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 NOWHERE MONOTONE AND CANTOR FUNCTIONS

 1 . Introduction*

 To each real-valued function f on an interval [a,b] we can associate

 an extended real-valued function (called the associate of f ) by

 a[f]<t) - Sup f ( (a, t ] ) , t € [a,bj.

 Clearly, a(fj is a nondecreasing function« and when f is bounded, a(f] is

 real-valued and a(ct[f]] * a[fj- Other obvious properties are a[fVg] "

 a(f)Va[g) and a['f] ■ Xa(f] for X ^ 0. As the title of the paper

 indicates, we are interested in studying continuous functions f* The

 continuity of f implies the continuity of its associate a(f)« In the

 sequel, we shall call a[f] trivial if a[f] is constant.

 If f is the well-known continuous, nowhere dif ferentiable function of

 Weierstra8s (see [7], page 351) and the closed interval is [0,1], then

 at-f ] , the associate of -f, is a nonconstant function whose intervals of

 constancy form a dense subset of [0,1]« (See [5] for a discussion of the

 denseness of the set of local extrema of nowhere dif ferentiable functions*

 For dif ferentiable functions, see the theorem of Zalcwasser concerning the

 denseness of the set of local extrema, [12] or (1], page 44*) The

 well-known Cantor ternary function F also has the property that the

 intervals of constancy of F form a dense subset of (0,1]. We make the

 following definition*

 1*1 Definition* For a continuous function f: [a,b] ->R, we define the' set

 of constancy of _f as
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 K(f) ■ <x 6 (a,b)| f is constant on some neighborhood of x>.

 A continuous function f is called a Cantor function when its set of

 constancy K(f) is a dense, proper subset of [a,b].

 (In [1]» A. Bruckner refers to our Cantor functions by the name

 Cantor-like functions. We use the shorter name of Cantor functions in the

 present paper* The well-known Cantor function will be called the Cantor

 ternary function to avoid confusion«)

 For a continuous function f: [a,bj -» R, its set of constancy K(f) is

 relatively open in [a,bj and the set

 P(f) - [a#b] ' K(f)

 is dense-in-itself , hence perfect« Moreover, when f is a Cantor function,

 P(f) is nonempty and nowhere dense in (a,b).

 In section 2 we investigate associates of continuous functions. The

 main results are: If f is a continuous, nowhere monotone function, then

 it s associate a(f) is nondecreasing and is a Cantor function when ct(f] is

 not trivial (Theorem 2.3). If f is in addition dif f erentiable, then alf]

 i s dif f erentiable except possibly at countably many points (Theorem 2.5

 and Example 2.8) . Conversely, if <*q is « nondecreasing Cantor function,

 then there is a continuous, nowhere monotone function f^ such that alfņ] 9

 <Xq (Theorem 2.9). If ctQ is in addition dif f erentiable , then there is a

 dif f erentiable Íq which is nowhere monotone and a(fQ) ■ öq*

 Next, in section 3, we investigate the class of dif f erentiable Cantor

 functions. To begin, we prove an analogue of a theorem of C. Goff man

 (Theorem 3.2). We also prove an analogue of a theorem of C. Weil (Theorem

 3.8). These analogues are proved for the purpose of studying non-monotone

 Cantor functions. (Monotone Cantor functions were studied earlier in

 [11], [2] and (I].) Consider the following generalization of nowhere

 monotone functions.
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 1*2 Definition« a real-valued function f defined on a interval I in S is

 said to be nowhere monotone modulo intervals of constancy » if, whenever f

 is monotone on an open interval J contained in Ī, f is constant on J.

 (Here, we allow 1 to be unbounded.)

 Our main theorem in this section is the existence of different iable

 Cantor functions which are nowhere monotone modulo intervals of constancy

 (Theorem 3.4).

 Finally, in section 4, we investigate the relationship between Cantor

 functions and the mono tone- light factorization of continuous functions*

 Our main results of this section are characterizations of Cantor functions

 in general and Cantor functions which are nowhere monotone modulo

 intervals of constancy (Theorem 4.4). Also, a second existence theorem

 for different iable Cantor functions which are nowhere monotone modulo

 intervals of constancy is proved (Theorem 4.5).

 2. Associates of continuous functions.

 In this section we present some properties of associates of

 continuous functions.

 2.1 Proposition. Let f: (a,b) -* R be continuous and <x[f] be its

 associate. If x € P(a(f])> then f(x) » a(f)(x).

 Proof . We prove the contrapositive statement. Suppose f(x) £ a[f)(x).

 Then f(x) < a(f](x) and x * a. There is 8 > 0 such that f(t) < a(f](x)

 for t € (x-8, x+8) O (a,b], and 8 < x-a. The set <u € [a,b)| f(u) *

 a(f)(x) and u $ x> is not empty and is closed. Hence, it has a maximum

 element xQ. Clearly, xQ ^ x-8 and a[f](xQ) * a[f](t) for t £ (x-8, x+8) Í1

 [a,b]. We have shown that x € K(a[f])«
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 2*2 Corollary» If P(alf]) is somewhere dense in [a,b], then f is strictly

 increasing on some open subinterval of [a,b]*

 Observe that K(f) C K(a(f)) and hence P(f) O P(a(f))* One can easily

 construct an example to show the converse of Corollary 2.2 is not true.

 2*3 Theorem« Let f be a continuous, nowhere monotone function on [atb].

 Then its associate a(f] is either trivial or a Cantor function* Indeed,

 it will be a Cantor function when and only when f(a) < f(x) for some x in

 {a,bj.

 We next investigate the differentiability properties of associates*

 2*4 Proposition* Let a(f] be the associate for a continuous function f on

 [a,b]* Then the following three statements are true*

 (1) a(f] is differentiate at each x in K(ct[f]) and its derivative is

 zero*

 (2) If f is dif f erentiable at an x in P(a[f)) for which (x-8, x) fl

 P(a(f]) * 0 for each 8 > 0, then ct(f] is also dif ferentiable at x and the

 derivative of a[f] at x is equal to f*(x).

 (3) If f is dif ferentiable at an x which is a right end-point of a

 component of K(a[f]) and is not b (and hence x £ P(a[f]))> then a[f] has a

 left derivative at x equal to zero and a right derivative at x equal to

 f '(x).

 Proof * The first assertion is obvious*

 To prove the second assertion, let x be as in that assertion* By

 Proposition 2*1, we have f(x) « a[f](x)* So, for h < 0, we have

 f(x+h^- f(x) ^ affKx*h) - aif Kx)
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 Hence ,

 f(x) ^ ~ gffH*+h?.- .
 h-»0- n

 Because a(f] is a nondecr easing function, there is a sequence hn such that

 hn < °* hn "* 0% x+hn € p<<*tfl> and

 lllB q[f l(x-fhn) - g[f )(x) _ af f Kx+h) - affKx)
 n-Mo h~ h->0- h

 n

 Since f(x+hn) ■ alf ) (x+hn) » we have that the left derivative of a[f] at x

 exists and equals f'(x).

 We next compute the right derivative of a[f] at x. Suppose (x, x+Sq)

 fi P(a(f]) ■ 0 for some 8q > 0. Then, (x, x+8q) C K(a(f])* Consequently,

 x is a point of local maximum for f. Since f'(x) exists, f'(x) ■ 0.

 Clearly, the right derivative of a[f ] at x is also zero when such a 8q

 exist s. Finally, suppose (x, x+8) fl P(a(f]) É 0 for every 8 > 0* Because

 a(f) is nondecr easing, there is a sequence h^ such that hn > 0, hn -> 0,

 x+hn € P(«(f J), and

 llm «tf»(x+hn> - at^K») _ - «ffĶ»*) - gffĶx> t
 n-*o n h-*0+

 Moreover, for h > 0,

 affKx+h) - affHx) . f<x+h) - f<¡x^
 h h

 Since affJCx+h^) ■ f(x+hn), we have that the right derivative of aif) at x

 exists and equals ff(x)*

 We have proved that the right and left derivatives of a[f] at x exist

 and are equal to f9(x). The second assertion is now proved.

 As for the proof of the third assertion, we find that its two

 conclusions are consequences of parts of the proof of the second

 assertion« The details are left to the reader. Moreover, we remark that
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 a detailed analysis of the Dini derivates of f and its associate a[f] can

 be made from the above calculations*

 2*5 Theorem* If f is dif f erentiable on [a,b], then its associate a(f] is

 dif ferentiable at each x in [a,b] with the possible exception of the right

 end-points of the components of K(a(f])* At these exceptional points x,

 the left derivative of a(f| <t x is zero and the right derivative of a[f]

 at x is ff(x), when x 56 b.

 In the remainder of the paper, we will be using approximately

 continuous functions and the density topology (4]* For the convenience of

 the reader, we summarize the relevant facts about the density topology.

 The density topology consists of all Lebesgue measurable sets which have

 metric density equal to one at each of their points* Consequently, any

 set of measure zero is closed in the density topology* Clearly, the

 Euclidean topology is contained in the density topology* The set of

 approximately continuous functions is precisely the set of all real-valued

 functions which are continuous in the density topology* And, finally, the

 density topology is completely regular but not normal* In the sequel, we

 will use the modifiers MEuclidean,v and "density topology ,v when we are

 dealing with topological conditions*

 The next proposition will be used in Example 2.8 and Theorem 2*9,

 below*

 2*6* Proposition* Let (a,b) be a bounded open interval* Then there is a

 dif ferentiable function f 2 f? (0,1] with the properties

 i* f ' is a bounded, approximately continuous function;

 2. <x I f'(x) > 0) and <x | f'(x) < 0) are Euclidean dense subsets

 of (a,b) ;

 and,
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 3, f(x) « 0 for X $ (a,b).

 Proof . In [ 3 ] » C. Goff nan gives a simple construction of an approximately

 continuous function 0: R -► (-1,1) such that <x | 0(x) > 0> and <x | 0(x) <

 0> are Euclidean dense in R. Let X be a positive number and define 0^: R

 -♦ R by

 0x(t) - t (1-t) [(0(t) V 0) + X(0(t) A 0) ] ,

 t g R. Then 0^ is approximately continuous. For x € R» define

 ♦(x) - <*t.

 By choosing X appropriately» we may assume ♦( 1 ) ■ 0. Because $'(0) ■ 0 «

 ♦'(1)» there are two numbers Xq,x^ in [0,1] such that

 ♦<xQ) ^ ♦(x) ^ ♦(x^

 for x € [0,1] and *v(Xq) ■ 0 ■ ♦,(xļ). Using the restriction of £ to the

 interval between Xq and Xp one easily constructs the required function.

 2*7. Corollary. Let U be a bounded open subset of R. Then there is a

 dif ferentiable function f : R -+ [0,1] with the properties

 1. f1 i s a bounded, approximately continuous function;

 2. <x I f'(x) > 0} and <x | f'(x) < 0> are Euclidean dense subsets

 of U;

 and,

 3. f(x) ■ 0 for x $ U.

 2.8 Example. There is a dif ferentiable, nowhere monotone function f:[0,l]

 -> R such that its associate a(f ] is not dif ferentiable.

 Proof . For the open intervals (0,1/2) and (1/2,1), let fg and f^ be the

 corresponding functions given by Proposition 2.6. Let x^ G (1/2,1) such
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 that € P(a[fļ]) and fļ(x^> > 0« Next» let ■ max fg(R). Then > 0

 and f^(x^) > 0. Define f: 10» 1] -► R by

 f ■ -v- '» + f' • -v- f° v £>-
 Then,

 f i<xi) 11 a[f] - 11 a{f0J V al^l-

 Consequently» a(fj is not different table at x^.

 2.9. Theorem* Let ag: (atbl fi be a continuous, nondecreasing function.

 Then there is a continuous function f q: la,b] -> R such that a[fQ] * <Xq and

 f g is dif ferentiable and nowhere monotone on K(<Xq)* If a q is a

 (dif ferentiable) Cantor function then fg is a (dif ferentiable) nowhere

 monotone function* Finally, fg can be chosen so that its total variation

 does not exceed ag(b) - 3()(a) + 1*

 Proof . With U equal to the Euclidean interior of K(cCq)» let f be the

 function given by Corollary 2.7. Let fg » <Xq - f* Clearly, f can be

 -1

 chosen so that |f'(x)| $ (b-a) -1 for all x Ç R. Then, J |f'(x)| dx, the

 total variation of f on (a,b], does not exceed 1.

 3. Dif ferentiable Cantor functions.

 In the previous section, we referred to [3] in which C. Goff man

 showed a connection between the existence of a dif ferentiable, nowhere

 monotone function and the density topology. In this section, we will

 extend Goffman's analysis to dif ferentiable Cantor functions. (See [2] and

 [1] for earlier works on Cantor functions.) We will %show a connection
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 between the existence of a dif f erentiable function which is nowhere

 monotone modulo intervals of constancy and the density topology«

 Furthermore» we will investigate the derivatives of dif f erentiable Cantor

 functions in the spirit of C. Weil [8]« In particular» we will generalize

 Weil's theorem concerning typical functions in the space Aq of bounded

 derivatives # for which #""*(0) is dense. (See also (1)» page 34» for a

 discussion of Weil's theorem«) To this end» we make the following

 definition.

 3.1 Definition. Let U be any subset of R. Then bA(U) will denote the set

 of bounded derivatives # for which 0~*(O) D U.

 Clearly» if f:[a»b) -> R is a dif f erentiable Cantor function with bounded

 derivative» then f g bA(K(f)). Conversely» if U is an open» dense subset

 of [a»b]» and # g bA(U)> then the dif f erentiable function f given by

 f(x) - J> t) dt » X € ( a » b ] »

 is either a constant function or a dif f erentiable Cantor function with f

 - 0.

 For the convenience of the reader» we give a brief summary of facts

 about derivatives. Suppose f : R -> R is a dif f erentiable function and let

 Z(f') ■ <x I f ' (x) ■ 0>. The set Z(f') is a G^-set and each component of

 Z(ff) is a closed subset of R. Let Zq be the union of the nondegenerate

 components of Z(f'). Then» Z(f') ' Zq may have the cardinality of the

 continuum. Indeed» it was pointed out in (2] that Z(ff) ' Zq has the

 cardinality of the continuum when f is a dif f erentiable Cantor function.

 Finally» with X ■ R ' Zq» we infer from [10] (or £ 1 J > that» if (u»v) is

 any open interval for which (u»v) 0 X is not empty» then (u»v) fi X has
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 positive measure.

 Because our interest is in the set where a dif f erentiable function is

 not locally constant, we are interested in sets X which satisfy the

 following two conditions:

 Completeness : X is topologically complete; i.e., X is a G^-set in R.

 Metric density: If (u,v) is any open interval for which (u,v) (1 X is not

 empty, then (u,v) f| X has positive measure (or, equivalently , the density

 topology interior of (u,v) f| X is not empty).

 We are now ready to generalize a construction of C. Goff man [3]«

 3.2 Theorem. Let Zq be a subset of R such that X ■ R ' Zq satisfies the

 completeness and metric density conditions above. Then there is a

 bounded, approximately continuous function 0: R -> [-1,1] such that <x j

 0(x) > 0} and <x | 0(x) < 0} are Euclidean dense subsets of X, 0~*(O) fi X

 is Euclidean dense in X, and 0~*(O) D Zq.

 Proof . Let V be the density topology interior of X. The metric density

 condition of X implies V is Euclidean dense in X and V is locally

 uncountable at each point of V. Let ■ {z¿ | i » 1,2,...}, D+ « <p¿ | i

 » 1,2,...} and D~ ■ <n¿ | i ■ 1,2»...) be three disjoint, countable

 subsets of V which are Euclidean dense in V. Since D^, D+ and D~ are

 countable sets, they are closed in the density topology. For any i, we

 have that F+ ■ D° U D* U (R ' V) is a density topology closed set not

 containing p^. By the complete regularity of the density topology, there
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 is an approximately continuous function 0*: R -> (0,1] such that 0^(P¿) ■ 1

 and 0*(x) - 0 for x € F+. Let 0*(x) ■ E -rr 0*(x), x € R» Then 0+ is an
 1 i-1 2 1

 approximately continuous function on R into (0,1] such that 0+(x) > 0 for

 x € D+ and 0+(x) ■ 0 for x 6 F+. Analogously, there is an approximately

 continuous function 0 on K into [0,1] such that 0~(x) > 0 for x 6 D~ and

 0~(x) ■ 0 for x € F~, where F~ ■ D+ U U (R ' V). Let 0 ■ 0-1"- 0". Then

 0: R -> (-1»1J» and 0(x) ■ 0 for x g D° U (R ' V). Since ZQ ■ R ' X c R '

 V, the theorem is proved. (The above proof is only a slight modification

 of that given by C. Goff man. We have included it here for the sake of

 completeness • )

 3*3 Corollary. Let Zq be a subset of R such that X ■ R ' Zq satisfies the

 completeness and metric density conditions above. Let W be the Euclidean

 interior of Zq. Then, there is a function f: R -► R which is nowhere

 monotone modulo intervals of constancy, has K(f) ■ W, and has a bounded

 derivative.

 Proof. Let f(x) ■ I 0(t) dt, x € R» where 0 is the approximately
 Jo

 continuous function of Theorem 3.2.

 3.4 Theorem. Let Pq be any nonempty, nowhere dense, perfect subset of

 [0,1]. Then there is a Cantor function f of bounded variation on (0,1]

 such that f is nowhere monotone modulo intervals of constancy and P(f) ■

 Pq. Moreover, if Pq satisfies the metric density condition above, then f

 may be chosen to have a bounded derivative also.

 Proof . Let P^ be a nonempty, nowhere dense, perfect subset of (0,1) such
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 that satisfies the completeness and metric density conditions above.

 (Such a set P^ is easily constructed.) We may assume that 0 € Pļ when 0 €

 Pq and 1 g P^ when 1 € Pq* Let h: [0,1] -» [0,1] be a homeomorphism such

 that Pj ■ h(PQ). Corollary 3.3 provides a Cantor function f: (0,1) -> R
 A A A

 such that P(f) ■ Pjt f has bounded derivative, and f is nowhere monotone
 a

 modulo intervals of constancy« Let f ■ foh. Since h is a homeomorphism,

 we have that f is of bou.nded variation, P(f) ■ Pq and f is nowhere

 monotone modulo intervals of constancy.

 3.5 Remark. Monotone, dif ferentiable Cantor functions have been

 constructed earlier in (i), page 35, and in (11). Clearly, they are

 easily constructed by using # V 0, where 0 is the approximately continuous

 function from Theorem 3.2. The above Theorem 3.4, however, demonstrates a

 new and different kind of pathology for Cantor functions.

 We next consider an extension of a theorem of C. Weil (8). The

 following is an elementary observation.

 3*6. Proposition: Let X be a Gg subset of a complete metric space Y and

 let F be any nonempty set of bounded, real-valued functions f of Baire

 class one with f~"*(0) fļ X dense in X. Then, the uniform closure of the

 vector space spanned by F is also a set of' bounded, real-valued functions

 f of Baire class one with f~*(0) fi X dense in X.

 Proof . The proof is a simple application of the Baire Category Theorem.

 The important fact is that f~*(0) is a G^-set when f is of Baire class
 one.
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 3« 7 Definition» Let Zq be a subset of £ and denote K ' Zq by X. Then»

 Aq(Zq) is the subset of bACZg) which consists of those bounded derivatives

 0 with the property that 0~*(O) 0 X is Euclidean dense in X.

 When Zq ■ 0, Aq(Zq) is the class Aq defined by C . Weil (8). When Zq

 is an F^-set, we have from Proposition 3.6 that Aq(Zq) is a complete

 metric space with the uniform metric.

 3.8 Theorem# Let Zq be a subset of R such that X ■ R ' Zq satisfies the

 completeness and metric density conditions above. Then, the set of

 functions 0 € Aq(Zq) which are positive on one Euclidean dense subset of X

 and negative on another Euclidean dense subset of X form a residual subset

 of Aq(Zq) .

 Proof . Let <In> be an enumeration of those open intervals I with rational

 end-point s and I fi X not empty. For each n, let

 En - <0 € Aq(Zq) I 0<x) £ 0 for all x € In>

 and

 Fn - <0 € Aq(Zq) I 0<x) $ 0 for all x £ In>.

 Clearly, each E^ and F^ are closed in Aq(Zq). We will show that En is

 nowhere dense in Aq(Zq).

 Let 0 £ En and 8 > 0. We assert that there is a point Xq in the

 density topology interior of (1 X for which 0(Xq) <8. To see this,

 consider two cases. First, suppose 0~*(O) D In* Then, the metric density

 condition satisfied by X implies In 0 X has a nonempty density topology
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 interior* Let Xq be any point in this nonempty set* Second, suppose 1^ '

 0*1«)) t' 0 • Then, for € In ' 0~*(O), we have 0(x^) > 0. Because

 0-1(O) fi I £ 0» we have from the Oarboux property of 0 that the set A. ■
 n o

 <x 6 I I 0 < 0(x) < 8} is not empty. From Theorem 2.1 on page 87 of [1J,

 we have that has positive measure. Since 0 € Aq(Zq) C bA(Zg), we also

 have Ag c In fi X. Let Xq be any point in the density topology interior of

 A^ . Then 0(Xq) < 8. This completes the proof of our assertion. Next,

 let D be a countable, Euclidean dense subset of (1^ f| X) ' <Xq> and denote

 by W the density topology interior of (In fi X) S D. Since the density

 topology is completely regular, there is an approximately continuous

 function 0: R -» (0,1] such that 0(xq) ■ 1 and 0(x) ■ 0 for x <£ W. One
 A A A

 easily verifies that 0 € Aq(Zq). With 8 such that 0(Xq) < 8 < 8 » we let
 A A

 0g ■ 0 - 8 0. Then 0g £ Aq(Zq) and the uniform distance between 0 and 0^
 A

 is 8* To see that 0. & E . we observe that
 o n

 08(xo> - 0(xo) - s *(xQ) - 0<xo) - 8 < 0.

 This completes the proof of the nowhere denseness of in Aq(Zq).

 Since -0 € E if and only J if 0 G F » we have that F is also nowhere n J n » n

 OP

 dense in Aq(Zq). Clearly, Aq(Zq) ' U (E n U F n ) is precisely the set of n= 1 n n

 0 in Aq(Zq) for which <x | 0(x) > 0> and <x | 0<x) < 0) are both Euclidean

 dense in X. This subset of Aq(Zq) is residual in Aq(Zq). This completes

 the proof of the theorem. (The proof is essentially the one given in (8)

 and in (1], page 34. The major difference is the use of Theorem 2.1 on

 page 87 of [1] in the proof that E^ is nowhere dense in Aq(Zq).)
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 3.9 Remark* Clearly, the above Theorem 3.8 is of interest only when

 Aq(Zq) has a nonzero member. By Theorem 3.2, this occurs when R ' Zq

 satisfies the completeness and metric density conditions above« Also, the

 above Theorem 3.8 yields, in a very imprecise sense, that a typical

 dif ferentiable Cantor function is nowhere monotone modulo intervals of

 constancy* The imprecision is due to the lack of a metric which makes

 this set of functions into a complete metric space«

 4. A Characterization of Cantor functions«

 We begin this section with a brief summary of monotone- light

 factorizations of continuous mappings from analytic topology. (See (9]

 for a reference«)

 Let X and Y be compact metric spaces and f : X Y be a continuous

 map« Then, we have the following definitions:

 _1 . The map f is said to be monotone if f~*(y) is connected for

 each y € Y«

 2« The map f is said to be light if f~*(y) is totally disconnected for

 each y € Y«

 There is associated with the continuous map f: X -* Y a decomposition of X

 into continua given by

 Df " I C is a component of f~*(y) for some y € Y> .

 The decomposition Dj is upper-semicontinuous« Hence m X/D^, with the

 quotient topology, is metrizable« The natural projection map : X -*

 is a continuous, monotone map; and, the map SL^: Y given by &f(<C>) *

 f(C) (?»£~*(<C)) m C) is a continuous, light map« Hence, f has a

 mono tone- light factorization given by
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 X ) Y.

 M{

 When X is an interval and f is not constant, the space Mf is an interval

 and nif is a nondecreasing, continuous function when is appropriately

 parametrized. Let us suonar ize the above discussion into the following

 theorem.

 4.1 Theorem* Suppose f: [a,b] -> R is a nonconstant, continuous function.

 Then» there is a nondecreasing» continuous» onto function (a,bj -»

 (c,d) and there is a light function [c,d] R such that f - &fOJHf

 Moreover, K(f) ■ K(mf) and K(Ä^) » 0.

 The following propositions are easily proved.

 4.2 Proposition. Let a: [&»b] -» (Cfd) be a continuous, nondecreasing,

 onto function and let g: fc,d) -> R be a continuous function. Then K(goa)

 ■ K(a) U a~*(K(g)). Hence, if g is also a light function then K(goa) =
 K(a).

 4.3 Proposition. Let a: [a,b] -* [c,dj be a continuous, nondecreasing,

 onto function and g: [c,d] -* R be a continuous function. Then goa is of

 bounded variation when and only when g is of bounded variation.

 The following theorem is now easily proved.

 4.4 Theorem. Let f: [a,b] -» R be a continuous nonconstant function and f
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 ■ be its »onotone- light factorization» with : [a»b] -» (c,d]

 nondecreasing and onto, and 4^: [c,dļ -> R. Then the following statements

 are true.

 (1) The function f is nowhere monotone modulo intervals of constancy when

 and only when ^ is nowhere monotone»

 (2) The function f is a Cantor function when and only when is a Cantor

 function.

 The next existence theorem follows easily from the above.

 4.5. Theorem » There is a Cantor function (respectively» dif f erentiable

 Cantor function) which is nowhere monotone modulo intervals of constancy.

 Proof. Let a: (0,1] -> (0,1] be the Cantor Ternary function and g: (0,11 -»

 K be a nowhere monotone, continuous function. Then f * goa is an example

 of a Cantor function which is nowhere monotone modulo intervals of

 constancy. (For "the dif f erentiable case, we need only choose a to be a

 dif f erentiable nondecreasing Cantor function and g to be dif f erentiable as

 well as nowhere monotone.)

 Some of the results in this paper were announced in the Abstracts,

 American Mathematical Society, (6].

 Added in proof . It has come to the attention of the authors that Theorem

 3.2 and its proof has appeared in the recently published book by J.

 ✓ /

 LukeS, J. Maly and L. Zajiïek [13], page 261.
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