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 0. Introduction

 0. 1 . Let f : Rn - + B. have a compact support. The PU-integral of
 f (over Hn) is defined as a limit of Riemannian sums

 J f(t^) ļ dx and denoted by (PU) J f dx ; here t* e supp f ,
 : Rn - ► [0,1] has a compact support and {^; i € i} is a par-

 tition of unity on supp f (I is a finite set). The definition of

 the PU-integral is given in Section 1. The main features of the PU-

 -integral are summarized in the following points:

 0.2. The PU-integral has the usual linear properties. It is an

 extension of the Lebesgue integral and in general it is nonabsolu-

 tely convergent (i.e., the existence of (PU) J f dx does not imply
 the existence of (PU) |f| dx ).

 «

 0.3. Let (PU) f dx exist. If $ : supp f - >-11 is of class
 (1) ^ f

 C , then (PU) f $ dx exists as well and, moreover,

 I (PU) ļ f * dx| S const, flłlj

 (with the C^-norm of <f> ) .

 The measurability of f follows from a suitable form of the Saks-

 -Henstock Lemma, and necessary and sufficient conditions are obtained

 for a functional F : - ► E. to have a representation in the form

 F(<1>) - (PU) J f ♦ dx .

 O.A. The usual transformation formula is valid for the PU-integral
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 and C^-diffeomorphisms; it follows that the PU-integral can be
 used for integration on manifolds.

 0.5. The Stokes1 formula holds on a domain with a smooth boundary

 for (n-l)-forms a) which are dif f erentiable everywhere with the

 exception of points of a set W , which may be e.g. an redimensio-

 nai manifold; oj has to fulfil some growth conditions near W and

 the growth conditions depend on the properties of W .

 0.6. Let g : Rn - ► R have a compact support, lš r S- n ,

 gC-x^ . . . ,-xr,xr+1> . . . ,xR) = - g(xļf . . . ,xr>xr+ļ, . . . ,xn)

 for X 6 Hn ,

 ' r 'l w 2 , "ł" , 2. • , 2 "ł" , + . 2. ( -r)/2
 ' | g r (x^ , . . . , 'l I * w , ••• "ł" , Xr) • , (xx "ł" , ... + .

 2 2

 for 0 < Xj+. . »+xr < 1 » x^ £ R , i « r+1 , . . . ,n , where A (a) ^ 0
 n o 0 0

 for a V 0 . For a > 0 put £2(o) = {x € It n ; x^ + . . . + ž o ļ

 and assume that (L) J g dx exists for every a > 0 . Then
 f ß(o)

 (PU) g dx exists and is equal to zero. In particular, if n = 1 ,

 r - 1 and if x is the characteristic function of the interval

 [-1/2,1/2] , then

 (PU) j xOO • (x|ln|x| I) dx - 0 .

 In general, if n ž 1 , if (PU) f dx exists and if k is a cha-
 n

 racteristic function of an interval in H , then (PU) f x dx

 need not exist.

 0.7* In case n = 1 the PU-integral can be introduced in a simpler

 way as a limit of integral sums which correspond to certain interval

 partitions.

 In Section 1 the definition of the PU-integral is given and,

 moreover, it is indicated that partitions required in the definition

 exist. Sections 2-5 contain some comments and details to 0.2 - 0.7.
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 The PU-integral has been treated in [1] and [2]. However, the present
 definition differs from the definitions introduced in the above

 papers; a richer set of integrable functions corresponds to the

 present definition in comparison with the previous ones, some

 proofs are simpler and some additional results are obtained.

 1. Definition of the PU -.integral

 1.1. NOTATION AND CONVENTIONS. Jx|| is the Euclidean norm of

 x €Rn, n € {1,2,...} .If t e Hn, p > 0 , then B(t,p) =
 - {x € Rn; I X - t|| < p} .

 Let qC Rn. The set 0 - {(t*,®.); i s iļ is called a system
 i i

 on Q , if I is a finite set of indices, t Ç Q , ô. (t ) > 0 ,
 / i ' 1

 : R - ► [0,1] is of class C and has a compact support for

 i 6 I and if J Ô. (x) ž 1 for x Ç Rn. A system 0 is called
 Í6-I

 a ?V-cover of Q , if

 {x; I Ô. (x) - l} D Q .
 i e I

 J dx is written instead of ļ ô^(x) dx .
 Rn

 1.2. DEFINITION. Let f : Rn - *■ R have a compact support , y ç R .

 y is called the ?V-integral of f and denoted by (PU) J f dx ,
 if for every e > 0 , K > 1 and L > 1 there exist such functions

 6 : supp f - ► (0,1] and ç : supp f * (0,1] - ► (O,00) that

 (1.1) ç(t,o) f » , oç(t,o) 0

 for every fixed t e supp f and a V 0» and

 I Y - I fit1) f Ô. dx| S e
 i € I J

 for every VM-cover 0 of supp f fulfilling

 (1.2) p± < õ (t1)
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 for i ç I j where = sup {||x - t^J; x 6 supp iSk} ,

 (1.3) ||Dôi(x)| ž ç(ti,pi)ôi(t1) for x e B(t1,pļ/K) , i€I,

 (1.4) if |Dô1(x)| > ç(t1,p.)ôi(t1) , then

 Dôi(x)(ti - x) ž £ IlD^íx) I • ||ti - xj

 (i.e., the angle of the vectors Dô^x) and t1 - x does not ex-
 ceed arccos 1/L ).

 The following theorem makes the above definition meaningful.

 1.3. THEOREM. There exist such Kq, Lq > 1 that if Q C
 compact 3 6 : Q - ► (0,1] , then there exists such a PU -cover 0 of

 Q that

 (1.2) Pļ < 6(tA) for i € I ,

 (1.3») Dô±(x) - 0 for x € B(ti,pļ/K0) , i € I ,

 (1.4') Dô.(x)(ti - x) žf- ||Dô (x) I • Jt1 - x U for xeRn, i€I .
 i o

 Theorem 1.3 follows from the next lemma provided regularization is

 applied to characteristic functions of the sets .

 1.4. LEMMA. Let Q C Rn be compact , 6 : Q - ► (0,1] . Then there
 exist such compact sets C and points t* 6 Q for
 i e I - a finite set - that

 (1.5) U H Dg , Int H O Int H = 0 for i * j ,
 iel J

 (1.6) 0 < < ó(t*) , where ■ sup {¡x - t*||, x€H^}, i€I ,

 (1.7) conv (B(ti,xļ/2) U ix}) C for x € H± , if I .
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 2. Basic properties of t'h e

 PU-integral

 2.1. Let PC I**1 be compact. For f : Rn - ► R , supp f C Q define

 the integral (PUQ) ļ f dx by the following change in Definition 1.2:
 use PU-covers of Q instead of PU-covers of supp f (and assume

 6 : Q - ► (0,1] , ç : Q X (0,1] - * (0,») ). Then we have:

 (2.1) If (PU) J f dx exists^ then (PUQ) J f dx exists as
 well and both integrals are equal.

 (2.2) If (PUQ) J f dx existsj then (PU) f dx exists as
 well and both integrals are equal.

 (2.1) and (2.2) imply that the map f t-* (PU) f dx is linear.
 «

 (2.1) follows immediately from the definitions, since it may be

 assumed without loss of generality that B(t,6(t)) O supp f = 0
 for t € Q ' supp f . The proof of (2.2) is more elaborate.

 2.2. In the same way as in [1] it can be proved that (PU) J f dx
 exists and is equal to (L) f dx provided the latter integral is
 finite.

 3. Multipliers of PU-integrable

 functions

 3.1. The same scheme as in [ 2 ], Section 4 can be used in order to

 prove the existence of (PU) J f <p dx for 4> € , and the ine-
 quality from 0.3 can be obtained along similar lines.

 3.2. LEMMA (Saks, Henstock) : Let (PU) j f dx existt e > 0 ,
 K, L > 1 . Find 6 , ç by Definition 1.2. Then
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 I ((PU) J f f ô. dx - f (t1) J | ô. 1 dx) S e i € I J J 1

 for every system 0 on supp f which fulfils (1.2), (1.3), (1.4).

 3.3. THEOREM. Let (PU) j f dx exist. Let U be the set of such
 t 6 supp f that for every n > 0 , L, K > 1 there exist such

 oit € (0,1] and Ç : (0,1] - ► (0,») fulfilling (1.1) that

 f ô dx - f(t) ļ ô dx ¿ n ļ ö dx

 provided ô : Rn - *■ [0,1] is of class with a compact sup-
 port and

 (1.2") 0 < p < u)t , where p » sup { ||x - tf; x E supp ô} ,

 (1.3") |Dô(x)| S Çt(p)»(t) for x e B(t,p/K) ,

 (1.4") if ||Dô(x)|| > Ct(p)ô(t) , then

 Dô(x)(t - x) žļ ||Dô(x) f • ||t - x I .

 THEN m (supp f ' U) - 0 , m being the Lebesgue measure in Rn.

 3.4. THEOREM. • Let (PU) f dx exist, NC supp f , m(N) = 0 ,
 e > 0 , K, L > 1 . Then there exist such 6 and ç that

 I (PU) f f Ô dx ś e
 i € I J

 for any system 0 - {(t1,^); i Ç- i} on supp f fulfilling (1.2),
 (1.3), (1.4) and t1 e N for i e I .

 The PU-integral can be characterized by the properties stated

 in Theorems 3.3 and 3.4.

 3.5. THEOREM. Let F : C^(Rn,lO - ► R , f : Rn - ►* . Assume that

 (3.1) supp f is compact .
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 (3.2) F is algebraically linear , F(ô) =0 if ö & ,

 {x; ô(x) * 0}n supp f = 0 .

 (3.3) There exists such a subset VC supp f that

 m(supp f ' V) « 0 and for every t € V , n > 0 ,

 K, L > 1 there exist such u>t e (0,1] and
 Ct : (0, 1 D - *■ (0,») fulfilling (1.1) that

 |F(ô) - f(t) j 6 dx| ¿ n j ô dx

 for any ô : Rn - ► [0,1] of class which has a
 compact support and fu l fi Is ( 1 . 2") , (1.3")» (1.4").

 (3.4) If N C supp f , m(N) =0, e>0, K, L > 1 ,

 then there exist such <5 and ç that

 I F(6 ) Ž e
 16 I

 for any system 0 = {(t*,^); i E i} fulfilling (1.2),
 (1.3), (1.4) and t1 e N for i € I .

 THEN (PU) j f dx exists and F($) ■ (PU) J f ô dx ' for
 ô e c(1)CRn,R) .

 4. Stokes' theorem

 4.1. The following theorem has a crucial role in the proof of

 Stokes' theorem :

 THEOREM. Let g : Hn - ► H have a compact support and let W be
 the set of such x € Rn that Dg(x) does not exist . Put

 |£-(x) for x £ Rn ' W ,
 <dxk

 0 for x € W .

 THEN (PU) ļ f^ dx = 0 provided one of the following conditions
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 holds:

 (4.1) n > 1 , W = {0} , g(x) = cř ( ¡I X ¡1 1 n) for x -»■ 0 .

 (4.2) n è 1 , W C {x; x^ = o} , g is continuous.

 (4.3) 2 Ź p < n , W C {x; x^ = x^ = • • • = x^ » 0} ,

 g(x) « «^((x^ + ... + Xp)(1-p)/2) uniformly for
 2 2

 x. + ... x - *■ 0 .
 1 ... P

 (4.4) There exist such k > 0 , S : W - ► (0,<*>) that

 £ °ļl~^ 1 * k for every set {(t*,a.); i € i} , iei 1 .1
 where t 6 W , 0 < < 6(t1) , ¡t1 - || Z

 for i * j , i, j € I , I being a finite set 3 g is
 continuous.

 (4.5) For every e > 0 there exists such a function

 6 : W - ► (O,00) that £ a" * £ e for every set
 iei

 {(t1,a1); iei} , where tieW , 0 < < 6(tx) ,

 ft1 - t^l *0^ aj f°r i * j » i, j 6 I , I being
 a finite set t g is bounded.

 (4.6) 2 Ž p < n , W C {x; xļ * x2 ™ • • • = Xp Œ ūļ and for
 every c > 0 there exists such a function

 6 : W - ► (0,°») that £ o"~*) ¿ e for every set
 i iel 7 i
 {(t i ,oi); iei}, where t1 6 W , 0 < < 6(t i ) ,

 Jt1 - t^| 2 a± + Oj for i * j , i, j e I » I being
 a finite set 3 g(x) - o((x^ + ... + x~) ^ P^/^j uni-

 2 2 ^
 formly for xŁ + ... + xp - *■ 0 .
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 5. An other approach to the

 PU-integral in case n = 1

 5.1. LEMMA» For every 6 : [0,1] - ► (0,1] there exists such a

 sequence

 (5.1) x0 < tj < Xj < ... < xk_i < tk < xk
 that

 (5.2) t^ *» 0 , tfc « 1 , t± - ¿(t^ < xi_ļ , xļ < tļ +
 i * 1,2, ... ,k f

 •

 (5.3) ti - (xļ_ļ + xļ)/2 » i " 1 »2, . . . ,k
 (cf. [3], [4]).

 5.2. DEFINITION. Let f : R - ► E , supp f C [0,1] , y £ R . y

 is called the AS ^-integral of f and denoted by (AS^) j f dx ,
 if for every c > 0 and K > 0 there exists such a
 6 : [0,1] - ► (0,1] that

 k

 Y - I f(t .)(x - X. .) še
 i-1

 for every sequence (5.1) fulfilling (5.2) and

 (5.4) xļ - t¿ ¿ (1 + K)(t± - Kļ.j) »

 t± - x^ £ (1 + K)(xt - t¿) .

 The definition was introduced in [3]; Lemma 5.1 makes it

 meaningful.

 5.3. THEOREM. Let f : R - ► R , supp f C £0,1] .If one of the

 integrals in

 (5.5) (PU) j f dx - (ASX) j.f dx
 exists t then the other exists as well and (5.5) holds.
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 5.4. NOTE. The AS^-integral is an extension of the Perron integral.
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