Real Analysis Exchange Vol. 14 (1988-89)

Richard G. Gibson, Department of Mathematical Sciences, Columbus College, Columbus, Georgia, 31993; Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, Alabama, 35487; and Fred Roush, Department of Mathematics, Alabama State University, Montgomery, Alabama, 36101.

CONNECTIVITY FUNCTIONS $I^n \rightarrow I$ dense in $I^n \times I$

Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a function. Then f is said to be a <u>connectivity function</u> provided that if C is a connected subset of X, then the graph of f restricted to C is a connected subset of $X \times Y$. Denote the graph of f restricted to C by f|C. The function f is defined to be <u>peripherally continuous</u> provided that for any $x \in X$ and any pair of open sets U and V containing x and f(x), respectively, there exists an open set W such that $x \in W \subset U$ and $f(bd(W)) \subset V$ where bd(W) is the boundary of W. The function f is <u>dense</u> in $X \times Y$ provided that if U and V are open subsets of X and Y, respectively, then there is a point $x \in U$ such that $f(x) \in V$. Clearly, the function is totally discontinuous (i.e., nowhere continuous) if Y is a non-degenerate Hausdorff space and f is dense in $X \times Y$.

For the definitions concerning simplexes and simplicial complexes the reader is referred to [2].

Examples of connectivity functions $I^2 \rightarrow I$ dense in I^3 where I = [0,1] and hence totally discontinuous functions have been constructed in [1] and [3]. However, connectivity functions $I^n \rightarrow I$ dense in I^{n+1} have not been presented when n > 2. Toward this end we construct for $n \ge 2$ an example of a

99

connectivity function $f: \Delta^n \to I$ dense in $\Delta^n \times I$ where Δ^n is an n-simplex by using a variation of a technique given in [3]. Now there exists a homeomorphism $g: I^n \to \Delta^n$, and hence it follows that $f \circ g: I^n \to I$ is a connectivity function dense in $I^n \times I$. Thus $f \circ g: I^n \to I$ is a totally discontinuous connectivity function.

Connectivity functions and peripherally continuous functions defined on certain spaces and in particular on I^n and Δ^n are equivalent whenever $n \ge 2$, [4].

<u>Theorem</u> 1. There exists a connectivity function $f: \Delta^n \rightarrow I$ dense in $\Delta^n \times I$ whenever $n \ge 2$.

<u>Proof.</u> Let $\Delta^n = v_0 v_1 \dots v_n$ denote the unit n-simplex of Euclidean space \mathbb{R}^{n+1} with vertices v_0, v_1, \dots, v_n . L₁: Let f be 0 on bd(Δ^n) and 1 at the barycenter $p = v_0/(n+1) + v_1/(n+1) + \dots + v_n/(n+1)$ of Δ^n . Let T be the set of all proper faces of Δ^n . Consider the triangulation of Δ^n given by the cone pT, and let L₁ be its (n - 1)-skeleton. The mesh of pT is $\sqrt{2}$. We can extend f linearly on each (n - 1)-simplex σ of pT because f is defined at all the vertices of σ . The variation of f on the boundary of each n-simplex in pT is ≤ 1 . L_{m+1}($m \geq 1$): Suppose that we have constructed a triangulation T' of Δ^n with L_m denoting its (n - 1)-skeleton, and suppose that we have defined f on the underlying polyhedron $|L_m|$ such that the following conditions hold:

(1) The mesh of T' is $\leq 2\sqrt{2}/(m+1)$.

100

- (2) The function f is linear on each simplex of L_m .
- (3) The variation of f on the boundary of each n-simplex in T' is $\leq 1/m$.
- (4) Each point of Δ^n is within $2\sqrt{2}/(m+1)$ of a point where f has value $(1 (-1)^m)/2$.

We construct L_{m+1} and extend f to $|L_{m+1}|$ in the following way. If m is odd, let f be 0 at the barycenter p_i of each n-simplex σ_i of T. But if m is even, let f be 1 at p_i . Now each point of \triangle^n is within $2\sqrt{2}/(m+1)$ of a point where f has value $(1-(-1)^m)/2$. For each i, let T_i be the set of all proper faces of σ_i , and form the cone $p_i T_i$. Define a continuous function ϕ on each n-simplex $\sigma = u_0 u_1 \dots u_n$ of $p_i T_i$ by $\varphi(a_0u_0 + a_1u_1 + \ldots + a_nu_n) = a_0f(u_0) + a_1f(u_1) +$...+ $\alpha_n f(u_n)$ where $\alpha_k \ge 0$ and $\sum_{k=0}^{\infty} \alpha_k = 1$. Choose a positive integer N so that for each i, the variation of ϕ on the boundary of each n-simplex in the Nth barycentric subdivision K_i of $p_i T_i$ is $\leq 1/(m+1)$ and K_i has mesh $\leq 2\sqrt{2}/(m+2)$. Then define f to be φ on the boundary of each n-simplex in $\cup K_i$. Let L_{m+1} be the (n-1)-skeleton of UK_i . The variation of f on the boundary of each n-simplex in UK_i is $\leq 1/(m+1)$.

 $|L_m|$ is a subset of $|L_{m+1}|$ for each m. By construction, f is peripherally continuous on $\underset{m=1}{\overset{\bullet}{m=1}} L_m$. Suppose $x \in \Delta^n - \underset{m=1}{\overset{\bullet}{m=1}} |L_m|$. For every m, x lies in the interior of an n-simplex s_m such that as $m \rightarrow \infty$, $s_m \rightarrow x$ and the variation of f on $bd(s_m)$ approaches 0. If we choose $y_m \in bd(s_m)$, then $y_m \rightarrow x$. Let f(x) be a cluster point of $f(y_1)$, $f(y_2)$,.... Then f is peripherally continuous at x. By construction, the graph of f is dense in $\Delta^n \times I$.

<u>Theorem</u> 2. There exist 2^{C} connectivity functions as defined in Theorem 1.

<u>Proof</u>. Let T_m be the set of $x \in \Delta^n - \bigcup_{k=1}^{\infty} |L_k|$ such that there exist n-simplexes Δ_0 and Δ_1 such that the diameters of Δ_0 and Δ_1 are less than 1/m, $x \in int(\Delta_0)$, $x \in int(\Delta_1)$, $f(bd(\Delta_0)) \subset [0, 1/m)$, and $f(bd(\Delta_1)) \subset (1 - 1/m, 1]$. Then on $G = \bigcap_{m=1}^{\infty} \dot{T}_m$, we can define f to be either 0 or 1. By construction, G is dense in Δ^n .

If $x \in T_m$, then every point of $int(\Delta_0) \cap int(\Delta_1)$ is in T_m . So T_m is open. Therefore $\bigcap_{m=1}^{\infty} T_m$ is a G_{δ} -set. So G is a dense G_{δ} -subset of Δ^n on which the values of f can be chosen to be either 0 or 1.

By the Alexandrov theorem, every G_{δ} -subset of a complete space is homeomorphic to a complete space. Also every non-empty, complete, and dense-in-itself space contains the Cantor set topologically. Thus G has c elements. Thus the cardinality of the power set of G is 2^{C} . Now f can be arbitrarily defined on G to be 0 or 1. Hence for any $A \subset G$, we may let f(A) = 0 and f(G - A) = 1. Therefore there are 2^{C} connectivity functions $\Delta^{n} \rightarrow I$ as defined in Theorem 1.

<u>Theorem</u> 3. There exists a connectivity function $I^n \rightarrow I^k$ dense in $I^n \times I^k$ for any $n \ge 2$ and $k \ge 2$.

<u>Proof</u>. Let $f: I^n \rightarrow I$ be a connectivity function dense in $I^n \times I$, and let $h: I \rightarrow I^k$ be a Peano space-filling (continuous and onto) curve. Then $h \circ f: I^n \rightarrow I^k$ is a connectivity function [5] dense in $I^n \times I^k$.

REFERENCES

- 1. Jack B. Brown, "Totally discontinuous connectivity functions," Colloquium Mathematicum, 23(1971), pp. 53-60.
- 2. Samuel Eilenberg and Norman Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, 1952.
- 3. Richard G. Gibson and Fred Roush, "Connectivity functions defined on Iⁿ," Colloquium Math., to appear.
- Melvin Hagan, "Equivalence of connectivity maps and peripherally continuous transformations," Proceedings of the American Math. Society, 17(1966), pp. 175-177.
- 5. S.K. Hildebrand and D.E. Sanderson, "Connectivity functions and retracts," Fundamenta Mathematicae, LVII(1965), pp. 237-245.

Received September 1,1937