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 BOUNDED VARIATION AND POROSITY

 O

 A set EcR¿ is said to have porosity p at a point x if

 p = p(x) = lim
 r-»0 r

 vfciere p(x,r) is the radius of the largest open ball missing E

 and contained in the neighborhood of radius r about x. Then

 x is a point of porosity of E if p(x) > 0; E is said to be

 porous if each point of E is a point of porosity of E; E is

 said to be q-porous if E is a countable mion of porous sets.

 In [1] it was shown that a continuous function defined on R or

 on [0,1] can have a graph which is not a- porous . The function

 constructed was wildly oscillatory and it seemed natural to ask

 whether functions of bounded variation must have cr-porous

 graphs. While the answer to this question has some interesting

 consequences, that answer may not be easy to come by. The example

 given below shows that a continuous function of bounded variation

 may have a c-dense set of points which are points of non-porosity

 of the graph. In fact, from the example it follows that such
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 functions are dense in the space of functions of bounded variation

 with the variation norm. It is not clear whether this set of

 functions is of first or second category in this space.

 In order to work more easily with porosity, it is desirable

 to be able to determine non-porosity at a point by using a net.

 In particular, the net

 a « í r - i±ii « ūiļi
 1 1 3n, 3n J [_3n, 3n j J

 will be vised. For this purpose the following lemma is needed:

 O

 Lemma. If - E cR¿ and x 6 E, x is a point of non-porosity of

 E provided that for each natural number K. there is a number

 N so that if n > N = N(K) and

 x£ r-i Ltii * "j. = i. .
 1. 3n, 3n J * L3n, 3n J = i. x»J»n .

 E contains a point in each scļuare of the form

 k k + 1~1 k' k' + 1 "
 3n + K 3n + K 3n + K JTTT
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 contained within the boundary of the 11 x 11 grid of 121

 squares of side length 3~n whose central square j n
 contains x.

 Proof. Let x be a point of E satisfying the conditions of the

 lenna. Suppose that E has porosity p > 0 at x. Choose K

 so that < p and N = N(K) . If a ball of radius r < 3"^

 centered at x contains a net element containing x and having

 side length 3~n and contains no larger net element containing

 x, then the next larger net element containing x has a point in

 it outside of the ball. Then r < < 5-3~n. It follows

 that the ball is contained in the 121 squares described by the

 statement of the lenma. Since E contains a point in each square

 of side length 3~n"^ within the boundaries of these 121

 squares, no ball of radius r' > 3~n~^ * /2" within the ball of

 radius r misses E. Thus, if a ball of radius r1 within the

 ball of radius r misses E,

 l' r < 3^* _ j-Kyj < 2 p _ r 3-n 2

 This contradicts the assumption that the porosity of E at x
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 is p and since p is arbitrary, E is not porous at x.

 The following example is auxiliary to the construction of a

 function of bounded variation for which a c-dense set of points

 are mapped to points of non-porosity on the graph.

 Example 1. There is a function of bounded variation defined on

 [0,1] Which has a graph with c points of non-porosity. In fact

 such a function can be absolutely continuous.

 Construction. Let h(0) = 0 = h(l), h(l/3) = -1, h(2/3) = 1

 and let h be linear on [0,1/3], [1/3,2/3], and [2/3,1].

 The function h will be vised to produce non-porosity by adapting

 it to intervals in the complement of a perfect set. The set is

 X= (x: x= £ ^ J I ( xfI 3m J

 where am=0 or am=2 if 3 divides ra; otherwise, ajjj = 1.

 Note that the set X is the intersection of the sets n = 0,

 1 , ... consisting of 2^ intervals k 38 0 , 1 , . . . of the form

 [i/3n, (i+l)/3n] where 3k < n < 3W-2. For n = 3, 4, 5, ... ¿

 k = 1, 2, ... , each such interval I of Ej^ is to be parti-

 tioned into 3^*1 equal intervals and five blocks of 3^*^
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 intervals of che same length as the 3^"^ are to be placed at

 each side of I resulting in 3^"^ *11 smaller intervals k = 0,

 1, 2, ... . Corresponding to Ejj, n « 3, 4, ... there will be a
 total of fewer than 2^*3^^*11 distinct smaller intervals. When

 this is done for k = 1 , 2 , . . . , then from the interior of each

 of these small intervals corresponding to distinct points

 are to be chosen in the complement of and distinct from

 previously chosen points. Since for each n = 3, 4, ..., the

 blocks of intervals from are always contained in E^, the

 resulting set of points consists of all isolated points. Thus

 disjoint intervals contained in the complement of X each

 containing exactly one of the points can be selected so as to be

 contained in the small interval from which the point was chosen.

 If such a selected interval is (a,b) , contained in one of the

 intervals fremi the block associated with E^, then f(x) is
 defined on that interval to be

 6h(£-r-f) "

 hn n,a,D a b(x) n,a,D a 3nfl

 otherwise, f(x) =0. It follows that the variation of f is

 equal to £ Var h , (x) where the sum is taken over all
 XiyQiyU

 (a,b) and n. Thus,
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 Var f < 3 I 2-12-^ • 3kł"1-ll-2k < » .
 k 3

 Here the sum is carried out In groups of three k' s, the

 variation of each a ^ is less than or equal to 2 -12 -1/3^
 and the number of Intervals on which each is used is at

 most 3^"^ -11 -2^. Since f(x) - £ h , (x) uniformly, f is
 TljcljD

 continuous . Since f (x) clearly satisfies Lusin1 s condition (N) ,

 f is absolutely continuous (cf. [2], p. 227). Clearly the graph

 of f satisfies the condition of the Lemma and thus each point

 of X is a point of non-porosity of the graph.

 Example 2. There is a function F of bounded variation such that

 the set of x for which (x, F(x)) is a point of non-porosity of

 the graph of F is a c-dense subset of [0,1]. Again, such a

 function can be absolutely continuous .

 Construction. In the construction of Example 1, the function

 h(x) can be replaced with a function g(x) with g(0) = g(l) =

 0, g(l/3) = -1, g(2/3) = 1 and such that g is decreasing on

 [0, 1/3] and [2/3, 1], increasing on [1/3, 2/3], g is

 absolutely continuous and the intervals of constancy of g are
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 dense in [0,1]. The resulting function will have the same

 properties as that of f in Example 1 but will have a dense set

 of Intervals of constancy. Calling this function Fļ, an

 absolutely continuous function Fļ can be designed so that it

 agrees with Fļ at each point which is not in an interval of

 constancy and has variation less than two times that of Fļ and

 has c points of non-porosity In each interval of constancy of

 Fļ and has a dense set of intervals of constancy. Continuing in

 this fashion, functions Fn can be defined inductively such

 that Fn has variation less than two times that of Fļ, a dense

 set of Intervals of constancy none of which is larger than 2~n

 and Fn has c points of non-porosity in each interval of

 constancy of Fn_ļ. Furthermore Fn agrees with Fn_ļ at each

 point which does not belong to an interval of constancy of Fn_ļ .

 The limit of this sequence of functions is a function F and

 Var F = Y L Var (F . , - F J = lim Var F . L nrl . , n n

 Since F is the limit in variation of a sequence of absolutely

 continuous functions, F is absolutely continuous.

 Note. It is possible to describe the set of points of non-

 porosity of a continuous function using derivates defined in terras

 of porosity. For example, let
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 f(x + h ) - f(x)
 D £(x) = sup lim
 P n-*» h

 n

 where che sup is taken over all sequences which have 0 as a

 point of non-porosity on the right and for which the limit exists

 (finite or infinite). The four derivates D+, D~, D+, and D~
 p> p' -p' -p

 are thus defined in this way and a point (x,f (x)) is a point of

 non-porosity of the graph of a continuous function f if and only

 if

 D+ f (x) = D f (x) = » and D+ f (x) = D f (x) = -® .
 P P -P "i>

 To see this suppose that, given a natural number K, sequences

 h^ļ, hjļ^) *^3» ^,4 ac^ chosen so that

 f(x + h .) - f (x) . „ .
 lim

 Xi

 when hj^ ļ and 2 decrease to 0 and are non-porous at 0

 on the right and 3 and ^ increase to 0 and are non-

 porous at 0 on che left. Then there is e > 0 such that for

 3"^ < e and n > N the graph of f intersects each of the

 11« 3^ subdivisions of the line segments
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 and

 V,^]* i«*> - #
 when X is in [i/3n, (i + l)/3n]. By the mean value theorem for

 continuous functions, f satisfies the conditions of the Lemma.

 Thus che graph of f is non-porous at (x,f(x)). Since the above

 proof requires only the mean value theorem, the conclusion is true

 for Darboux functions. The proof of the necessity of the

 condition

 Dpf(x) = Dpf(x) = 00 and E^f(x) = iTf(x) =

 is as follows: Suppose, for example, that

 Dpf(x) < M < ® .

 Then A = {x| [f(xfh) - f(x)]/h > M} has 0 as a point of

 porosity. That is, there is e > 0 and a sequence of intervals

 [an, bn] such that > 0, bn + 0, (bn - an)/bn > e, and

 [an, bn] A = 0. It follows that [x + a^ x + bn] x [Mbn, ®]

 does not meet the graph of f . These cross products contain

 circles of radius V2 (bn - a^ which are in turn contained in the
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 circle of radius Mbn + ^ centered at (x,f(x)). Thus, che

 porosity of the graph of f at (x,f(x)) is at least

 - I(bn " an) v - 7(bn ' v e
 Ilm

 Mb + a 2Mb AM
 n n n

 Therefore (x,f(x)) is a point of porosity of the graph of f.
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