Janusz Woś, Institute of Mathematics, Technical University, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland

ON APPROXIMATE DIFFERENTIABILITY AND BILATERAL KNOT POINTS

It is well known that for a measurable function f defined on the interval [0,1] we have $D_f = ADf = D^+f$ a.e. in $\{D^+f < +\infty\}$. (See [1], Theorem 2.) At the same time there are trivial examples of measurable functions f for which the approximate derivative ADf exists a.e., but almost every point $x \in [0,1]$ is a bilateral knot point, i.e. $D^+f(x) = D^-f(x) = +\infty$ and $D_+f(x) = D_-f(x) = -\infty$. In this note, answering a problem of K. M. Garg ([2], 10.3 Problem), we construct a continuous function with these properties.

Let us consider three sequences $\{c_n\}$, $\{d_n\}$, and $\{r_n\}$ of positive real numbers such that $\{d_n\}$ is decreasing, $c_n < d_n/2$, and

(1)
$$\lim_{n\to\infty} r_n d_n^{-1} = \infty$$
,

(2) $\sum_{n=1}^{\infty} c_n d_n^{-1} < \infty$,

(3)
$$\sum_{n=1}^{N-1} r_n c_n^{-1} \leq r_N/4d_N$$
 for each $N \geq 2$,

(4)
$$\sum_{n=N+1}^{\infty} r_n \leq r_N/4$$
 for each $N \geq 1$.

In order to provide some examples of such sequences let us take a sequence $\{u_n\}$ of numbers from the interval (0,1/2) satisfying $\sum_{n=1}^{\infty} u_n < \infty$, and let $\{w_n\}$ be an arbitrary sequence of positive real numbers which decreases to zero and satisfies the inequality $\sum_{n=1}^{N-1} (u_n w_n)^{-1} \leq (4w_N)^{-1}$ for every $N \ge 2$. Next, for arbitrary fixed number $p \ge 5$, put

$$r_n = p^{-n}$$
, $d_n = w_n r_n$, $c_n = u_n d_n$ $(n \ge 1)$.

It is easy to see that these three sequences have the desired properties.

Now, let $k_n = [d_n^{-1}]$ be the integer part of d_n^{-1} . For an arbitrary positive integer n and for an arbitrary $x \in [0,1]$ we put

$$f_{n}(x) = \begin{cases} (-1)^{i+1}r_{n}(1+c_{n}^{-1}(x-id_{n})) & \text{for } x \in [id_{n}-c_{n}, id_{n}], \\ i = 1, 2, \dots, k_{n}, \\ (-1)^{i+1}r_{n}(1-c_{n}^{-1}(x-id_{n})) & \text{for } x \in [id_{n}, id_{n}+c_{n}], \\ i = 1, 2, \dots, k_{n}, \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, each f_n is continuous and piecewise linear. Let $f(x) = \sum_{n=1}^{\infty} f_n(x)$. Since $|f_n| \leq r_n$, we have $\sum_{n=1}^{\infty} |f_n(x)| \leq \sum_{n=1}^{\infty} r_n < \infty$ by (4). Consequently, f is continuous.

Writing

1

$$f = \sum_{n=1}^{N-1} f_n + \sum_{n=N}^{\infty} f_n = g_N + b_N$$
,

we see that g_N is differentiable a.e. (Actually, being piecewise linear, it is differentiable outside a finite number of points.) and b_N vanishes on the set

$$A_N = [0,1] \setminus \bigcup_{n=N}^{\infty} \text{supp } f_n$$
.

However, by the definition of f_n and by (2), we have

$$\sum_{n=1}^{\infty} |\operatorname{supp} f_n| \leq 2 \sum_{n=1}^{\infty} c_n k_n \leq 2 \sum_{n=1}^{\infty} c_n d_n^{-1} < \infty ,$$

which yields

(5) $\lim_{N\to\infty} |A_N| = 1$.

Consequently, f is approximately differentiable a.e. by the Lebesgue density theorem.

Now, let $B_N = A_N \setminus ([0,2d_N] \cup [1 - 2d_N,1])$ and let $N \ge 1$ be fixed. Take arbitrary $x \in B_N$. By the definition of f_N there exist positive integers $1_1, 1_2, 1_3, 1_4$ such that

(6)
$$l_1 d_N < x$$
, $l_2 d_N < x$, $l_3 d_N > x$, $l_4 d_N > x$,

(7)
$$|l_j d_N - x| < 2d_N \quad (j = 1, 2, 3, 4),$$

and

(8)
$$f_N(1_1d_N) = f_N(1_3d_N) = r_N, f_N(1_2d_N) = f_N(1_4d_N) = -r_N.$$

Since $x \in A_N$, we have $f_n(x) = 0$ for $n \ge N$. Consequently,

$$\frac{f(1_{j}d_{N})-f(x)}{1_{j}d_{N}-x} = \sum_{n=1}^{N-1} \frac{f_{n}(1_{j}d_{N})-f_{n}(x)}{1_{j}d_{N}-x} + \sum_{n=N}^{\infty} \frac{f_{n}(1_{j}d_{N})}{1_{j}d_{N}-x}$$
$$= D_{1} + D_{2} .$$

By definition of f_n and by (3) we obtain

(9)
$$|D_1| \leq \sum_{n=1}^{N-1} \sup_{x \neq y} \left| \frac{f_n(y) - f_n(x)}{y - x} \right|$$

 $\leq \sum_{n=1}^{N-1} r_n c_n^{-1} \leq r_N / 4d_N.$

Moreover, by (4) we have

(10)
$$|\sum_{n=N+1}^{\infty} f_n(1_j d_N)| \leq \sum_{n=N+1}^{\infty} r_n \leq r_N/4$$
.

Now, let us consider the case when j = 1. Then $f_N(1_1d_N) = r_N$, by (8). Using (10), (6), and (7) we obtain

$$D_2 \neq 3r_N/4(1_1d_N - x) \neq -3r_N/8d_N$$

which, together with (9), yields

(11) $D_1 + D_2 \neq -r_N/8d_N$.

Since d_N decreases to zero and the sets A_N are increasing, the sets B_N are increasing and $|U_{N=1}^{\infty} B_N| = 1$, by (5). This, together with (11) and (1), implies that the lower left Dini derivative D_f is equal to $-\infty$ a.e.

Similarly, considering the cases when j = 2,3,4 we obtain that $D^{-}f = +\infty$, $D^{+}f = -\infty$ a.e., respectively.

We end this note with the following

PROBLEM. Let $Q = \{q_1, q_2, ...\}$ be a fixed sequence of positive real numbers decreasing to zero. Does there exist on the interval [0,1] a

continuous function f such that (a) f is approximately differentiable a.e., (b) almost every point is a bilateral knot point, and (c) the sequential path derivative $D_Q f(x) = \lim_{n \to \infty} (f(x + q_n) - f(x))/q_n$ exists a.e.?

REFERENCES

- J.C. Burkill, U.S. Haslam-Jones, The derivates and approximate derivates of measurable functions, Proc. London Math. Soc. 32 (1930), 346-355.
- [2] K.M. Garg, Some new notions of derivative, Memoirs Amer. Math. Soc. (to appear).

Received August 25, 1986