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 by Ralph Henstock

 The origins of integration over function spaces are in papers

 of Einstein and Smoluchowski. Two integrals vital for theoretical

 physicists and theoretical chemists are given by Wiener and

 Feynman, though the latter never gave any mathematical formulation

 of that integral, and there is not even one integral sign in the

 1947 paper. We consider paths x(b) parametrised by a real

 variable b, such as the time, lying in an interval [a,+°°). The

 generalized intervals I we use are the set of those paths that,

 when b = bj, lie in the range

 u(bj)<x(bj)<v(bj) , u(bj)<v(bj) (1<j<n) , a<bļ<...<bn .
 A possible function of such I, is the integral

 _'fv(b1) fv(bn)
 P(I)= • • • p(x~,«.., X } C ) dx ,> « . « dx (C ~ (b.. , . . . ,b_) ) ,

 .Uib^ Ju(bn) 1 n 1 ,> « . « n in , . . .
 p(x^,..., xn ;C) - q (x ļ ;b ^ -a | x^) q ^2 ' ^2- ^ 1 1*1^ • • • q ' ^n- ^n- 1 ^ ^n- 1 ^ '

 with q obeying a consistency condition of Smoluchowski, Chapman,

 and Kolmogorov, namely, that for each fixed s in 0<s<t,

 00

 q (y ; 1 1 x) = q (z ; s | x) q (y ; t-s | z) dz .
 -OO

 For example, the path of a free spherical Brownian particle start-

 ing at time b = a from x = 0 has an attached probability measure

 constructed by taking xQ = 0 and
 q(y;t|x) = g(y-x;4Dt) with g(x;t) = ( tt t ) 2exp(-x /t) .

 D is the diffusion constant that depends on the viscosity and

 temperature of the medium and the radius of the Brownian particle.
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 When D = i, P(I) is the Wiener measure W (I) of I. Feynman used

 complex-valued q , one of them having D = i/4.

 The intervals at b = b.j ,b2, . . . ,kn are just like the edges of
 an n-dimensional rectangle and the whole collection of paths is

 the definition of the Cartesian product of intervals (-00 , 00) , one

 interval for each b . Thus in the division space setup we consider

 a Cartesian product of oņe-dimensional division spaces

 ((-oo^oo) fJfA) for each b>a, in the usual notation, where ^ is the

 collection of all intervals [u,v) on (-00 , 00) and A is the

 generalized Riemann setup that uses a function <5>0, together with

 the usual arrangements for -00 and +°°. Actually we use a general

 Cartesian product of arbitrary division spaces, whether

 one-dimensional or not. To prove that suitable divisions can be

 found, we prove compactness for a suitable topology on each

 separate division space and then use Tychonoff's theorem to show

 the compactness of the whole space. The topology comes from an

 unexpected source, the division space setup itself. An elementary

 set E is an interval or a finite union of disjoint intervals, and

 a division of E is a finite number of interval -points (I,t) such

 that the I are disjoint with union E. We now focus our attention

 on the points t, and the set E*(<5) or E*(U) of all t that are in

 the (I,t) for all 6-fine divisions of E, or for the corresponding

 divisions of E formed from members of a family ¡J of (I,t) that

 lies in A. The intersection E* of all such sets E*(U) is called a

 star-set , and it behaves very much like a closed set. In fact we

 construct a topology, the intrinsic topology , from the complements

 'E*. If P.J and P2 are two disjoint elementary sets contained in E
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 (called partial sets ) then PļuP2 also a partial set and

 (P^up^)* = P-ļ*uP2** Thus the intrinsic topology is the empty set
 with the complements 'P*. We assume that, given elementary sets

 P<=E, there is a U eA such that if TKP* and (I,t)eU then I*£E*'P*.
 ť

 This is reasonable since teE*'P* anyway. We also assume that the

 space is fully decomposable. Then E* is compact in the intrinsic

 topology . The easy proof is as follows. We need only consider

 covers of E* that are families of 'P*, so that each teE* lies in

 one of the 'P*, say, 'P(t)*. By full decomposability we can

 stick together parts of the up(t) to form another UeA dividing E,

 say with a division D. For (I,t)eD we have (I,t)eUpjtj, te'p(t)*,
 so I*=E*'P(t)*, and E* = udI*çude*'P (t) * . As only a finite number
 of (I,t) lies in D we cover E* by a finite number of 'P(t)* from

 the topology, and E* is compact. We now proceed via Tychonoff to

 the Cartesian product space, which is therefore compact. So

 every family of closed sets with the finite intersection property

 (every finite number of sets from the collection has a common

 point) has a common point. This is used to show that every

 elementary set in the Cartesian product space has a division, by

 using continued bisection or a similar construction. Note that

 the preceding remarks need much more technical detail if the

 space does not have the additive property.

 In countable Cartesian product spaces (sequence spaces) a

 result of Jessen holds, so that the integral is the limit of the

 corresponding integral over the first n terms of the sequences,

 i.e. integration in n dimensions, plus the limit of n. The

 integral over an uncountable Cartesian product also can often be
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 proved to be the limit of integrals over spaces of finite

 dimensions, which is a great help in evaluation.
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