J. We show that F i ļ. It is sufficient to
 prove that FcA(2N-l) for some natural number N, on no portion of C.
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 Let P be a portion of C. Suppose on the contrary that F c A(2^ - 1) on P.
 Let [a0,b0] be a closed interval retained in the Cantor ternary process from

 the qth step such that [a0,b0] n C c P. (We take the first q with this

 property.) Then F « A(2" - 1) on [a0,b0] n C. We may suppose that
 Jaifi < jak + 2- N and j2le+2-N > q. Let n, = ji+1 - j,. Then N - n2k+i < 0.

 Let I = [a,b] be a closed interval retained in the Cantor ternary process

 from the step j2k+2~N, I c [a0,b0]> (We have 2 such intervals.)
 j . ~N „
 2k+a . j -N „

 Then a = E c±/3 i, b = a + 1/3 2k . Let {En}, n = 1,2,... ,2^ - 1,
 i=l

 2n-1
 be sets such that En = En c I n C, U En = I n c. Then

 n=l

 2N-1 jak+2+2 ak+2 2N-1
 (5) I |0_(F;En) I > 2/2 ak+2 . Hence I I |0-(F;En)|

 n=l I n=l

 •i2k+2~N~q jjk+j+2 N+a+1
 >2 • (2/2 ) = 1/2 .

 j2*+2~N~q
 Since 1 1 1 * 2 - » 0, k - * <», it follows that F i A(2^-l) on
 [a0)b0] n c, a contradiction. Hence F i A(2^-l) on P. It remains to show
 (5). Let In = [an,bn], n = 1

 retained in the Cantor ternary process from the step j2k^2 which are contained

 ^ 2 k "ł" 2

 in I (numbered from left to right). We observe that |In| = 1/3 and
 ^ 2 k+2

 F(an + x) = F(a + x), for each x belonging to [0, 1/3 ] n C, n =
 i

 1,2,..., 2^. Let = Ej - U It, i = 1,2, ...,2" - 1. Clearly there exists
 t=l

 i e {1,...,2^-1} such that bļ € Eļ and Rļ f 0. Let ix be the first i

 with this property. Let xi = bļ, i = l,2,...,ii. Let m^ = inf{F(x) :
 x e Rij} . Then | 0_(F; Ei^ ) | » - m±ļt where = F(xix).

 2N-1
 aj If mi = F(a), then I |0_(F;En)| > IO-ÍFíE,)! * M4 -mi =

 n=l

 = F(b) - F(a) ;

 b,) If mit > F(a) , let pļ1^ = sup{x e Ii : F(x) * m^}, i = ix + 1,

 11 + 2

 12 c {ii + 1,...,2" - 1} be the first index such that Rļ^ f <t>
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 snd ^ ^ ^^*2 * Let xļ - pļ ļ i - i X If * * * t ^2 * Let

 m±3 = inf (F(x) : x c Ri2}. Then | 0- (F; Eia ) | * Mia - mi2,

 where Mļa = F(xļ2);
 2N-1

 a2) If mi = F(a), then E |0_(F;En)| i |0_(F;Kii ) | + |0-(F;Ei )|
 n=l

 * F(b) - F(a) - (mii - M^).
 ( 2 )

 b2) If i»x2 > F(a)> let Pi - sup{x € Iļ : F(x) < mļ^},

 i = ia + Clearly F(pļ2+X) a = ••• = F(p^). Let a 2w
 i3 e {ia + 1,...,2N - 1}, be the first index such that Rig / <t>

 ť 2 ) ( 2 )
 and Pi3 c ®i3* xi = Pi » i = ia + 1» • • • » is • Let

 mi3 = inf{F(x) : x e Rļ3}. Then 1 0- ( F ; E ¿ ^ ) | ^ Mí3 - mi3,

 where Mig = F(xļ3);

 a3 )

 b3)

 There exists some j0 e {1,...,2" - 1} such that Rļ . f <t> and Rļ = 0,
 Jo

 i > ii . Then a M € Rļ . . (Indeed, since a M i Eļ for Rļ = tf, it follows
 2 2

 that a „ € Ei with Ri f t>, for some i0. ° Hence i0 = i Jo i •) ai . ) It gN „ o ° Jo Ajo .
 follows that mļ . = F(a M) = F(a). We have

 Jo o"

 2N-i jo
 (6) X |0_(F;En) I i Z° |0_(F;Ei.)| i F(b) - F(a) -

 n=l t=l 1

 Jo-1 j,„+,+2
 I (mi. - Mf) > (F(b) - F(a) )/2 * 2/2
 t=l x 1

 Hence we have (5). It regains to show (6). Let Q = F(I n c) = F(Iļ n C) =

 ••• = F(In n c). If mit ý Mit+1> t = l,...,j0 - 1, then (Mit+i,mit) are
 intervals contiguous to Q c [F(a),F(b)]. Let I¿ = [a,J„ b¿] ,

 n
 2 |e + 2

 m = 1,...,2 , be the closed intervals contained in In, retained from the
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 n

 2 2
 step J 2 k+3 in the Cantor ternary process. Then Q = U F(I¿ n C). We

 J 4. . m=l e» 2t+3 4. .

 have F(bj¡,) - F(a¿) = B, where B = I Z 2/2m+1, and FCa,}^-,) -
 t»k+l m=jat+J+l

 J i 1 2 k + i 3

 F(b¿) = A, where A = 2/2 - B. Clearly A > B and (F(bró), F(a¿+i))

 are intervals contiguous to Q c [F(a), F(b)] with length A, m =
 n

 2 It 4" 2

 1,2,..., 2 2 It 4" 2 - 1. Since N < n2k+1, it follows that j0 - 1 < 2N - 2 <

 2 2k+2 - 2. Hence 2 • (2^ - 2) < 2 2k+1 - 4 < 2 2k+a - ļ (since nļ is
 n n
 2 b4>9 2 k + 2

 strictly increasing). We observe that: F(b) - F(a) =2 • B + (2 -1)

 • A > 2 • (2N - 2) -A. Hence (2N - 2) • A < (F(b) - F(a))/2. Also,
 jo-1 2N-1
 sup I (mit - Mit) * (2N - 2) • A and I |0_(F;En)| i F(b) - F(a) -
 t=l n=l

 (2" - 2) • A > (F(b) - F(a))/2 and we have (6).

 Open Problem. Clearly if f is LP integrable, then f is LFP

 integrable. Is Theorem 9 true if the LF'P integral is replaced by the LFP

 integral?

 Remark 13. a) Theorem 8 does not remain true if the function Fj is

 supposed to be ļ n B*. (Each function Gp constructed in Example 2 is a
 counterexample, since Gp € (ļ n B) - jF'.)

 b) Let Gp be the functions constructed in Example 2. Suppose that
 Np is the first natural number such that Gp € A(Np) on C. Clearly
 Np * 2P. By Lemma 2 it follows that the sequence {Np} is not bounded.

 We are indebted Professor Solomon Marcus for his help in preparing this

 article.
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