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 SYMMETRIC FUNCTIONS WHOSE SET OF POINTS OF
 DISCONTINUITY IS UNCOUNTABLE

 An extended real function f(x) Is said to be symmetric if
 lim f(x+h)+f(x-h)-2f(x)«0,
 h-*0

 and symmetrically continuous if
 lim f (x+h)-f (x-h)»0.
 h-*0

 The investigation of the set of points of discontinuity for

 symmetrically continuous and symmetric functions dates back to

 1935 when F. Hausdorff [2] asked whether this set could be

 uncountable. An affirmative answer to this question for

 symmetrically continuous functions was given by David Preiss In

 1971 using a certain type of convergent Fourier series [6], but he

 left the question open for symmetric functions [4], In this paper

 we construct a measurable symmetric function f(x) discontinuous on

 an uncountable set. Furthermore, the function g(x)" Jf(x)j is
 another example of a symmetrically continuous function

 discontinuous on an uncountable set. We also construct such a

 function, which has c points of discontinuity in every interval.

 We note that [1], T5] a construction like this must fail for a

 measurable smooth function because the set of points of

 discontinuity of such functions has been shown to be scattered,

 and therefore countable.

 Example : There exists a measurable symmetric function, whose set

 of points of discontinuity is uncountable.

 Construction; Since the construction is complicated, it will pay

 496



 to have a rough idea of how it proceeds. We begin with the func-

 tion H(x) linear between any two consecutive of the points (0,0),

 (1/4,1), (3/4,-1), and (1,0), and H(x)«0 for x outside [0,1].

 Heuri8tically speaking, disjoint copies of the graph of

 jagged functions of the form pH(kx-r) will be successively placed

 above subintervals of [0,1]. Initially, a function fj is formed
 by placing eight copies with successive heights 1/4, 3/4, 1, 1, 1,

 1, 3/4, 1/4 In eight subintervals. On seven smaller Intervals

 between the eight, f^(x)«0. Then in each of the seven intervals,

 the function f 2 is formed by placing twenty disjoint copies with

 their heights increasing to the average height of f ^ on the two

 adjacent intervals, remaining at this average for four copies and

 then decreasing. Thus the graph of fj consists of 140 jagged
 functions in seven groups of twenty each. Nineteen smaller

 Intervals are retained between each of the twenty, where f2(x)»0,

 and the process is repeated in these Intervals. The sum of the

 resulting sequence of functions is f(x).

 We now begin the construction.

 Successive partitions of the unit interval:

 The unit interval [0,1] is divided into Nj-15 intervals
 denoted by 1(0), 1(1), ...,1(14) so that the length of even

 indexed intervals is d^, and the length of odd Indexed Intervals

 is Tļ, and dļ"(2*+l)rj"3rj. The unit Interval [0,1] is divided
 i 1 2 1+1 1+2

 into 2 * + 2 +2 + 7«31 subintervals of equal length r^.

 Let Cj-l/^j and note that r^c^. Stage 2 Intervals are
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 2i

 denoted by I(nj »^) »O^n^ N^, N^"2.2 +7, i«l,2 and n^ odd. They

 are formed as follows: each Interval Kn^) with n^ odd is divided

 into Intervals I(n^, n^) so that the length of intervals with

 even is dj, and the length of intervals with odd is r^, and
 2

 d2~(2 +I)r2"5r2» Each odd indexed interval Kn^) is divided into
 1 J 2 2+1 2+2

 2 * + 2 +2 + 7"119 subintervals of equal length r^. Let

 C2"l/119 and note that ^"CjCj. In general, stage k Intervals are
 0 4

 denoted by I(nj, . . . ,n^) , where O^n^N^, N^-2.2 +7, 1-1,2, ... ,k,

 and for l^k all n^ are odd. The intervals I(n^,..., n^) divide

 the interval I(n^, . . . , where nļ,...,n^_ļ are fixed and all
 2k

 odd, Into N^-2 . 2 +7 Intervals so that the length of the Intervals

 with n^ even is d^, and the length of the intervals with odd is
 2k

 r^, and ^"(2 +1)^. In effect, each interval with odd n^, l<k,
 is divided into 2^ + 2^** + 2^+^+7 equal length intervals of

 length r^. Each I(n^,...,n^) with n^ even contains 2 +1 of these;

 each I(n^,...,n^) with n^ odd consists of one of then. Let
 ^1r 21r+1 1r+2

 Ck-1/(2JK ^1r + 2 21r+1 + 2 1r+2 + 7); then r^Cj ,c2» . . We also

 determine the positions of the left endpoints of the intervals

 I(nj, . . . ,n^) . If n^ is even, the left endpoint of I(n^, . . . ,n^) is
 k-1

 (2 łOn^r^ plus the value of the left endpoint of the interval

 I(nļ,...,n^_ļ). If n^ is odd, the left endpoint of Kn^, . . . ,n^)

 is ( 2^~ V 1 ) 1x^^+2^" * r^ plus the value of the left endpoint of

 I(n. ,. . . , n^_ j) .

 Coefficients associated with subintervals:

 Since in our construction the heights of the jagged functions
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 depend on the positions of the subintervals above which they are

 placed, we define the coefficients P for stage k as follows: If

 n. Is even,

 P -(nk+l)/2Ä for O^Q-2

 P «(22k+1+7-nk)/22k for 2^+8^(2 . 2 2k+6

 P -1 for nk-22k, 22k+2, 22k+4, 22k+6.

 If Is odd, I(n^,...,n^) is adjacent to two intervals

 I(»j » • • • » ®®d •< jB^^jjn^+l) with n^±l even.
 Then define

 Pnļt- (Pnļc- 1+Pnj + 1 ) /2.

 Jagged functions for different stages:

 Recall the function H(x) linear between any two consecutive

 of the following points (0,0), (1/4, 1), (3/4,-1), and (1,0), and

 H(x)«0 for X outside [0,1]. On the other hand> because of the

 successive partitions performed above, each x in [0,1] has an

 expansion

 Z°° a.r. a."0,l,...,2 n i 03k.02k+l +2 +2 . -k+2, +6. a.r. a."0,l,...,2 n i +2 +2 . +6.
 k-1

 Since each interval I(n^, . . . »n^) with n^ even contains 2 +1

 intervals of length r^, a^ can have 2 +1 differenct values in the

 interval I(n^, . . . ,n^) . Note that those values of a^ may be even

 or odd. So in the expansion of x, ^ can have values
 11c 2k+l k+2 k-1 k-1

 between 0 and 2 +2 +2 +6. If ^*(2 +1) n^ r^+2 r^ where

 n^ is odd, then a^ is the left endpoint of I(n^ , . . . ,n^) .

 Otherwise a^ belongs to an interval I (n^ , . . . ,n^) with n^ even.
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 In the partition of stage 1, define f.(x)=Hf(x-e )/d.lP if
 I n ^ 1 n ļ

 a^ belongs to Kn^) with n^ even, and en is the left endpoint of

 I(nj), fļ(x)«0 if a^ is the left endpoint of an odd Indexed
 interval .

 In the partition of stage k, define

 fk(x)-H[(x-en ^ n^'Hc^n Pn lf al"",ak-l ar* th® left
 endpoint s of odd Indexed intervals with ni"aļ » • • • * an<*

 en^...n^ is the left endpoint of I(n^,...,n^) with n^ even which x

 belongs to, f^(x)"0 lf all a^,...,a^ are the left endpoints of odd
 indexed Intervals.

 The function f(x) Is then defined as follows:
 AO

 f(x)-2A.OO .
 k-1

 Note that each function f^(x) is continuous on [0,1], and
 f(x) is measurable and in Baire class one since f(x) is the limit

 m

 of the sequence of continuous functions

 hn(l)"¿fk(l)-

 Points of continuity and points of discontinuity of f(x):

 For each x in [0,1], consider the expansion

 V n ,1,»»»,2 ! o3kJ.92k+1J.9k+2J^ +2 +2 +6 X™ V a^r^ , a^-0 n ,1,»»»,2 ! +2 +2 +6 •
 k-1

 If there are a's belonging to an interval I(n.,...,n ) with
 P 1 P

 n even, n. odd for 1 p, then x is a point of continuity for f(x)
 P 1
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 since f(x)-f (x) in this interval and f (x) is a continuous function.
 P P

 Suppose all a^s are left endpoints of odd indexed intervals.

 Then we associate with x the infinite product
 m

 p(x)-n vx)- K k-1 K

 For simplicity, we write

 Pk(x)-P (x).
 OO K

 Thus P(x)-TT P. (x).
 k-1 K

 If P(x)-0, then x is a point of continuity for f(x) because

 the oscillation of f at x is 0.

 If P(x)) 0, then x is a point of discontinuity for f(x)
 because the oscillation of f at x is 2P(x).

 The set of points of discontinuity of f in [0,1] is

 uncountable since It contains the set E>ļx:P^(x)-l , k-l,2,...ļ,
 which is a perfect set, and at every x in E, the oscillation of f

 is 2.

 Symmetry of f(x):

 It is clear that f Is symmetric at any of Its points of

 continuity [7].

 Let x be a point of discontinuity for f. Then f(x)-0 and

 P(x)^0. It is well-known [3, p. 96] that if the infinite product
 TT 00
 TT ļļP. K (x) is positive, then Y l-P,(x)<oo. K Given Ł^O, choose N so k-1 K k-1 K

 00

 that Z 2(1-P (x))+8.2~2N_1/£.P(x)
 k-N
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 -2N-1
 where the coefficient 8 in the term 8.2 comes from the fact

 that the seven middle Intervals in the partition of each

 I(n^, . . . »^„ļ) with nj,...,nļt_ļ odd have, by definition, the same

 coefficient. Fix S}0 so that, for ļh l<f , x+h and x-h both

 belong to the Interval I(n^, . . . ,n^) . We will say that f at t is

 determined at the mth stage if t is in I(n!, nl,..., n') with n'
 i z m in

 even and nļ odd for l^m. There are three possibilities for a
 given pair x-h and x+h.

 a) The function f at x-h and x+h is never determined. In

 this case

 f(x+h)«f(x-h)-0.

 So f (x+h)+f (x-h) -2f (x)«0

 b) The function f Is determined at the mth stage at one point

 but not determined at that stage or an earlier stage at the other

 point. Without loss of generality, suppose f is determined at x+h

 at the mth stage but not determined at x-h at the mth or an

 earlier stage. Then m}N, and, by the definition of N:

 Pm(x)<l-£/2 and pm| ļ(x)<CL-S/2.

 Let a be the center of I(nl,...,n' .), to which x-h belongs,
 I m-i

 and suppose x-h belongs to l(nļ

 be the center of I(n.,...,n .), to which x belongs, and suppose x
 1 m-i

 belongs to I(n,,...,n ) , n . odd, l~l,...,m. Let c be the center
 1 III 1

 of I(nV,...,n" .), to which x+h belongs, and suppose x+h belongs
 1 m-i

 to Ifa'-', . . . ,n") , n" even, nV odd for i^m. Then c-b-b-a, and the
 1 m ni i
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 common length of the intervals I(n!,...,n' ,), I(n,
 i m-i i m- i

 I(n,ļ,,...,njļļ_ļ) is Since P^Cx) <1-^/2, we have [ x-bļ< E.rm_j .

 Let u be the center of Kn^ , . . . ,nffl) . Thenļx-uļ^£rm. Let v be the

 center of I(nļ , . . . ,n^) . Then it is impossible that

 I x-h-v J < ( 1 / 2-2£) rffl

 because then x+h would lie in lín'.'» . . . ,n" . ,k) with k odd, whose
 1 m-i

 center is 2b-v and f(x+h) would not be determined at the mth

 stage. That is, x-h is very close to the endpoints of

 I(nļ , . . . ,n^) , n^ odd, i«l,...,m, and x+h is very close to the
 endpoints of I(n7, . . . ,n") ,n" even, n'.' odd for i<m. Moreover, the

 i in ni i

 distance from x+h to I(nV» . . . ,nM . ,n") is less than 3£r and thus
 i m-i in in

 f (x+h) ¿ H (3€r /d )
 X mm

 /4.3£r /d <12£/2®+l v mm

 because the slope of H(x) is 4 for x^l/4 or x^3/4. On the other

 hand, the minimum distance from x-h to the Intervals

 I(n, n',) adjacent to I(n!,...,n') is less than 2£r . So by
 i mz i i m m

 the definition of the coefficents and by proportionality,

 Ptn+l(x"h) < 2i/(23m_1+22®)

 because there are 23®~*+22® Intervals of length r on each side of
 m

 the seven middle Intervals of a copy at the mth stage. Thus

 |f(x-h)| < 2€/(23m"1+22m),

 and |f(x+h)+f(x-h)-2f(x)ļ < 12 I /(2m+l)+2 £ /(23®_1+22®) .

 c) The function f is determined at x+h and x-h at the same

 stage; say the mth stage. Let

 k-N
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 Then for M«N, N+l , . . . ,m-l ,

 M

 (*) ļQM(x-HO-QM(x-h)ļ^ 2(l-Pk(x))+8.2"2k_1

 will be proved by induction on M.

 First we prove (*) is true for M-N. Suppose x+h and x-h

 belong to the sane copy at stage N in the interval l(n^, . . . ,n^_p

 with n^ i • • • ļ odd •

 If x+h and x-h belong to two Intervals I(n^,...,n^ ^ n^) and

 iOa^, . . . ,n^_j ,n^+2) with two consecutive even indices n^ and

 then by the definition of the coefficients P , we have

 ļ PB(*+h)-PN(*-h)| - |Pntļ"Pn[+2 ļ < 2/22N-2_2N-1 4
 Ut ..23,'-1+22H.I>d b-Z38"1«28«8^

 and let e be the left endpoint of I(nj, . . . •

 If e(x-h<x<^c+h<Vł-ar^ then

 l-PN(x)^ PN(x+h)-PN (x)

 l-PN(x)^. PN(x)-PN(x-h)

 Thus 2 ( 1-PN (x) ) ^ PN (x+h) -PN (x-h) .

 If e<x-h<x^e+arN(x+h ^e+br^, then
 -?N- 1

 2(l-PN(x))^PN(x+h)-PN(x-h)+8.2 .

 If e^x-h^x ^e+br^^x+h, then with k"e+br^-x,

 ļpN(x+h)-pN(x-h)ļ - ļpN(x+k)-PN(x-k)ļ

 ^2(1-Pn(x))+8.2"2N_1

 So in the case in which x+h and x-h belong to the same copy

 at stage N, we have

 ļ Qn (x+h) -Qn (x-h)| ^2 ( 1 -PN (x) )+8 . 2"2N" 1
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 Now suppose x+h and x-h belong to two differnet copies of the

 Nth stage. Let I(nļ,...,n^) with nļ,...,n^ odd, be the interval

 to which x-h belongs; I(n^

 Interval to which x belongs; and I(n", . . . ,n|J) with n'ļ,...,n^ odd,

 the Interval to which x+h belongs. Since the partitions of the

 intervals I(nļ, . . . ,n^_j) , and I(n'j , . . . »oļJ_ļ) are

 similar, consider the subintervals I(n^, . . . ,n^_^,n^) and

 I(nj,...,nļļ_ļ,nļJ), which correspond respectively to I(nļ,...,n^)

 and I(n'j, . . . ,n|ļ) .

 Then P(x-h)«P, and P(x+h)-P„
 N °N N °N

 where P , and P lt are the coefficients associated with the
 °N °N ,

 intervals I(nj, . . .n^^.n^) and I(nj, . . . .n^^n^) . Thus

 |pN(,rfh)-pH(*-h)Hpni-pj
 N N

 42(1-Pn(X))+8.2"2N"1

 because the intervals I(n^, . . . ,n^_^,n^) and I(n^, . . . ,n^_ļ,n^)

 belong to the same copy of stage N. Thus (*) is true for M»N.

 Suppose (*) is true for H»p:

 P

 J Qp (x+h) -Qp (x-h)|4 £2 (1-Pk(x) )+8 . 2~2k_1
 k-N

 Then

 ļQp+l(x+h)-Qp+1(x-h)ļ-ļQp(x+h).Pp+1(x+h)-Qp(x-h).Pp+1(x-h)ļ
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 ^[(yx+lO-yx-h) ļ .Pp+1 (x+h)+Qp(x-h) . |pp+1 (x+h)-Pp+1 (x-h)ļ

 4¿ |2(1-P (x))+8.2"2k_1>2(l-p p (x))+2"2(p+1)'1 k-N p
 because of the previous results.

 Now, since f is determined at x-h and x+h at the mth stage,

 let D equal the distance from Kn.,.,.,!! ) to Kn1,' , . . . ,n") and
 in l in

 note that D also equals the distance from I(n.,...,n ) to
 1 . m

 I(n! , . . . ,n') . Let k"h-D-d . Then
 is in

 (x+h) -Q^ (x+h) . f^(rfk)

 and (^(x) . f (x-h)"<^(x-h) . f^Cx-k) .

 Finally,

 1 If (x+h)+f (x-h)j ^ 1 lOm 1 (x+h) . f^íx+kJ-K^Cx-h) . fm(x-k)ļ 1 (^(x) 1
 y 1 ļ Qm(x+h)-Qm(x-h)ļ . fffl(x+k) + (^(x-h) . j fffl(x+k)+fm(x-k)J

 N1"£ ^ ť_L«+2- 2) ^ l-£

 since jfm(x+k)+fa(x-k)J ^ 4 rm/dm"4/ (2m+l) <C 2 m ^2 .

 Thus for N sufficiently large, ļ f (x+h)+f (x-h)-2f (x)j is small and

 f (x+h)+f (x+h)-2f (x)"o(l) .

 Notes: 1) Pre is s' example of a function satisfying

 lim f (x+h)-f (x-h)"0

 h-*0

 depends on the existence of a certain type of convergent Fourier

 series [6].

 An explicit example can be obtained by the function

 g(x)- Jf(x)J
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 where f(x) is the function just studied. For at each point of

 continuity of f (x) , g(x) is also continuous. At points of

 discontinuity of f(x), f(x)"0. Thus at points of discontinuity,

 we have

 ļg(x+h)-g(x-h)ļ" j ļf(x+h)j -jf(x-h)ļ J

 • ļf (x+h)+f (x-h)j if f(x+h) and f(x-h) have opposite
 signs

 - ļf (x+h)-f (x-h)J^ ļf (x+h)+f (x-h)| if f(x+h) and

 f(x-h) have the same sign.

 Thus lim g (x+h) -g (x-h) -0 .
 h-»0

 2) Since the uniform limit of a sequence of symmetric

 functions is symmetric [7], it is possible to construct such a

 function which has c points of discontinuity in every interval.

 In fact* let g j (x) be the function f (x) , which was constructed.

 Assume f(x)-0 if x is not in [0,1]. Let Ij-Ja^, b^] be one of the

 largest intervals in [0,1], on which g ^ has no points of
 discontinuity. Let

 g2(x)-gļ(x)+2"4f [(x-ap/O^-aj)].
 In general, let I ,-[a , ,b .] be one of the largest

 n- i n- i ti- i

 intervals in [0,1], on which g^ ^ has no points of discontinuity,
 and let

 8n(x)"8n-lW+2"2 «'"-'.-['"'.-rVl1 1 •
 Then g (x) converges uniformly to a function f(x). Since

 n

 each successive function g (x) has c points of discontinuity with
 n
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 -2n
 oscillation of 2 on [a b ] , and since

 n, n

 on S o1
 2 > Z 2

 i"n+l

 these are also points of discontinuity of g. Thus, g has c points

 of discontinuity in each Interval.

 This manuscript is part of the author's doctoral dissertation

 which was written at the University of Missouri at Kansas City.

 Special thanks is extended to Professor James Foran for his

 suggestions, encouragement, and guidance.
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