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 CONNECTIVITY FUNCTIONS In - »I DENSE IN In x I

 Let X and Y be topological spaces and let f: X- »Y be

 a function. Then f is said to be a connectivity function pro-

 vided that if C is a connected subset of X, then the graph

 of f restricted to C is a connected subset of X x Y.

 Denote the graph of f restricted to C by f|C. The function f

 is defined to be peripherally continuous provided that for any

 x e X and any pair of open sets U and V containing x and f(x),

 respectively, there exists an open set W such that x e W c U

 and f(bd(W)) CV where bd(W) is the boundary of W. The

 function f is dense in X x Y provided that if U and V

 are open subsets of X and Y, respectively, then there is a point

 x e U such that f(x) e V. Clearly, the function is totally dis-

 continuous (i.e., nowhere continuous) if Y is a non-degenerate

 Hausdorff space and f is dense in X x Y.

 For the definitions concerning simplexes and simplicial com-

 plexes the reader is referred to [ 2 ] .

 Examples of connectivity functions I^- »I dense in 1^

 where I = [0,1] and hence totally discontinuous functions have

 been constructed in [1] and [3]. However, connectivity functions

 In - * I dense in in+l have not been presented when n > 2 .

 Toward this end we construct for n > 2 an example of a
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 connectivity function f : An I dense in An x I where

 An is an n-simplex by using a variation of a technique given in

 [3]. Now there exists a horaeomorphism g: In - and hence

 it follows that fog: In - »I is a connectivity function dense

 in In x I. Thus fog: In- »I is a totally discontinuous

 connectivity function.

 Connectivity functions and peripherally continuous functions

 defined on certain spaces and in particular on In and An are

 equivalent whenever n > 2 , [ 4 ] .

 Theorem 1 . There exists a connectivity function f : An - » I

 dense in An x I whenever n > 2.

 Proof . Let An = vovl,,,vn denote the unit n-simplex

 of Euclidean space Rn+1 with vertices vg,vi, . . . ,vn.

 Lļ_: Let f be 0 on bd( An) and 1 at the barycenter

 P = vg/(n+l) + vj_/(n+l) + ... + vn/(n+l) of An. Let T be

 the set of all proper faces of An» Consider the triangulation of

 An given by the cone pT, and let L]_ be its

 (n - 1) -skeleton. The mesh of pT is J2. We can extend f

 linearly on each (n - 1) -simplex a of pT because f is

 defined at all the vertices of a. The variation of f on the

 boundary of each n-simplex in pT is < 1.

 L^^m > 1): Suppose that we have constructed a triangulation

 l' of An with Ljn denoting its (n - 1) -skeleton, and
 suppose that we have defined f on the underlying polyhedron

 iLjņl such that the following conditions hold:

 (1) The mesh of T7 is < 2-/2/(m+l).
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 (2) The function f is linear on each simplex of 1^.

 (3) The variation of f on the boundary of each n-simplex

 in t' is < 1/m.

 (4) Each point of £,n is within 2-Jl/ (m+1) of a point

 where f has value (1 - ( - 1 )m) /2 -

 We construct Lm+i and extend f to |Lm+il in the following

 way. If m is odd, let f be 0 at the barycenter pj_ of each

 n-simplex of t'. But if m is even, let f be 1

 at p¿. Now each point of is within 2V2/(m+l)

 of a point where f has value (l-(-l)m)/2. For each

 i, let T¿ be the set of all proper faces of a¿, and

 form the cone Pj.Tj_. Define a continuous function <p on each

 n-simplex a = uguļ...un of PiTj_ by

 <p(a0UQ + <XļU]_ +...+ anUn) = a0f(u0) + aļfiuļ) +

 ...+ OjļfiUjļ) where > 0 and = 1. Choose a positive

 integer N so that for each i, the variation of <p on the

 boundary of each n-simplex in the barycentric subdivision

 Ki of Pj.Tj_ is < l/(m+l) and has mesh < 2V2/(m+2). Then

 define f to be (p on the boundary of each n-simplex in UK¿.

 Let Ljn+i be the (n-1) -skeleton of UK¿. The variation of

 f on the boundary of each n-simplex in UK¿ is < l/(m+l).

 iLjnl is a subset of |Lm+ll f°r each BY construction,
 OO

 f is peripherally continuous on Ljn . Suppose
 00

 X e An - m=l l^ml • For everY ra> x lies in the interior of an

 n-simplex sm such that as m-»«>, sm- *x and the variation of

 f on bd(sm) approaches 0. If we choose ym e bd(sm),

 then ym - *x. Let f(x) be a cluster point of
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 f(Yl)/ f(Y2)f«. • Then f is peripherally continuous at x.

 By construction, the graph of f is dense in x I.

 Theorem 2. There exist 2C connectivity functions as defined in

 Theorem 1.

 OO

 Proof . Let be the set of x e (L^i

 such that there exist n-simplexes Aq and such that the

 diameters of Aq and Aļ are less than 1/m, x e int( &q)'

 x e int( Ax) » f (bd( Aq) ) C. [0,1/m) , and
 OO

 f(bd( Ai)) C (1 ~ l/m,l]. Then on G = Ťm, we can define
 f to be either 0 or 1. By construction, G is dense in &n.

 If x e Tm, then every point of int( Ao) ^ int( A]_) is in
 OO

 Tm. So Tm is open. Therefore mQļ Tm is a Gg-set.
 So G is a dense Gg-subset of An on which the values of f
 can be chosen to be either 0 or 1.

 By the Alexandrov theorem, every Gg-subset of a complete

 space is homeomorphic to a complete space. Also every non-empty,

 complete, and dense-in-itself space contains the Cantor set

 topologically. Thus G has c elements. Thus the cardinality

 of the power set of G is 2C. Now f can be arbitrarily

 defined on G to be 0 or 1. Hence for any A c G, we may

 let f(A) = 0 and f(G - A) = 1. Therefore there are 2C

 connectivity functions ûf1 -»I as defined in Theorem 1.

 Theorem 3 . There exists a connectivity function In - *• 1^

 dense in In x 1^ for any n > 2 and k > 2 .
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 Proof . Let f: In- »I be a connectivity function dense

 in In X I, and let h: I - be a Peano space-filling

 (continuous and onto) curve. Then h©f: In - *1^ is a

 connectivity function [5] dense in In x 1^.
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