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 DIMENSION PRINTS IN EUCLIDEAN SPACE

 Ne summarize the results given in a recent paper [4] and give some

 diagrams that were not given there. With each set S in IRn we associate a

 second set P(S), again in iRn, called the dimension print of S. These

 dimension prints are designed to give additional information concerning the

 fractal nature of a fractal set S that cannot be obtained solely from a

 knowledge of the Hausdorff dimension of S.

 In order to define the dimension print of a set, we first have to

 introduce a family of measures generalizing the Hausdorff measures (see, for

 example, [3]). We introduce a covering class » of "boxes" B that are

 rectangular parallelepipeds that do not, in general, have their edges parallel

 to the cordinate axes. When B is a typical box in » we use

 t > - tn > - ... - > e >0, 1 - 2 - ... - n

 to denote the edge- lengths of B, taken in decreasing order. For each

 non-negative vector a = (o^, an) , we introduce the measure /¿a
 defined by

 00 CO

 (ja{S) = sup inf { Z (C(B,))a: B. € », diam B, < 6, U B. => S },
 6>0 i=l 1 1 1 i=l 1

 using the multi-index notation wherein

 ,<* e = ,al , a2 ... ,an e = 61 , e2 ... en .
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 The dimension print of S is then the set P(S) of all non-negative vectors

 <x with

 As) > 0.

 It follows immediately, from this definition, that
 CO oo

 P( U S.) = U P(Si),
 i=l i=l

 for each sequence S^, Sg, ... of sets in iRn.
 We give illustrations of the dimension prints of a square, a cube, a

 cartesian product of certain regular Cantor sets, a circle, a sphere, a

 circular cylinder, and a twisted cubic curve. These sets are regarded, for
 3

 this purpose, as sets lying in (R . The dimension print of a linear set L,
 3

 regarded as a set in R , is just an interval lying along the aļ-axis with
 length equal to the Hausdorff dimension of L. The dimension print of a

 3
 planar set P, regarded as a set in IR , is just a copy, lying in the

 3

 (aļ,a2) -plane of IR , of the two dimensional dimension print of P, regarded as
 o

 a set in IR . All the diagrams are on the same scale as orthogonal

 projections onto the plane + <*2 + ag = 0. In each case we give a set of
 inequalities defining the dimension print as a subset of the positive octant,

 and also the successive dimensions of the set. These successive dimensions

 are just the intercepts that the dimension print cuts from the coordinate

 axes; the first is the Hausdorff dimension of the set, the sequence is always

 decreasing, but the decrease at each stage cannot exceed 1.
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 a3

 Figure 1. The dimension print of a
 square is defined by o^ + o^ £ 2,
 a2 - ^ ' a3 = ^e successive
 dimensions §ire 2,1,0.

 a3

 Figure 2. The dimension print of a cube is
 defined by Oj + »2 + 3, + 2,

 _< 1 ; the successive dimensions are 3,2,1.

 a3

 Figure 3. The dimension print of the cartesian product of three linear regular Cantor
 sets of dimensions d-j _> d2 >_ d^ is defined by a-j + + "3 - ^l + ^2 + ^3*
 a2 + a3 - ^2 + ^3' a3 - d3'ł the successive dimensions are dļ + d2 + d^, d2 + dg, d^.

 3 1 1
 The figure is drawn for the case when = 4" » ^2 = 2" ' ^3 = 4" '
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 a3

 Figure 4. The dimension print of a
 circle is defined by a-ļ + 2ct2 <_ 1>

 = 0; 'the successive dimensions

 are 1 , j ,0.

 a3

 Figure 5. The dimension print of a sphere
 is defined by a-ļ + + 2ag <_ 2,
 a-ļ + 2a2 + 2ag £ 3; the successive

 dimensions are 2,1^- ,1.

 a3

 Figure 6. The dimension print of a
 cylinder is defined by a-ļ + a2 + 2a^ £ 1 ,
 a2 + 2a^ £ 1; the successive dimensions
 are 2,1 , .

 a3

 Figure 7. The dimension print of a twisted
 cubic curve is defined by
 a-ļ + 2a2 + 3a3 £ 1, the successive

 dimersions are 1 , Jj- , y .
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 Although our examples are of very simple sets with very slupie dimension

 prints, rauch more conplica ted examples with more complicated dimension prints

 can be built up by taking countable unions of copies of known examples. The

 dimension print will, in general, be neither convex nor polyhedral, but it

 will always have the origin as a star centre.

 If a set S can be covered by a countable family of congruent copies of

 one of its subsets, say T, then T has the same dimension print as S.

 Thus, for example, any non-empty relatively open subset of a sphere will have

 the same dimension print as the sphere.
 00

 The examples have certain stability properties under suitably small C

 deformations . If the cube, the sphere or the twisted cubic curve are

 subjected to such deformations, their dimension prints will not change. If

 the square or circle are subjected to such deformations that leave them as

 planar sets, then again, the dimension prints will not change. If the

 cylinder is subjected to such a deformation that leaves a developable surface,

 the dimension print will not change.

 One should be able to confirm or refute some of one's intuitive

 impressions of fractal sets by calculating their dimension prints. For

 example, the Lorenz attractor (see, for example, [2]) appears locally to be

 like the union of an uncountable family of twisted cubic curves, the local

 cross -section being a Cantor dust, in the sense of Mandelbrot [1], with a

 small Hausdorff dimension. So the dimension print of the Lorenz attractor

 must contain that of the twisted cubic curve, but should not be a much larger

 set. Similar considerations might well apply to any fractal set chosen to
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 model cirrus clouds. One approach to the theory of turbulence is based on the

 idea that after a vortex sheet has developed, it becomes unstable and rolls up

 only to suffer similar instabilities on smaller and smaller scales. A model

 might well assume that the vorticity becomes concentrated on a fractal set

 with a dimension print including and rather similar to that of the sphere.
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