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 1 . Introduction.

 It is well known that the derivative of a differentiable function is in

 Bj , the first class of Baire, and that the extreme derivatives of an

 arbitrary function are in B2, the second class of Baire. The Dini

 derivatives of a function in B CL are in B 0 [7]. In recent years similar CL

 results have been obtained for approximate derivatives [8], [9], and

 approximate symmetric derivatives [6], etc..

 Bruckner, O'Malley and Thomson [3] introduced the concept of path

 derivative as a unifying approach to the study of a number of generalized

 derivatives. Any generalized derivative for which the derivative at a point

 is a derive number of the function at that point falls into the framework of

 path derivatives. They noticed that much of the information concerning the

 behavior of a generalized derivative is contained in the geometry of the

 collection E = {E^: x € R} . One would like to have nice extreme path

 derivatives or path derivative for a nice function, i.e. a measurable (Borei



 measurable) F£ for a measurable (Borei measurable) function F.

 The behavior of path derivatives and extreme path derivatives depends on

 three factors: the thickness of the paths, the behavior of E and E
 X y

 when X and y are very close, and the behavior of the original function.

 In [2] we studied the Borei measurability of extreme path derivatives when

 the system of paths is continuous. In this paper we investigate the Borei

 measurability of extreme path derivatives when the paths are thick in some

 sense. Some familiar notions of measuring "thickness" of a set are outer

 density, density and porosity. Bruckner, O'Malley and Thomson in [3] showed

 that for a monotonie function F, and a nonporous system of paths E, the

 extreme path derivaties F£ and F£ are identical to the extreme

 derivatives F' , and F' respectively. Thus Hájek's theorem [5] implies

 that F£ and Fģ are functions in Baire class two. Similar results hold for

 a Lipschitz function with the Lipschitz constant M, since the function

 F(x) - Mx is monotonie.

 We begin with a preliminary section giving the basic definitions. In §3

 we construct a Darboux Baire one function and a continuous function tailored

 to a nonporous system of paths with path derivative not being measurable and

 Borei measurable respectively. This shows that we can not drop the

 requirement that F is a Lipschitz function. We then continue by showing

 certain connections between the paths and the moduli of continuity of the

 function which still allows us to conclude that the extreme path derivatives

 are in Baire class two. Moduli of continuity are convenient tools to control

 the growth of functions. Here they are used to control the size of the gaps
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 in paths.

 2. Prel iminaries .

 2.1 Definition. Let x 6 [0,1]. A path leading to x is a set

 E C [0,1] such that x G E and x is a point of accumulation of E . A
 XX X

 system of paths is a collection E = {Ex: x € [0,1]} such that each Ex is a

 path leading to x.

 2.2 Definition. Let F: [0,1] - > R and let E = {Ex: x e [0,1]} be a

 system of paths. If lim F(y)~F(x) _ f(x) js finite, then we say that F
 r>x y x

 is E-differentiable at x and write F£,(x) = f(x). If F is

 E-differentiable at every point x € [0,1], then we say that F is

 E-differentiable.

 p ( 1 v ) - p r j j
 The extreme E-derivatives of F are lim sup - 1 v

 y"x

 yeEx

 F(y) ■*- - P( X )
 lim inf - F(y) ■*- -

 y-»x y x
 y€Ex

 tailored to a continuous function, we may alter E = {Ex: x € [0,1]} to

 Eļ J- = {E X : x e [0,1]}, where E X denotes the closure of E . J- X X X
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 2.3 Definition. Let A be a subset of the real line, R, and let

 A(A,xQ,h)
 xQ e R. Define P+(A,Xq) = lim sup

 h->0+

 length of the largest open interval in A f| (x^.x^+h). (A denotes the

 complement of A).

 Similarly define P_(A,Xq) and let P(A,Xq) be the larger of P+(A,Xq)

 and P_(A,Xq). Note that the numbers P(A,Xq), P+(A,Xq), P_(A,Xq) all lie

 in the closed interval [0,1] and that the larger P(A,xn) is, the larger are • U

 the gaps of A near x^. The numbers P+(A,Xq), P_(A,Xq) and P(A,Xq) are

 called porosity of A from the right, porosity of A from the left, and

 porosity of A at x^ respectively.

 2.4 Definition. Let E = {Ex: x e [0,1]} be a system of paths. (If

 E has any of these properties at each point, then we say that E has that

 property. )

 (2.4.1) E is said to be unilateral at x if x is a unilateral point of

 accumulation of E .
 x

 (2.4.2) E is said to be nonporous from the left (right) at x if Ex has

 left (right) porosity 0 at x.

 (2.4.3) E is said to be nonporous at x if Ex has porosity 0 at x.

 (2.4.4) E is said to be bilateral at x if x is a bilateral point of
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 accumulation of E .
 X

 2.5 Definition. A function u; will be called a modulus of continuity

 if u is defined for positive reals, is increasing, and lim w(x) =0. A
 x-*0+

 function F € C( [ 0 , 1 ] ) will be said to have u as its modulus of continuity

 and belongs to C(w) , if x,y € [0,1] implies |F(x)-F(y)| < u?(|x-y|). A

 modulus of continuity is called regular if w(Ax) < (A+l)w(x) where A e R+.

 (the positive reals). It readily follows from the definition of continuity

 that every F € C([0,1]) is in C(w') where w' is defined as follows:

 u' (6) = sup { |F(x)-F(y) I } .
 I x-y I <6

 It is clear that u' is a regular modulus of continuity, and u' (6) < u{6) ,

 for all w such that F € C(w) . The modulus of continuity w' is called

 the regular modulus of continuity corresponding to F. Note that the

 relations F e Lipí! and u' (S) < M¿a are equivalent.
 M

 2.6 Definition. Let F: R - > R be a function, the oscillation of F

 at a is defined as follows:

 OSC(F;a) = lim[sup F<z) " inf F(z) ' .
 ¿-»O La-5<z<a+¿ a-6<z<a.+6 .

 Throughout this paper A denotes the complement of A and N is the set of
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 positive integers.

 3 . Modulus of Continuity and Porosity.

 Example 3.1 shows the existence of a Darboux Baire one function, and a

 nonporous system of paths E such that F^, is not Lebesgue measurable.

 In example 3.2 we construct a continuous function and a nonporous system of

 paths so that is not Borei measurable. Remark 3.8 of [4] implies that

 F£ may also be nonmeasurable .

 Moduli of continuity are convenient tools to control the growth of

 functions. Here they are used to control the size of the gaps in paths. In

 Theorem 3.4 relations between moduli of continuity of a function and the

 sizes of the gaps are given. These relations guarantee that the extreme path

 derivatives are functions in Baire class two.

 Example 3.1: There exist a Darboux Baire 1 function and a nonporous system of

 paths E such that F£ exists everywhere, but it is not Lebesgue

 measurable.

 oo

 Let P be a cantor like set with positive ť measure and P = (J (c ,d ). ť u, n' n n=l

 For each n e N choose sequences {a }°° , , and {b }°° , with the
 n,m m=l' , , n,m m=l ,

 following properties:

 (i) lima=c limb=d,
 n,m ' n n,m ' n' m-*» ' unco '
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 (ii) c < a .. < a b <b _ < d ,
 n n,m+l .. n,m n,m n,m+l _ n' ,

 (iii) a - a , < - (d -c ) b , - b < - (d -c ) , n,m n,ra+l , n n n n,m+l , n,m n n n

 d + c
 j u n n

 and j a , = b u 1 =

 n,l , n,l 1 2

 On each subinterval (a , ,a ) define the function
 n,m+l' , n,m

 h (x) = 7 n.m ' 7 (x-a ,)(a -x) 7 (x-a ,)(a Y7 -x)
 ' n.m+l n,m L n,m+l n,m

 h (a ) = h (a , ) = 0 . n,m n,m n,m n,m+l ,

 Similarly J define h on each subinterval [b ,b ,]. The function J n,m n,m n,m+l

 '0 if x e P

 F(x) = <

 h n m (x) if x 6 [a n,m+l , , a ] U [b b n,m+l ] ^ n , m n,m+l , , n,ni n,in n,m+l

 is Darboux Baire one. Let A be a nonmeasurable subset of P. Define the

 system of paths E = {Ex: x € [0,1]} as follows: Ex = (x-¿,x+¿) C P for

 some positive 8 for x 6 P,

 Ex = { t : F(t) = t - x} for x 6 P'A,

 Ex = {t: F(t) = -t + x} for x e A.
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 The system of paths E is nonporous and Fģ exists everywhere but F£ is

 not measurable, since Fģ = 1 on P'A, and F£ = -1 on A.

 Example 3.2: There exists a continuous function F and a nonporous system of

 paths E = {E : X € [0,1]} such that F' exists everywhere but it is not
 X Hi

 Borei measurable.

 Let {Pn)*_i be an increasing sequence of positive real numbers tending

 to 1, so that

 lim n(l - p ) = ».
 n-*» n

 We construct a Cantor like set as follows:

 Remove an open interval ^ of length p^ from the middle part of the

 closed interval [0,1]. Call the remaining two closed intervals of equal

 length I. .. and I.. 0. Remove the open intervals J0 . and J0 0 ¿ of 1,1 i,z 0. ¿ , i 0 ¿

 length p0. ¿t 1 1, 1 n| 1 from the middle part of the closed intervals I. 1 , 1 and ¿t 1 , 1 1 , , 1

 I. 0 respectively. Call the remaining four closed intervals of equal length

 ^2 1' ^2 2' *2 3 an(* ^2 4' *n Senera^ stage we remove open

 intervals J„iV J„ 2. J„ 3

 from the middle part of the 2*1 * closed intervals I , ,, ' I ,
 n-1 , , ,, 1 ' n-1 , ,2'

 I n-^
 n-1, 2 remaining from the (n-l)th stage. Let P be the set which remains
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 when this process has been carried out indefinitely.

 The set P is perfect, nowhere dense, and has measure zero. Let I ^ ,

 I2, Ig, ... be the sequence of intervals contiguous to P in [0,1].

 Clearly lim 1 li I =0. Let I = (c ,d ). For each n e N choose sequences 1 n1 n n' n
 n-*»

 ^an k^k-1' ^n k^k-1 following properties:

 d + c
 , n n

 an , 1 n , 1 2

 c < a , , < a , b , < b , , < d
 n n,k+l , , n,k , n,k , n,k+l , , n

 a ,-a i , < - III 1 n1 b ,,-b ,<-111 1 n1 n,k ,-a n,k+l i , n 1 n1 n,k+l n,k n 1 n1

 lim a , = c lim b , = d
 k-*o n'k , n 1«. n'k , n

 lim!nJs±i = 1 lilnÍLk±i_= J.
 k-w an,k k-» n,k

 We now define our function F on the interval [0,1] so that each of the

 following is true:

 (i) F is continuous on [0,1],

 (ii) F vanishes on P U <lanjk>k=l U (bnik'k=1)n=1'

 (iii) F is differentiable on each I., ' i '

 ( a i - a ,
 / . „ n,k ! i n,k+l 2 , ,
 (iv) / . Fa „ , . + - ! n,k+l , . 4 n,k , n , '
 ' /
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 ( 3(a , - a , , )ì
 Fa +

 n,k+l 4 n,k n '
 '

 ( b , , - b ^
 ü u n.k+1 2 , , n.k n
 ü Fb u , + - 2 n,k , 4 n n,k ,
 ' /

 ( 3(b , , - b , )ļ
 o L n,k+l ' , , n.k , n

 F o L n,k ł
 ' /

 Choose a non-Borel measurable subset A of P. We construct a system of

 paths E = {Ex : x € [0,1]} in the following manner. For any x e A,

 define :

 Ex = { t : F(t) = t - x}.

 For x e P'A, define

 Ex = {t: F(t) = -t + x} ,

 and for x not in P, choose a positive number 6 small enough so that

 [x-í,x+¿] fi P = ¿. 1° this case we define E^ = [x-6,x+<5]. F is a

 continuous function defined on [0,1], and the derivative function F£ exists

 everywhere, and F£ = 1 on A, and -1 on P'A.

 We verify the fact that each path Ex is nonporous on both sides at x.

 Let us compute the porosity P+(Ex,x) for each x; similar arguments may be

 applied to obtain the left porosity.
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 For points x in [0,1]'P it is trivially true that P+(Ex,x) = 0.

 Let x be a point of A. If x is a bilateral point of accumulation of P,

 let us estimate the size of A(Ex,x,h) where h is a positive real number.

 If (a,b) is the largest subinterval of (x,x+h) that is disjoint from

 the set E , then because F is continuous either
 x

 F(t) > t - x everywhere on (a,b)

 or

 F(t) < t - x everywhere on (a,b).

 Consider the former situation. For this to be the case (a,b) must be a

 subinterval of some interval (a^ ^ C I. or (b^ k+ļ) C I^.

 Then

 A(Ex,x,h) (aik-aik+1)
 h - h

 ai.k ~ "i.k+1

 and since i tends to infinity as h tends to zero, this is arbitrarily

 small for h sufficiently close to zero. Alternatively, let us consider the

 latter situation. E misses the subinterval (c ,a , ) for which
 x n n,k ,

 Va ! - c < (a , - x) . So (a , - c ) < (a , - x) . Also E misses n,k ! n n,k , . n,k , n n,k , . x

 the subinterval (b . , .,d ) of I , for which Vd , - b . , . < (d , - x) .
 n',k'' . , n n' , n' , n',k' . , . n' ,
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 711,18 (dn' - bn,k'' * <dn' "

 2 2
 In this case (b - a) = A(E ,x,h) < (a , - x) + (d , - x) + X n,k n' ,

 (1 - p )h when c < - x + h < d and (d . - x) < h. We have
 n n - n n'

 A(Ex,x,h) (ank - x)2 + (dn, - x)2 + (1 - pn)h
 h - ! h

 < (dn, - x) + (ank - x) + (1 - pn).

 For small h, this expression is small too, and we have verified that

 P+(E ,x) = 0. Similarly P+(E ,x) = 0 when x = d for some n. When
 x x n

 x = c , E has at least one point in every subinterval (a , .. ,a , ) , so
 n x n j K"f i n j ič

 A(Ex,x,h) < (an k - an>k+1)

 A(Ex,x,h) an k - an M
 h - a . ,

 n,k+l . ,

 which could be as small as we please, as h tends to zero. So P+(Ex>x) = 0

 for every x € A.

 Similarly P+(Ex,x) = 0 for every x e P'A. The derivative function

 is not Borei measurable since {x: F|,(x) > 1/2} f| P = A which is not a

 Borei measurable set.
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 Lemma 3.3: Let F be a function defined on [0,1], e a positive real

 number, and OSC(F;a) < € for each a € [0,1]. Then there exists 'a

 continuous function g so that |F(x) - g(x) | < 2e .

 Proof: For each a e [0,1], since OSC(F.a) < e, there exists a 6_ > 0
 EL

 such that for all t, z € (a -6 ,a +6 ) , |F(t) - F(z) | < e . As the open â 3.

 intervals (a-5 ,a +6 ) form an open covering of [0,1], there exists a finite
 3. £1

 number of points a. e [0,1] such that the open intervals (a^-ia^, a^+<5^)

 form a covering of [0,1]. Without loss of generality we suppose

 0 = a, < a„ < a_ < . . . < a =1. Define 12 3 . . . n

 F(a.+1) - F(a. )
 H. i (x) = - i a.+1 -a. i i

 for i = 1 ,2, . . . ,n-l .

 Let g(x) = Hj(x) where x e [aj>ai+ļ] ^or i = l,2,...,n-l.

 The function g is a continuous function and for each x e [0,1] ,

 |g(x) - F(x) I < 2e.

 Theorem 3.4: Let E = {Ex: x € [0,1]} be a bilateral system of paths and

 {an)®_ļ be a decreasing positive sequence tending to zero so that

 E x fi [x-a n ,x-a n+ ..] x and E x f| [x+a n+ , x ,x+a ri ] are nonempty for each x e [0,1], x n n+ x x n+ , x ri

 Also let F € C(w) C C([0,1]) . Suppose the following:
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 (i) w( a ) • [1/a , - 1/a ] tends to zero. n n+1 , n

 (ii) w(a - a , )/a , tends to zero. n n+1 , n+1 ,

 Then

 a) if the function F is E-differentiable, e B^,

 b) 6 Eg, Ę, g B2.

 Proof : It is enough to prove the theorem for the right upper E-derivative .

 Let F (x) = sup{(F(t)-F(x))/(t-x) : t e E fļ [x+a .. ,x+a ]}. By continuity
 n x n+ l n

 of F(x), for every positive e, a positive S could be found so that

 |F(x) - F(y) I < e when |x-y| < 6. Without loss of generality assume that

 each Ex is a closed set, thus Fn(x) = (F(s)-F(x) )/(s-x) for some

 s € Ex fļ [x+an+i ,x+an] . For | y- x | < 6, Fn(y) = (F(t)-F(y) )/( t-y) for

 some t e Ey fl [y+an+i'y+an] ' so

 |F 1 n (I) - F n (y) J I ' = F(s) s-x - F(»' - F(t),- t-y F(y' = 1 n n J ' s-x t-y

 F(s) - F(x) _ F(t) - F(s) + F(s) - F(x) + F(x) - F(y)
 s-x t-y

 < - IPCs) 1 - Fix) I 1 . -i- - T±- + F(t) - F(s) + F(I) F(y' . - 1 1 s-x t-y t-y t-y

 But a , - < s - x < - a , and a , ~ < t - J y < ~ a . Hence n+1 , - - n , n+1 , ~ J ~ n
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 S-x t-y an+1 an

 So

 ' , t ļ w(a - a .. + 2 6)
 |F 'n (x) - F nJ|-na,a (y) ļ < u>(a ) 'n nJ|-na,a a. a. Ļ n+1 nj n+1 n+1

 when I X- y ļ < 6, which implies

 OSC(F ;x) = lim [ max F(z) - min F(z) ]
 n <5->0 x-6<z<x+6 x-S<z<x+6

 i 1 1 i Ì w(a - a n+1 . ) . 1 / ' 1 i 1 i n n+1 . . 1
 ~~ < una / ) ' ~~ n a , a a , TT 2 7 'n

 V n+1 , n; n+1 ,

 The assumptions (i) and (ii) imply that 7n tends to zero, and by lemma

 3.3, ' for each n e N, ' a continuous function g could be found so that- ' ' g &n

 |F (x) - g (x)| 1 < 7 for every x 6 [0,1]. 'n n 1 n

 When the function F is E-differentiable for each x e [0,1] we have

 F'(x) = lim F (x) = lim g (x); so F' e B .
 ł n n ëj i

 n-*» n-xx

 In general F¿(x) = lim sup F (x) = lim sup g (x); so FS, € B~. Similarly
 Ł n n ej ¿

 n-x» n-x»

 F£ is a function in Baire class two.
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 Remark 3.5: For w, a regular modulus of continuity, we have

 0 < w((a a ,)/ a ,) ~ < (1/a .. + l)w(a - a ,) = u/( a - a ,)/a , + n n+1 n+1 ~ n+1 .. n n+1 n n+1 n+1 ,

 w(a - a , ) . n n+1 ,

 Since {an} is a positive sequence tending to zero, if

 w( a - a ,)/a , tends to zero, ' w((a - a , )/a , ) vanishes as n gets b n n+1 n+1 , zero, ' n n+1 , n+1 , b

 large, which implies lim a /a - = 1.
 M» " °łl -

 For a system of paths E = {E^ : x € [0,1]} such that

 E " fi [x+a , ,x+a ] -¿.ò r for all natural numbers n, ' we have x " n+1' , ,x+a n r n, '

 A(E ,x,h) ( a v
 0 < P (E ,x) = lim sup

 + x h-»0 n-»oo t an+lJ

 which implies Ex is nonporous from the right at x.

 Remark 3.6: When w(5) > 18, ' and w(a -a , )/ a , tends to zero, ' the

 quantity ("1/a ,-1/a ) tends to zero as n tends to infinity.
 n+1 n

 2
 Proof: For each natural number n, ' (a - a ,) >0. Therefore

 , N 2 2a - a , fai , N n n+1 ,
 n _

 a , n+1 i
 Ļ n+lj ,

 which implies
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 a , 2a -a, , a-a, , -
 n

 2 a,- a a _ a," aa,~a, a'
 a , n+1 n n+1 _ n+1 n n+1 n+1 n n+1 ,

 Since the function F(x) = Vx is increasing for x > 0,

 '/ aLi Vi "
 Thus

 w(a -a .) /ā ^~a 7

 n n+1 > y n n+1 > / 1 1 > Q a, > ~~ a, ~ > a / a , a n+1 n+1 'y a n+1 , n

 w(a -a 1 ) - . s
 If

 a , a , a n+1 , n->« ^ n+1 , n)

 Remark 3.7: If u(6) > - 6a for some a, 0 < a < 1, and {a }°° , is a

 (X OL 1

 decreasing positive sequence tending to zero, with [w(an)] < an^an+ļ) •

 then

 1 1 1 W^an_an+1^
 w(a )

 n a , a ' a , L n+1 , nj n+1 ,

 Proof : Since u(6) > Sa for some a,
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 / ' CL CL CL r- i
 w(a / -a ,) (a -a ,) ' a a . r- f , _ 1 i ce

 n n+1 > n n+1
 3. - 3. . ^ 8i ^ Si ^ â
 n+1 - n+1 . ^ n+1 ^ L n+1 ^ n.

 Û p i / '
 a ■. -, O- ■> i |û
 n ■. 1 -, 1 / i ' ' oc ■> 1 i 1

 =

 t '1-Qt a , a ~ n a , a t (a , ) n+1 , n Ļ n+1 , n) n+l ,

 T ( Ma
 w(a ( ' ) 1 1 > - w(a ( ' ) - n a , a , ' V n+1 , n;.

 il lì w^an~an+l^
 which implies u( a )

 na, a a ,
 Ļ n+1 nj n+1 ,

 Lemma 3.8: If w is a regular modulus of continuity, then the function

 w*(t) = t inf íiíiíl is a modulus of continuity such that u is
 0<x<t x 1

 nonincreasing, and ^ w(t) < w*(t) <w(t).

 Proof : It is clear that w*(t) is defined for t > 0 and u

 is nonincreasing. If t^ < t^, and

 inf sdii < inf Mil ,
 0<x<tg X 0<x<tŁ x

 then

 inf aiil . inf -Ali
 0<x<t2 X tŁ<x<tg X
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 and hence wMtg) = inf (tg/xMx) > w(tj) > w*(t^). If < t^, and
 tl<x<t2

 inf w(x)/x = inf w(x)/x, then

 0<x<t2 0<x<tj

 w*(t J = t inf > ťl inf í4^' = w*(ti)-
 0<x<t^ 0<x<t1

 Thus w*(t) is increasing.

 Since w*(t) < w(t)

 lim w*(t) = O'.
 t~>0

 For 0 < X < t, let À = t/x. Then

 w(t) = • xj = w(Ax) < (A+l)w(x) < 2Aw(x).

 Hence

 o>(t) < jjj(x)
 t - X

 Thus

 w*(t) = t inf > t . = ia,(t).
 0<x<t x t j z

 Theref ore

 |w(t) < w*(t) < w(t) ,
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 and consequently the moduli of continuity w and w* have, the same order of

 convergence to zero as t tends to infinity.

 Remark 3.9: For a regular modulus of continuity w, since

 1 i i i an Ì
 0 < -L(a 1 ) - i

 - 2 n a , a a a ,
 Ļ n+1 , n) n (, n+1 ,

 w*(a ) f a ļ w*(a -a ,)fa -a ."I
 < n n ļ < n n+1 n n+1

 a a , - a -a , a ,
 n Ļ n+1 , ; n n+1 , Ļ n+1 ,

 u*( a -a , ) w(a -a , )

 a , - a , ' n+1 , n+1 ,

 we omit the condition (i) of Theorem 3.4.

 Corollary 3.10: Let F be a function of class Lipschitz a for some

 0 < a < 1 and let E be a system of paths. Suppose for all n e N,

 E f| tx - l/na,x - l/(n+l)a] * <f) and E f| [x + l/(n+l)a,x + l/na] * <j> for
 X X

 each x e [0,1] . Then

 1) if F is E-differentiable, then Fļ, e Bj.

 2> fÉ 6 B2- ÏÉ 6 B2 '
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 Proof : In order to fulfill the conditions of Theorem 3.4, we should show

 that w - ((n+l)a-na) and Cn+l)°w

 ol / ^ ' ol ol .n J L(n+1) / ^ ' n _

 to infinity. Since lim((n+l)a - na) = 0 when 0 < a < 1,
 n-xx

 / '

 u - ((n+l)a - na) tends to zero,
 a

 In J

 ( ) f )a
 Thus (n+l)°w

 ,na (n+l)aJ lna (n+l)a,

 = „Sił 2

 - " ' U° (n+l )a
 Since

 "l / '

 , . n n , . n , 1
 , lim .

 n-*» _na (n+l )a. n-*co na fn+lļa Inj,

 li» lim = li» lim

 iHco na n-*x (a-l)na

 ! ._ a fnCn+l)''' aļ a , ._ n(n+l)* a
 = ! lim ._ - :

 rHoo a (n+l) , a iHco (n+l)
 / '

 lim(n+l)°u;

 n-*co l.na (n+l)0,
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