Janusz Woś, Institute of Mathematics, Technical University, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland

ON APPROXIMATE DIFFERENTIABILITY AND BILATERAL KNOT POINTS

It is well known that for a measurable function f defined on the interval [0,1] we have $D_{-f}=A D f=D^{+} f$ a.e. in $\left\{D^{+} f<+\infty\right\}$. (See [1], Theorem 2.) At the same time there are trivial examples of measurable functions f for which the approximate derivative ADf exists a.e., but almost every point $x \in[0,1]$ is a bilateral knot point, i.e. $D^{+} f(x)=D^{-} f(x)=+\infty$ and $D_{+} f(x)=D_{-} f(x)=-\infty$. In this note, answering a problem of K. M. Garg ([2], 10.3 Problem), we construct a continuous function with these properties.

Let us consider three sequences $\left\{c_{n}\right\},\left\{d_{n}\right\}$, and $\left\{r_{n}\right\}$ of positive real numbers such that $\left\{d_{n}\right\}$ is decreasing, $c_{n}<d_{n} / 2$, and

$$
\begin{align*}
& \lim _{n \rightarrow \infty} r_{n} d_{n}^{-1}=\infty, \tag{1}\\
& \sum_{n=1}^{\infty} c_{n} d_{n}^{-1}<\infty, \\
& \sum_{n=1}^{N-1} r_{n} c_{n}^{-1} \leqslant r_{N} / 4 d_{N} \text { for each } N \geq 2, \\
& \sum_{n=N+1}^{\infty} r_{n} \leq r_{N} / 4 \text { for each } N \geq 1 .
\end{align*}
$$

In order to provide some examples of such sequences let us take a sequence $\left\{u_{n}\right\}$ of numbers from the interval $(0,1 / 2)$ satisfying $\sum_{n=1}^{\infty} u_{n}<\infty$, and let $\left\{\omega_{n}\right\}$ be an arbitrary sequence of positive real numbers which decreases to zero and satisfies the inequality $\sum_{n=1}^{N-1}\left(u_{n} w_{n}\right)^{-1} \leq\left(4 w_{N}\right)^{-1}$ for every $N \geqslant 2$. Next, for arbitrary fixed number $p \geqslant 5$, put

$$
r_{n}=p^{-n}, \quad d_{n}=w_{n} r_{n}, \quad c_{n}=u_{n} d_{n} \quad(n \geq 1)
$$

It is easy to see that these three sequences have the desired properties.
Now, let $k_{n}=\left[d_{n}^{-1}\right]$ be the integer part of d_{n}^{-1}. For an arbitrary positive integer n and for an arbitrary $x \in[0,1]$ we put

$$
f_{n}(x)= \begin{cases}(-1)^{i+1} r_{n}\left(1+c_{n}^{-1}\left(x-i d_{n}\right)\right) & \text { for } x \in\left[i d_{n}-c_{n}, i d_{n}\right] \\ & i=1,2, \ldots, k_{n} \\ (-1)^{i+1} r_{n}\left(1-c_{n}^{-1}\left(x-i d_{n}\right)\right) & \text { for } x \in\left[i d_{n}, i d_{n}+c_{n}\right] \\ & i=1,2, \ldots, k_{n},\end{cases}
$$

Clearly, each f_{n} is continuous and piecewise linear. Let $f(x)=\sum_{n=1}^{\infty} f_{n}(x)$. Since $\left|f_{n}\right| \leqslant r_{n}$, we have $\sum_{n=1}^{\infty}\left|f_{n}(x)\right| \leqslant \sum_{n=1}^{\infty} r_{n} \leqslant \infty$ by (4). Consequently, f is continuous.

Writing

$$
f=\sum_{n=1}^{N-1} f_{n}+\sum_{n=N}^{\infty} f_{n}=g_{N}+b_{N}
$$

we see that $g N$ is differentiable a.e. (Actually, being piecewise linear, it is differentiable outside a finite number of points.) and b_{N} vanishes on the set

$$
A_{N}=[0,1] \backslash U_{n=N}^{\infty} \operatorname{supp} f_{n}
$$

However, by the definition of f_{n} and by (2), we have

$$
\sum_{n=1}^{\infty}\left|\operatorname{supp} f_{n}\right| \leqslant 2 \sum_{n=1}^{\infty} c_{n} k_{n} \leqslant 2 \sum_{n=1}^{\infty} c_{n} d_{n}^{-1}<\infty
$$

which yields

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left|A_{N}\right|=1 \tag{5}
\end{equation*}
$$

Consequently, f is approximately differentiable a.e. by the Lebesgue density theorem.

Now, let $B_{N}=A_{N} \backslash\left(\left[0,2 d_{N}\right] \cup\left[1-2 d_{N}, 1\right]\right)$ and let $N \geqslant 1$ be fixed. Take arbitrary $x \in B_{N}$. By the definition of f_{N} there exist positive integers $1_{1}, 1_{2}, 1_{3}, 1_{4}$ such that

$$
\begin{equation*}
l_{1} d_{N}\left\langle x, \quad l_{2} d_{N}\left\langle x, \quad l_{3} d_{N}\right\rangle x, \quad l_{4} d_{N}\right\rangle x \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left|1 d_{N}-x\right|<2 d_{N} \quad(j=1,2,3,4) \tag{7}
\end{equation*}
$$

and
(8)

$$
f_{N}\left(l_{1} d_{N}\right)=f_{N}\left(l_{3} d_{N}\right)=r_{N}, \quad f_{N}\left(l_{2} d_{N}\right)=f_{N}\left(l_{4} d_{N}\right)=-r_{N}
$$

Since $x \in A_{N}$, we have $f_{n}(x)=0$ for $n \geq N$. Consequently,

$$
\begin{aligned}
\frac{f\left(l_{j} d_{N}\right)-f(x)}{l_{j} d_{N}-x} & =\sum_{n=1}^{N-1} \frac{f_{n}\left(l_{j} d_{N}\right)-f_{n}(x)}{l_{j} d_{N}-x}+\sum_{n=N}^{\infty} \frac{f_{n}\left(l_{j} d_{N}\right)}{1_{j} d_{N}-x} \\
& =D_{1}+D_{2} .
\end{aligned}
$$

By definition of f_{n} and by (3) we obtain

$$
\begin{align*}
\left|D_{1}\right| & \leqslant \sum_{n=1}^{N-1} \sup _{x \neq y}\left|\frac{f_{n}(y)-f_{n}(x)}{y-x}\right| \tag{9}\\
& \leqslant \sum_{n=1}^{N-1} \quad r_{n} c_{n}^{-1} \leqslant r_{N} / 4 d_{N} .
\end{align*}
$$

Moreover, by (4) we have

$$
\begin{equation*}
\left|\sum_{n=N+1}^{\infty} f_{n}\left(1 d_{N}\right)\right| \leqslant \sum_{n=N+1}^{\infty} r_{n} \leqslant r_{N} / 4 \tag{10}
\end{equation*}
$$

Now, let us consider the case when $j=1$. Then $f_{N}\left(1 d_{N}\right)=r_{N}$, by (8). Using (10), (6), and (7) we obtain

$$
D_{2} \leqslant 3 r_{N} / 4\left(1{ }_{1} d_{N}-x\right) \leqslant-3 r_{N} / 8 d_{N}
$$

which, together with (9), yields

$$
\begin{equation*}
\mathrm{D}_{1}+\mathrm{D}_{2} \leqslant-\mathrm{r}_{\mathrm{N}} / 8 \mathrm{~d}_{\mathrm{N}} \tag{11}
\end{equation*}
$$

Since d_{N} decreases to zero and the sets A_{N} are increasing, the sets B_{N} are increasing and $\left|U_{N=1}^{\infty} B_{N}\right|=1$, by (5). This, together with (11) and (1), implies that the lower left Dini derivative D_{-f} is equal to $-\infty$ a.e.

Similarly, considering the cases when $j=2,3,4$ we obtain that $D^{-} f=+\infty$, $D^{+} f=+\infty, D_{+} f=-\infty \quad$ a.e., respectively.

We end this note with the following
PROBLEM. Let $Q=\left\{q_{1}, q_{2}, \ldots\right\}$ be a fixed sequence of positive real numbers decreasing to zero. Does there exist on the interval [0,1] a
continuous function f such that (a) f is approximately differentiable a.e., (b) almost every point is a bilateral knot point, and (c) the sequential path derivative $D_{Q} f(x)=\lim _{n \rightarrow \infty}\left(f\left(x+q_{n}\right)-f(x)\right) / q_{n}$ exists a.e.?

REFERENCES

[1] J.C. Burkill, U.S. Haslam-Jones, The derivates and approximate derivates of measurable functions, Proc. London Math. Soc. 32 (1930), 346-355.
[2] K.M. Garg, Some new notions of derivative, Memoirs Amer. Math. Soc. (to appear).

