Cécile Pierson-Gorez, Université Catholique de Louvain, Institut Mathématique, B-1348 Louvain-la-Neuve, Belgium.

INTEGRALS ON UNBOUNDED INTERVALS AND CONNECTION WITH CONVERGENCE OF DOUBLE SERIES.

1. Preliminaries.

Let $I = [a_1, b_1[x...x [a_n, b_n[$ be a left-closed bounded interval of \mathbb{R}^n . We define the rate stretching of I, $\sigma_0(I)$, as in [1]

$$\sigma_0(I) = \max_{1 \le i \le n} (b_i - a_i) / \min_{1 \le i \le n} (b_i - a_i).$$

Now, let π be a P-partition of I, $\pi = \{(x^1, I^1), ..., (x^k, I^k)\}$. We consider the Mkhalfi irregularity of π introduced in [2],

where

$$\Sigma(\pi) = \max_{1 \le j \le k} \sigma(x^j, I^j) / \sigma_0(I)$$

$$\sigma(x^j, I^j) = \frac{\max\{\text{dist } (x^j, H_i^j) / i = 1, \dots, 2n \text{ and } x \notin H_i^j\}}{\min\{\text{dist } (x^j, H_i^j) / i = 1, \dots, 2n \text{ and } x \notin H_i^j\}}$$

$$H_1^j, \dots, H_{2n}^j \text{ are the planes delimiting } I^j.$$

If we have $\Sigma(\pi) \leq \eta$ for η fixed, the <u>partition</u> will be η -regular.

Finally, if f is a real function on \overline{I} , we say, like in [2], that f is (GM)integrable on I if there exists $J \in \mathbb{R}$ such that for each $\varepsilon > 0$, for each $\eta \ge 4$ there is a gauge δ on \overline{I} satisfying for each δ -fine η -regular P-partition π of I we have

$$|S(I,f,\pi)-J| \leq \varepsilon$$

where $S(I,f,\pi)$ is the Riemann sum associated to π .

2. Definition on three integrals on unbounded intervals

Let I be an unbounded interval of this type $I = I_1 \times I_2 \times ... \times I_n$ where $I_i = [a_i, +\infty [\text{ or }] - \infty, b_i [\text{ or }] - \infty, +\infty [$ for i=1,...,n, let f be a real function on \overline{I} ,

if there exists $J \in \mathbb{R}$ such that for each $\varepsilon > 0$, for each $\eta \ge 4$ there is a gauge δ on I and a real $r_0 > 0$ satisfying

(1) for every real $r \geq r_0$ and for every δ -fine η -regular P-partition π_r of I_, one has

$$|S(I_r, f, \pi_r) - J| \le \varepsilon$$

where $I_r = I \cap ([-r,r[x ... x [-r,r[).$

(2) for every vector $\overrightarrow{r} = (r_1, ..., r_n)$ with $r \ge r_0$ and for every δ -fine η -regular P-partition $\pi \xrightarrow{r}$ of $I \xrightarrow{r}$, one has

$$|S(I \rightarrow f, \pi \rightarrow f, \pi \rightarrow f) - J| \le \varepsilon$$

where
$$I \xrightarrow{r} = I \cap ([-r_1, r_1[x...x[-r_n, r_n[)$$

(3) for every vector $\overrightarrow{r} = (r_1, ..., r_n)$ with $r_i \ge r_0$ and $\sigma_0(I \xrightarrow{r}) \le \eta$, for every σ -fine η -regular P-partition $\pi \xrightarrow{r}$ of $I \xrightarrow{r}$, one has

$$|S(I \rightarrow f, \pi \rightarrow f, \pi \rightarrow f) - J| \leq \varepsilon.$$

In each case, if J exists, it's unique and we note it (SGM) $\int_{I} f$, (RGM) $\int_{I} f$ and (RRGM) $\int_{I} f$ (resp.).

Moreover denoting by S(I), R(I) and RR(I) the set of the (SGM), (RGM) and (RRGM)- integrable functions on I, we can prove the following inclusions $R(I) \subset RR(I) \subset S(I)$.

Among the properties of those integrals, we find, for two of these, a generalisation in multiple dimensions of Hake's theorem.

3. Three kinds of convergence for double series [3].

Let $\sum_{ij} a_{ij}$ be a double real series with partial sums $S_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}.$ One considers three types of convergence for $\sum_{ij} a_{ij}$: (4) <u>Square convergence</u> : $\sum_{ij} a_{ij}$ S-converges to A (A $\in \mathbb{R}$) (5) <u>unrestricted Rectangulary convergence</u> : $\sum_{ij} a_{ij} \mathbb{R}$ - converges to A if for each $\varepsilon > 0$ there is $n_0 \in \mathbb{N}^*$ such that (4) for every $n \ge n_0$, $|S_{nn} - A| \le \varepsilon$ (5) for every $m, n \ge n_0$, $|S_{mn} - A| \le \varepsilon$ (6) <u>Restricted Rectangulary convergence</u> : $\sum_{ij} a_{ij} \mathbb{RR}$ - converges to A if for each $\varepsilon > 0$, for each $\eta > 1$ there is $n_0 \in \mathbb{N}^*$ s.th. (6) for every $m, n \ge n_0$ with $\frac{\max(m, n)}{\min(m, n)} = \sigma_0 ([1, m+1[x[1, n+1[)] \le \eta n)]$ one has $|S_{mn} - A| \le \varepsilon$.

Trivially, the R-convergence of $\sum_{ij} a_{ij}$ implies the RR-convergence of $\sum_{ij} a_{ij}$ which implies it's S-convergence.

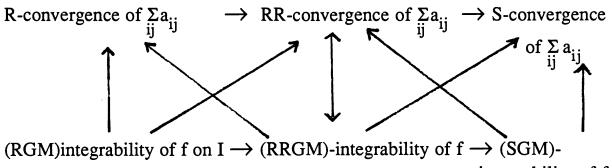
4. Relation between integrability and series convergence.

We recall that there exists already a connection between the Perron integral and the convergence of simple series. ([4]) Now for the double series, we can establish a relation between the integrals defined previously and the three types of convergence of $\sum_{ij} a_{ij}$.

Indeed, to each series $\sum_{ij} a_{ij}$, we associate a real function f on the interval $I = [1, +\infty] \times [1, +\infty]$.

 $f(x,y) = a_{ij} \text{ if } x \in [i,i+1[, y \in [j,j+1[(i \ge 1,j \ge 1).$

We can now prove the following diagram :



integrability of f.

On the other hand, one can find counter-examples for each implication which doesn't appear into this diagram except for one ; the implication between R-convergence of $\sum_{ij} a_{ij}$ and the (RGM)-integrability of f. This remains presently an open problem.

5. Remark.

One can prove that the S-convergence of $\sum_{ij} a_{ij}$ is equivalent to the (SGM)integrability of f when $a_{ij} \ge 0$ (but then all the convergences are equivalent to the absolute convergence; the (SGM)-integral is, in fact the Lebesgue integral and the result is already known) or when $a_{ii} = 0$.

References

- [1] J. MAWHIN, Czech. Math. J. 31(1981) 614-632.
- [2] A. MKHALFI, Bull. Soc. Math. Belgique 40B (1988) 111-130.
- [3] J. MARSHALL ASH, "Studies in Harmonic Analysis", Math. Ass. of America, Washington, 76-96.
- [4] J. MAWHIN, "Introduction à l'Analyse", Cabay (2ème éd.), Louvain-la-Neuve, Belgique (1981) p. 397.