
 Piotr Mikusiński, Department of Mathematics, University of Central Florida, Orlando, FL
 32816

 Krzysztof Ostaszewski, Department of Mathematics, University of Louisville, Louisville,
 KY 402921

 Embedding Henstock integrable functions
 into the space of Schwartz distributions

 Introduction. In this work we show how the space of Henstock integrable functions

 of several variables can be viewed as a subspace of a certain space of Schwartz distributions.

 Also, we show how probability distribution functions axe multipliers for Henstock integrable

 functions, and generate continuous linear functionals on the space of Henstock integrable
 functions.

 1.1. Definition. Let Jo C Rm be the unit cube in the m-dimensional Euclidean
 space. A function / : I0 - » R will be termed Henstock integrable, with

 ii-L f(xx,x2,...,xm)dx1dx2...dxm (1)
 written for the value of the integral, if for every e > 0 there exists a positive function

 S : Iq - ► R (usually called a gauge) such that whenever

 * = - ••»*«)»£) : ¿ = 1,2,...,«} (2)
 is a partition of 7o, consisting of pairs of points in Iq and nonoverlapping subintervals of Io

 whose union is the whole Io, and such that for every i = 1, 2, . . . , n, (x',xl2, . . . , xlm) € Ii

 and Ii is contained in the ball centered at (a^ , x2 , • • • , xxm) of radius , x2 , . . . , x*m), we
 have

 IK f(xi,x2,...,xm)dxidx2...dxm I < e; (3)

 here À (J) stands for the m-dimensional volume of an interval I C Rm. Quite often we will

 simply write

 f fdX (4)
 Jit

 1 This author was partially supported by the University of Louisville Research Grants
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 for the Henstock integral of / over Jo .

 A partition ir as in (2), satisfying conditions listed between (2) and (3) will be called

 S-fine.

 We will also denote by / the indefinite Henstock integral of a function /, i.e.,

 fiX 2 fXm

 f(x i, #2, . • . , ^m) == I I ś • • / /(^ I5 ^2? • • • 5 ^m) dt'dt2 • • • ¿¿m =
 Jo Jo Jo

 IK /(¿15^2? • • • >^m)x[0,xi]x[0,x2]x[0,xm] dtļdtļ . . . dt m, (5)
 where XE denotes the characteristic functions of a set E CR.

 1.2. The class of Henstock integrable functions on Jo will be denoted by Tí. It is

 a linear topological space. In [8] and [9] it is shown that the space equipped with the
 Alexiewicz norm is barrelled, but it is not a Banach space. [6] and [8] discuss the dual of

 the space. The work in [8] is done in the two-dimensional case, but easily extends to the

 multidimensional one. [6] considers the dual of 'K for functions of one variable.

 Our intention is to describe the completion of the space and to further discuss its dual.

 Let us note that every Henstock integrable function /: Jo - ► R is a Schwartz distribu-

 tion (see [4], section 2.12).

 1.3. Definition. Denote by T the space of all distributions of order m with support

 in Jo, i.e., / € T if there exists a continuous function F:Jlm - ► R such that

 F(x ļ,x2,...,xm) = 0 if min{xi,x2,...,xm} < 0, (6)

 1 » 3*2 y •••) ••• i = F(Xļ , #2 if íC i ^ 1 for i 1,2..., 771, (7)
 dm F

 ^ dxidx2 • • • dxm ' ^ ^
 where the derivatives are understood in the distributional sense.

 For / € T and F as in (6), (7), and (8) define

 yXl />X2 firn
 / / ... / f(t1,t2,...,tm)dt1dt2...dtm = F(x 1,®2, •••,«»») (9)
 Jo Jo Jo

 for (xi,X2, . . . , xm) € Jo- Note that, for every f Ç. T there exists exactly one function F

 satisfying (6), (7), and (8). Thus the integral (9) is uniquely defined. Moreover
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 11/11= sup I F{xl,x2,...,xm)' (10)
 (®li*2

 is a norm on T . We will call it the Alexiewicz norm, as it is the same as the Alexiewicz

 norm introduced in [8] on the space of Henstock integrable function.

 1.4. Proposition. T is complete.

 1.5. Observation. Wcf.

 1.6. Theorem. T is the completion of 7ï.

 1.7. Remark. In the one-dimensional case it is known that every Henstock integrable

 function is almost everywhere a derivative of its indefinite integral. This implies that in *

 that case, Tí is of the first category in T. An easy example of an element of J- which is
 not in H is in that case a distributional derivative of a nowhere differentiable continuous

 function.

 2.1. We will turn now to our discussion of the dual of the space H. We have the

 following, as presented in [6] and [8]:

 In the one- dimensional case T is a continuous linear functional on 'K if and only if

 either of the following holds (all integrals used below are Henstock integrals):

 (a) There exists a finite signed Borei measure ut on (0,1] such that

 T(f)= f /(i)dw('), (11) Jo

 where, as usually

 A 3J

 /(*) = I f{t)dt. (12) Jo

 (b) There exists a function gx : [0,1] - »R of essentially bounded variation such that

 T(f)= f mST(t)dt. (13)
 Jo

 Being of essentially bounded variation is equivalent to having a signed finite Borei

 measure as a distributional derivative. If fig stands for that distributional derivative then

 integration by parts yields
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 í f(t)d(iT(t) = í f(t)dng{t) + /(1)/Í,((0,1]). (14)
 Jo Jo

 Notice that the expression /(l)/iff((0, 1]) is itself a continuous linear functional of /.

 As observed in [8] the description (a) easily extends to the multidimensional case.

 However, (b) uses the class of multipliers for the Henstock integrable functions (i.e., func-

 tions which multiplied by a Henstock integrable function produce a Henstock integrable

 function), which is not known in the multidimensional case.

 To simplify our considerations let us restict ourselves to the two-dimensional case,

 with Jo = [0, 1] X [0, 1]. This does not effect generality of the results.

 2.2. Definition. A function g : Io - ► R is of strongly bounded variation (see [4]) if

 for every x G [0, 1], g(x, •) is of bounded variation, for every y G [0, 1], g(-, y) is of bounded

 variation, and

 n

 sup ^2 l0(a«' c0 ~ 9{<*i,di) - g(bi, Ci) + g(bi, d¿)| < +oo, (15)
 t=i

 where the least upper bound is taken over all partitions of Jo into a finite collection of

 nonoverlapping nondegenerate closed intervals [a¿, í>¿] x [c¿, <¿¿], i = 1, 2, 3, ... n.

 Let us note that [4] contains the definition of a function of strongly bounded variation

 in the general multidimensional case.

 2.3. Theorem. (Kurzweil [4]) Every function of strongly bounded variation is a
 multiplier for Henstock integrable functions.

 2.4. It is not known whether the above is a complete characterization of multipliers.

 Our intention is to points out a specific subclass of the class of functions of strongly
 bounded variation.

 2.5. Definition. Let D stand for the class of two-dimensional distribution functions

 of finite signed Borei measures on (0, 1] x (0, 1]. For example, if /i is a positive measure

 then g^ € T> corresponding to it is

 y#i(®,y) = ^((0,*] x (0,y]). (16)

 The value of g^x, y) for x = 0 or y = 0 is unessential to us, we will assume it to be zero.

 In general, for a signed finite Borei measure ļi on (0, 1] x (0, 1] we will denote its

 distribution function by gß.
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 Also, we will denote by M the class of finite signed Borei measures on (0, 1] x (0, 1].

 A4+ will denote the class of positive measures in A4.

 2.6. Proposition. The elements of V are of strongly bounded variation.

 2.7. Corollary. A distribution function of a finite signed Borei measure is a multi-

 plier for Henstock integrable functions.

 2.8. Corollary. If g : Io - * R is equivalent to a distribution function of a finite

 signed Borei measure then g is a multiplier for Henstock integrable functions.

 2.9. Definition. Let Co denote the class of all continuous F : Jo -*■ R such that F is

 continuous and F(x, y) = 0 whenever x = 0 or y = 0.

 2.10. Proposition. Let f € H and fi 6 M. Then

 / / f(x,y)g^(x,y)dxdy =
 (16)

 /(1» 1) - / /(*» !)%(*, i)~ f /(M)<WM)+ / / ¡dp-
 J 0 J 0 J J Iq

 2.11. Remark. For ļi € M. the expression

 J f(x,y)g^,y)dxdy (17)
 is a continuous linear functional on H. We do not know, however, if (17) gives the general

 form of a continuous linear functional on Ti. As we stated in 2.1, [8] shows that the general
 form of a continuous linear functional on H is

 Ih ^
 where p € M.. Proposition 2.10 suggests the hypothesis that (58) is in fact another general

 form of a continuous linear functional on 'K. We were not able to either prove or disprove
 it.

 Also the following two problems axe very natural.

 2.12. Problem. Given a function g : Io - > R of strongly bounded variation, is there

 a n € M. such that g is equivalent to gß?
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 2.13. Problem. Given a multiplier g for Henstock integrable functions, is there a

 fi € M such that g is equivalent to gß1
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