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 Semigroups of density-continuous functions

 Introduction. The inspiration for our work comes from the following results con-

 cerning the semigroup of continuous selfmaps of a topological space and, in the case of the

 space being the real line, its subsemigroup of differentiate selfmaps.

 Theorem. (Gavrilov [6], Magill [9], Malcev [12], Shneperman [19]) If X is a com-

 pletely regular topological space which contains a simple arc then the semigroup S(X ) of

 all continuous selfmaps on X has the inner automorphism property.

 Theorem. (Magill [11]). The semigroup of differentiate real-valued functions of a

 real variable has the inner automorphism property.

 A semigroup S of selfmaps of a set X is said to have the inner automorphism property

 if every automorphism $ of S is of the form $(/) = h o f o h~l with h 6 S being a

 bijection of X.

 In this paper we consider the semigroup of selfmaps of R which are continuous with

 respect to the density topology, that is, maps /:R - ► R where the topology on both the

 domain and the range is the density topology (see [7], or [17] p. 90, or [20] for the definition

 of the density topology). Such maps axe called density- continuous functions. It is well

 known that the density topology is completely regular (see [8], [20], and [21]). However,

 countable sets never have cluster points in the density topology while bounded infinite

 countable sets do have cluster points in the natural topology. This implies that the only

 continuous mappings from R equipped with the natural topology into R equipped with the

 density topology are constant maps. Thus the real line equipped with the density topology

 contains no simple arcs. Consequently, the semigroup of density-continuous selfmaps of

 R cannot be shown to have the inner automorphism property by usinj, the first of the

 above theorems. Nonetheless, we shall prove that this semigroup does have the inner

 automorphism property (see Theorem 3.6 below).

 1 The author was partially supported by the University of Louisville Research Grants.
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 Concerning the above theorems, we shall consider the subsemigroup of differentiable

 density- continuous selfmaps of R and the two subsets consisting of those selfmaps which

 are approximately differentiable and those selfmaps which are almost everywhere approx-

 imately differentiable, respectively. In Section 1, we shall prove that these two subsets are

 indeed subsemigroups. Moreover, in Section 3, we shall prove that all three subsemigroups

 also have the inner automorphism property (Theorems 3.6 and 3.9).

 Section 2 includes a discussion of properties of density-continuous functions and a

 lemma needed in the proof of the main theorems given in section 3. In section 4, we

 discuss a possible alternate proof that the semigroup of density-continuous selfmaps of R

 has the inner automorphism property.

 The following standard notation will be used:

 R - the set of ail real numbers;

 N - the set of all natural numbers;

 d(A, x),d(A, x), and d(A,x) - the upper, lower, and ordinary (respectively) densities of a

 set A C R at a point x 6 R;

 |£| - the outer Lebesgue measure of a set E C R.

 All semigroups considered are of selfmaps of R with composition as the operation.

 1. Subsemigroups.

 It is obvious that the class of differentiable density-continuous functions is a semigroup.

 We also have the following:

 1.1. Theorem. If f,g: R - ► R are approximately differentiable and g is density-

 continuous then f o g is approximately differentiable.

 Proof. See [15], Theorem 5.2.

 1.2. Corollary. The class of approximately differentiable density- continuous func-

 tions f: R - >R is a semigroup.

 1.3. Theorem. If f,g~- R - >R are density- continuous and approximately differentiable

 almost everywhere then so is fog.

 Proof. Let Zf be the set where / is not approximately differentiable. It is enough to

 show that / o g is approximately differentiable almost everywhere on g~l(Zf).
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 The class of all level sets <7-1({z}) for z € Z¡ which are of positive measure is clearly

 at most countable, and / is constant on each such level set, therefore fog is approximately

 differentiable almost everywhere on the union of the entire class.

 The remaining part of g~l{Zf) is made out of level sets of measure zero. Since g is

 density-continuous, any point x € g~1(z) lying in such a level set must be a dispersion

 point of <7-1(Z/)'î7-1({z}), as Zf has only dispersion points (see the discussion of density-

 continuity at a point in [15] and [16]). Then x is also a dispersion point of g~l(Zf), and

 the set of those dispersion points is of measure zero, so the remaining part of g~x{Zf) is

 of measure zero.

 This shows that / o g is approximately differentiable almost everywhere on g~1(Zf).

 The proof is ended.

 1.4. Corollary. The class of density- continuous functions which are approximately

 differentiable almost everywhere is a semigroup.

 1.5. Notation. We have just finished introducing the semigroups which we will

 investigate. Here is the entire list, with the notation used:

 Cj> - density-continuous functions.

 dCv - differentiable density-continuous functions.

 aCv - approximately differentiable density-continuous functions.

 zCv - almost everywhere approximately differentiable density-continuous functions.

 We have the following obvious inclusions:

 dCv C aCp C zCv C Cņ. (1)

 All of them are proper. We will discuss that later.

 2. Properties of density-continuous functions.

 2.1. While this work was being written the following facts concerning density-
 continuous functions were discovered:

 Theorem, (a) Real- analytic functions are density continuous.

 (b) The class of density- continuous functions is not additive. In fact, there exists a

 density- continuous f such that g(x) = x + f(x) is not density- continuous.
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 (c) There exists a C°° function which is not density- continuous.

 Proof. All of the above are shown in [4]. Also, the first two statements axe proved in

 [3].

 2.2. Lemma. Let a < b < c < d. Then there exists an everywhere differenti able,

 density- continuous function f: R - »R such that:

 (i) f(x) = 0 if X £ (a, d ); and f(x) = 1 if b < x < c.

 (ii) f'(x) > 0 if x € ( a,b ); and f'(x) < 0 if x € ( c,d ).

 Proof. The above follows easily from the fact that polynomials are density-continuous.

 2.3. Examples. Let

 +00 oo

 Xn = ^2 ¿2 ' y* = ^
 i=n i=n

 for n G N. Define g : [0,xi] - * [0, 1] as follows: g(xn) = yn for every n € N, ý(0) = 0, and

 g is linear in every interval [xn+i,xn] for n € N. In [13], Theorem 3, it is shown that, for

 / = <7-1, / is a homeomorphism of [0, 1] onto [0,xi] which preserves density points, while

 g does not preserve density points. This implies (see [15]) that g is density-continuous,

 while g~l is not. One can also easily see that

 lim = lim - = 0, (3)
 S- 0+ O n-co Xn

 so that the right-hand derivative of g at zero exists and equals zero. By modifying g, to

 be differentiate, in a sequence of intervals centered at the points xn, n € N, such that

 the union of those intervals has a dispersion point' at zero, one can construct an increasing

 density-continuous function h: [0,xi] - ► [0, 1], where xi > 0, such that h is a bijection, is

 differentiate, h'( 0) = 0, and h~l is not density-continuous.

 As stated in [14], there are continuous functions which are not density-continuous.

 For example, if [an , 6n] is an interval set at zero with upper outer density positive at

 zero, and

 (ì linear 0 for for in the x x = € intervals [an, 0, 6n] for [6n+j,an] some n for € N,
 0 for x = 0, (4)
 linear in the intervals [6n+j,an] for every n € N,
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 then / is continuous and not densi ty-continuous at zero. Since every piecewise- linear

 function is clearly density- continuous, and / is a uniform limit of a sequence of such

 functions (as is every continuous function), we can have a uniformly convergent sequence

 of density-continuous functions whose limit is not density-continuous.

 2.4. Theorem. The inclusions

 dC-p C a.Cj> C zCp C Cp. (5)

 are proper.

 Proof. One can easily see that f(x) = |x| belongs to zCp but not to aCp. The

 following is an example of a function which is in aCj> but not in dC-p.

 Let {an}, {6n}, {cn} be sequences of real numbers such that, for every n G N, 0 <

 On < bn < cn < an+ 1 and UneN^«' ^«1 h 35 right-hand density zero at zero. For every

 n € N let /n:R - ► R be an everywhere differentiable density- continuous function given by

 Lemma 2.1 such that

 (0 /nO) = 0 if X i (a„,c„); /„(&„) = 1;

 (ii) fn(x) > 0 if an < X < bn; f^(x) < 0 if 6„ < x < c„;
 Define

 + 00

 /(») = E/.W. (6)
 71=1

 Then / € aCv ' dC-p .

 Finally, Krzysztof Ciesielski, Lee Laxson, and Krzysztof Ostaszewski in [5] have con-

 structed a continuous, density- continuous function which is nowhere approximately differ-

 entiable. This concludes the proof.

 2.5. Remark. Recall (see [8]) that a function /: R - > R is approximately continuous

 if and only it is continuous as a mapping from R equipped with the density topology to R

 equipped with the natural topology. Thus any density-continuous function is necessarily

 approximately continuous. Also, any approximately continuous bijection of R is actually

 a homeomorphism with respect to the natural topology (see [2]).
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 Finally, as observed in [15], density-continuous bijections of R are precisely those

 homeomorphisms h for which h~l preserves density points (homeomorphisms preserving

 density points axe discussed in [1] and [13]).

 3. Proofs of main theorems.

 We will turn now to the question which interests us most in this work - do the semi-

 groups considered have the inner automorphism property? We will start by recalling a

 classical lemma due to J. Schreier (see [18]).

 3.1. Lemma. Let X be a set, S(X) a semigroup of selfmaps of X such that every

 constant mapping iâ in S(X), and let $ be an automorphism of S(X). Then there exists

 a bijection h: X - ► X such that $(/) = ho f o h -1 for every f € S(X).

 3.2. Definition. Obviously, since S(X) contains every constant function, the bijec-

 tion h is unique. Let us, from now on, denote by S any of the four semigroups discussed in

 section 2. The Lemma 3.1 is applicable and each automorphism $ of S is determined by

 a unique bijection h:R -* R such that $(/) = h o / o h -1 for all / € S. We shall call h the

 generating bijection of the automorphism $.

 3.3. Lemma. Let h be a generating bijection of an automorphism $ of S. Then h

 and h~l are approximately continuous .

 Proof. We will prove approximate continuity of h at an arbitrary point a € R. Let

 e > 0. Let /?:R - »R be an everywhere differentiable density-continuous function, existing

 by Lemma 2.1, such that

 (i) ß(x) = 0 if |s| > e; ß(0) = 1;

 (ii) ß'(x ) > 0 if - e < X < 0; ß'(x ) < 0 if 0 < x < e;

 Define for x G R

 g(x) = ß(x - h(a )) + h(a). (7)

 Then g E S. There is an / G S such that $(/) = g. This implies that h o / = g o f.

 Since h is a bijection of R and h(f(a)) = h o f(a) = g o h(a) = 1 + h(a), we must have

 /(a) ^ a. From the density-continuity of /, there exists a density-open set U such that

 a € U and f(x) ^ a for every x € U . The bijection h gives g o h(x) = ho f{x) h(a) for
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 x € U. We infer from (5) and the above that, for x € U, ß(h(x) - h(a )) ^ 0, and therefore,

 |/i(x) - h(a) I < e. Thus h is approximately continuous at a.

 Clearly, the bijcetion h is actually a homeomorphism of R in the natural topology. To

 establish approximate continuity of h~l observe that $-1(g) = h~l o g o h for any g € S.

 3.4. Lemma. Let /i: [0, 1] - ► [0,1] be an increasing homeomorphism (with respect to

 the natural topology) such that h~l is not density- continuous at zero. Then there exists

 a differentiable density- continuous function f : [0, 1] - ► [0, 1] such that h o f o h -1 is not

 density- continuous.

 Proof. As defined in [1], an interval set I at a point x € R is a union of a sequence

 of disjoint nondegenerate closed intervals [an, 6n], n G N, such that x < . . . < an < bn <

 an_ļ < bn-i < . . . < ai < bi, and lim^oo an = x.

 Since h~l is not density-continuous at zero, it does not preserve upper outer density

 of interval set at zero (see Theorem 2.13 in [15]). Let

 /= U[°-M (8)
 n€N

 be an interval set such that d(1 , 0) > 0 and for

 j= Uift-'KJ.ft-'O.,)] (9)
 n€N

 we have d(J, 0) = 0. Let {an}5 { ßn } be sequences such that, for every n € N, an < an <

 ßn < bn and

 5( U[<*n,/U0) >0. (10)
 n€N

 Then by (9)

 (ii)
 n€N

 For every n € N, let fn be a density-continuous differentiable function given by Lemma

 2.1 such that

 (i) fn(x) = 0 if x i [h-'ian), h-^bn)}] /„(») = 2~n h-l(an) if x € [/»"Ha«), ä"1^«)];

 (ii) /4(x) > 0 if X e (h~1(an),h~1(an))-,f'n(x) < 0 if x € {h~l(ßn), h~l(bn))'
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 Let /: [0, 1] - ► [0, 1] be defined as

 /(*) = ¿/n(x)- (12)
 71=1

 Notice that f(x ) -fi 0 implies that x € (/i-1(an), /i_1(6n)) for some n € N. Therefore

 f(x) = 0 except on a set having a dispersion point at zero and so / is density-continuous.
 Furthermore

 0 < < 2"n (13)
 X

 for every x € (h~1(an),h~1( bn)), n € N. Thus / is different iable at zero. It is obviously
 differentiable elsewhere.

 Finally, even though d( UneN^"' -> the set

 Äo/oA-'( |J[a„,^]) = U {A(2-"A-'K))} (H)
 n€N n€N

 is countable and it does not contain zero; so h o f o h -1 is not density-continuous at zero.

 3.5. Corollary. If h is a homeomorphism of R generating an automorphism $ of S

 then h and h~l are density -continuous.

 Proof. It follows immediately from 3.3 and 3.4 that h~l must be density-continuous.

 Since, however, $-1 is generated by /i - 1 , h itself must be density-continuous.

 3.6. Theorem. All automorphisms of Cd and zC-p are inner.

 Proof. Notice that every homeomorphism of R is monotone, and thus differentiable

 almost everywhere, so the theorem easily follows from Lemma 3.3 and Corollary 3.5.

 3.7. Remark. The class of homeomorphisms of Cv and zCv is described in Theorem

 2.13 of [15]. These are homeomorphisms h such that both h and h~l preserve density

 points, or equivalently, both h and h~l preserve upper outer density.

 Also, it should be noted that we just proved that the semigroups Cv and zCv have

 identical groups of automorphisms, even though the inclusion zCv C Cv is proper.

 3.8. Lemma. If $ is an automorphism of dCv (oraCv) and h is a homeomorphism

 of R generating it then h is differentiable.
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 Proof. As we mentioned before, h is monotone, and thus differentiable almost every-

 where. Let xq be a point of differentiability of h, and let x € R be arbitrary.

 Define f(t) = t + x - x o for t S R. Then / is differentiable and density continuous on

 R. Let S be a positive number. We have

 h(x + 6) - h(x) _(h o f)(x0 + S) - (ho /)( z0) _

 ^ ^ Í15Í { ; (*(/) o /Q(*o + *)-(*(/) o ft)(*o) { Í15Í ;
 S

 But $(/) is an element of the semigroup of which $ is ail automorphism. If it is dC-p that

 we axe dealing with, then <£(/) is differentiable, and h is differentiable at xo, so that the

 difference quotient (-15) has a limit, as <5 - ► 0, equal to $(f)' (h(xo))h' (xq). For aCp, since

 h must be density- continuous by Corollary 3.5, the composite $(/) o h is approximately

 differentiable at xo (see Theorem 1.3). Therefore h is approximately differentiable at x.

 Being a homeomorphism, it must be differentiable. -

 The following theorem is our analogue of the theorem proved by Kenneth Magill, Jr.

 in [11].

 3.9. Theorem. All automorphisms of aCp and dC-p are inner.

 Proof. Corollary 3.5 tells us that automorphisms of aCv and dC-ņ are given by density-

 continuous homeomorphisms. By Lemma 3.8 those homeomorphisms must be also differ-

 entiable.

 It should be noted that the groups of automorphisms of dC-p and aC-p axe identical,

 even though the inclusion dC-p C aC-p is proper.

 4. Possible alternate proof and acknowledgements.

 Kenneth Magill, Jr., showed in [9] that, for a completely regular space X such that

 level sets /-1({x}) of points x € X for continuous selfmaps f:X-*X form a subbase for

 the closed sets in X (X is then called generated ) the semigroup of all continuous selfmaps

 has the inner automorphism property. We do not know, however, if the density topology

 is generated.

 Query 1. Is the density topology generated?
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 As the density- closed Gs sets form a base for the closed sets in the density topology, the

 answer to the above query would foliowe from the affirmative answer to the following:

 Query 2. Given a G s subset E of R which is also density-closed, is there a density-

 continuous function /:R - * R such that E = /-1({0})?

 Notice that, by the result of Z. Zahorski in [21], one can find an approximately continuous

 / as in Query 2. Krzysztof Ciesielski, Lee Larson, and Krzysztof Ostaszewski in [5] were

 able to construct such an /, which is, in addition to the above, differentiable, for a closed

 set E.

 When this work was started, the analytic structure of the density-continuous functions

 was not known well. The works of Andrew Bruckner ([1]) and Jerzy Niewiarowski ([13])

 gave some insight to the density-continuous bijections of R, while Krzysztof Ostaszewski

 ([14], [15], [16]) discussed density-continuity explicitly, but mostly in relation to approx-

 imate continuity and approximate differentiability.- Since then, Krzysztof Ciesielski and

 Lee Larson in [4], the same two with the author in [5], and Maxim Burke in [3], have

 investigated the class of density-continuous functions more in depth.

 The author would like to express his sincere gratitude to the following persons for

 discussing with him the problems of this work: Krzysztof Ciesielski, Lee Larson, Inessa

 Levi, Kenneth Magill, Jr., Richard O'Malley, and Clifford Weil. Also, comments and

 suggestions made by the referee proved to be extremely valuable.
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