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 MONOTONICITY THEOREMS

 In [2] Bruckner proved the following theorem:

 Let f "be a function satisfying the following conditions on an

 interval [a,b] t (i) f is a Darboux function in Baire's class one;
 (ii) f is VBG; (iii) f is increasing on each closed subinterval of

 [a,bj on which it is continuous and VB. Then f is continuous and

 nondecr easing on [a,b].
 Bruckner obtained this result while answering affirmatively a

 problem presented by Zahorski in [24] ♦ (This question was also

 answered independently by Świątkowski in [23].)
 In Chapter III we generalize Bruckner's theorem, but the

 proof of our theorem is shorter. TTe then give applications of this

 theorem which generalize consequences of Bruckner's theorem.

 The following theorem of Banach ([2l],p.286) is well known:
 Any function which is continuous and satisfies Lusin's con-

 dition (N) on an interval, is derivable at every point of a set of

 positive measure.

 Of course condition (N) implies condition T2 and it is this
 fact that leads to the proof of Banach' s theorem. In [9], Foran
 generalizes this result, showing that Banach* s theorem remains

 true if condition (N) is replaced by Foran's condition (M).

 An improvement of Foran's theorem is given in Chapter IV

 (Theorem 9)» which i3 then used to prove a monotonicity theorem

 (Theorem 10) which generalizes the following result of Nina 3ary

 or [213, p. 286). (Condition (IT) is replaced by condition (M).)
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 Svery continuous function F which satisfies condition (U) and

 whose derivative is nonnegative at a «e* point x where F(x) is

 derivable, is monotone nondecr easing.

 Further we give many applications of Theorem 10«

 One of the most remarkable results of Chapter Y is Corollary 7,

 which is a partial answer to the Open problem of this chapter.

 CHAPTER I - PRELIMINARIES

 For convenience, if P is a property for functions defined on

 a certain domain, we will aleo use P to denote the class of all

 functions having the property P. 7/e denote by X the closure of the

 set A and by int(A) the interior of the set A. By B(F;X) we denote

 the graph of F on the set X. 7/e denote by 0(F;I) the oscillation

 of the function F on the interval I and by 0(F;x) the oscillation

 of the function F at the point x. The set. XC R has a pair of

 isolated neighbours if there exist X^,X26 3 such that x^ and Xg

 are isolated in X and (Xļ,X2)OX = 0. A property is said to hold
 n.e. (nearly everywhere) if it holds except on a countable set of

 points. Let S = fx : f(x) - y] • It is called a level set of the
 «y

 function f. Let JL^ © $2 (respectively $2) denote the
 linear space (resp. the semi-linear space) generated by the classes

 of functions and Jig* ^ denote the class of all continuous
 functions and let D be the class of all Darboux functions on [c,l].

 Definition l.piol . Given a natural number H and a set E, a

 function F is said to be B(î?) on S if there is a number M < +00 ,

 such that for any sequence {i^} of no nov er lapping intervals ^ith

 I^fiE / 0, there exist intervals J^, n = 1,...,K", for which
 N N

 B(F;Sfl U It)c U U and 22 lJknl< M«
 k fc n=l k n= 1
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 Definition 2. flòl • Given a natural number N and a set E, a

 function F will be said to be l(IT) on E if fox every £>0, there

 is a 5*>0 such that if are nonoverlapping intervals with

 IknB 4 0 and 2|l]C|<: S then there exist intervals J^, nsl,.«.,N

 such that B(F;EO U Ifc)C U U (Ik* J^) and 2 2 .
 k fc xi=l k Usi

 Definition 5«f8l. Given a natural number IT and a set S, a

 function F will be said to be E(N) on S if for evsry subset 3 of E,

 ļ 3 1 = 0, and for any 6>0 there exist rectangles °=

 1,. with {.Iļj.} a sequence of nonoverlapping intervals, 1^0 S jĄ2f
 IT IT

 such that B(F;S)C U U an^ 2 S diam(D,_)"^ 01 c . k n=l k n=l 01

 Let S' (resp.&,"£) be the class of all functions F, defined on

 a closed interval I, for which there exist a sequence of sets EQ and

 natural numbers Nn such that I = UEn and F is A(Nn) (resp. B(Nn) ,

 B(Hn)) onEn.
 Let 3) be an additive class of functions derivable in a sense

 which is compatible with the ordinary derivative F'(x), ite., DF(x)

 » F'(x) at almost every point x where F'(x) exists. Then 70 2)0*6

 can be taken as a class of primitives and the - integral (the
 b

 Foran integral) can be defined by 3*5)- J* f(x)dx = F(b) - F(a),
 a

 where DF(x) ss f(x) a.e. on ļa,bļ.
 Definition 4-. A function F fulfils Lusin's condition (IT) on a

 set E if |f(3)| = 0 for every subset S of 3 for which | S | = 0.
 Definition 5« A function F:[p,l] - is said to be B' on EC

 [0,l3 if there is a number M < +00 such that for any sequence ^ of
 nonoverlapping intervals wito I OS / $ , there exists a sequence of

 closed sets Kn f or which 3(?;20 U In)C U (In* and 21^ | < M .
 n n n
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 Definition 6. fl5l • A function F:[Ò,l] - *R is said to be AC
 on a set E if for every 6>0, there exists a £>0 such that

 2(F(b^)-F(aļ_))<S for each sequence of no nover lapping intervals

 &i,l3iJ» endpoints in E and • Let = {F: -F
 €Āūļ. Then AO = àSHAC.

 Definition 7. A function F belongs to the class ACG (resp.VBG,

 fi') on a set E if E s y Sa and F is AO (resp. VB, B') on each E^.
 If condition AO is replaced by AO (resp. IÜ") we obtain the class

 AGG (resp. ACS). If the sets EQ are supposed to be closed we obtain

 the classes [aOG] , [aÇG| , [ãÕS] and [vbg] . Clearly if F|B is B(N)
 thenFļ-gGB', hence Ã C £* •

 Definition 8. A function F*[0,l] - >ß satisfies ( conditi on [M]
 (resp. [ff]) on S s EC[o»l] if F is ÃÕ on each closed subset of E

 on which F is YBHS (resp. YB#Otf ). Let [M] = [F ì -F€[m]}}
 [īļ] = [F: -F e[u]} ¡ [m] = ran Mí pij = Dyn [¡y. Note that
 F is [iîJCresp. [M#] ) on E if F is AO (resp. A0+) on each closed

 subset of E on which F is VBO^ (resp. YB^O'të ). (For the second
 part see Theorem 8. 8, p .233 of [2!Q .) Clearly [MļOif is identical

 with Foran's condition (K) (see [9j).

 Definition 9. A function F:[0,l] - >3 satisfies condition [_M|]
 if F is IČ on each closed subinterval of [p,l] on which it is

 VBOtf . Let [E'] = [F : -Fe[S*]} i [m3=[m3 0 [M/] .
 Definition 10. A function F : [Ò , l] - satisfies Bruc'xner's

 condition 3^ on [o,l] if F is increasing on each closed subinterval
 of ļo,l] on which it is V30€ . Let B^ = ^F : -F6B.J.

 Definition 11. [VI. The function F has the property D^ on
 [p , l] if F( [d, b]) is everywhere dense on the closed interval with

 endpoints F(a) and F(b), for every subinterval [a,b] of [0,1] .
 Definition 12. .w- The function FG D has the property D* on

 [0,1] if the values y€?([o,l]) for which Ey is countably infinite
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 and dense in the sense of order, form a null set. A function F bas

 the property D" on [0,l] if it has property D' on every interval

 [atb]C [0,lļ. U set is dense in the sense of order if between
 every two points of 3 there is a point of 3.)

 Definition 13. The function PeD satisfies condition (D^) on
 [0,1] if the values y6F([p»l]) for which E is countably infinite

 «y

 and for which 3 does not contain a pair of isolated neighbours
 J

 form a null set. A function F€ D has the property (D£) on ļO,]ļ if

 it is (D¿) on every subinterval of ļO,l] •
 Def init ion 14 « M . The function F is ļpGļ (or B^) on a set 3

 if 3 can be expressed as the sum of a denumerable sequence of

 closed sets Bn over each of which P is continuous.
 Definition 15. Fičí . A function P:ļO,l] - »R is uCM if P is

 increasing on the closed subinterval [c,d]c [Oji] whenever it is
 so on the open interval (c,d). Let 1CM = {P t -P6uGM} and let
 CM = lCMOuCM.

 Definition 16. For a function F: [0,1]- 8 we denote by (+)
 and (-) the following properties:

 ( + ) for 0<a<b^l, if F(a)<F(b) then |P(Pn[a,b])| >F(b)-F(a);

 (-) for 0^a<b<l, if F(a)>F(b) then |f(1T O [a ,b] )| >F(a)-F(b);

 where P = { x : O^F' (x)^+o®} and N s { x : O^F ' (x)^ -»} .

 Definition 17. 'Z2' « Let P:[0,l] - ».R; 3+°° ={x t F'Cx) = +<*»};
 ÎT1"00 = { ? : I F(3+°° ) J = o}; N~°° = {F : -P err*"00}; IT00 = îî~°°n F1"00.

 Remark 1. a) Conditions A(l) and AG are equivalent. Also

 c ond iti ons B(l) and VB are ecuivalent . (See [10] .)

 b) ACG is, strictly contained in. % and T3G jLs strictly contained in

 ( see [sļ); ÍOB^ is strictly contained in ^OB^ (see [io] ) ;
 Ô is strictly contained in (see the function. P constructed in

 the proof of Theorem l.c) of [6])-
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 c) ? Cif C (N)C M aod all the inclusions are str ict (see [6j) •
 d) •£ © 3 • -T§ • C§ee the proof of Theorem 5. c') of [8] • )

 e) [!]C [ÎTJ and (N)CN°*. CSee [22], p. 128.)
 f) IÕCVBCT2 ^or continuous fune ti ons on £0,1] •
 g) AOGO^ C [A0G]CA0G.

 h) Bjn CvBGQ n[M] = [155] and bJO[aCG] = [¿CG] .

 i) DBļ©^ =s DB^ on [O,]]. (See [3]» Theorem 5 .2. p. 14.)
 á) (M) @ ACG s (M) for continuous functions on ļb,l]. (See IXJ.)

 In fact [M][3(AOGn^) = [m].
 k) (N)CT2 for measurable functions. (See [4], Theorem IV. p. 4-73»)
 1) DCuCid on [0,l3 • The converse is not true»

 m) D©1? CU3 oņ [p,l]. (See [4] , Theorem_7,p.473*)
 n) Dd ©tf * Dd oņ [0,1] . (Sęę [5].)
 0) (D^)CD' aņd (D£)C D" oņ [0,l] .
 p) 7BG/ìt£ CTj^C^*. C21!* Theorem 6. 3. p. 279.)

 Lemma A. [6] • A Darboux function F i [o , l] - ►H which is 7B# oņ

 a closed subset £ of [p , l] , is^ continuous on Q.

 Theorem A. [9] . A ccntinuous function F : [o , l]

 on Q C [0 , lj iff F is AO on an? set E C Q oņ which F is, monotone.

 Lemma B.fl5l . Let F:[0,l]

 a . e . where F 1 (x) exists. Then F is_ increasing on [o , l] .

 CHAPTER II - RELATIONS BETWEEN SOME GLASSES OF FUNCTIONS

 Theorem 1. a ) There exists a function F : [o , l] - »(o , l] , F6

 (Dd-D)HAOG such that F = G+H, where H6 ACG H ( (Dp-DB^ and G6
 ACGH^ .

 b) D is strictly contained in on fo . li .
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 c) DB^ is strictly contained ia (DJ) oņ [0,1] •

 d) There is a function f 6 DBgH YBG such that f £ (D¿); There is a

 function f1ePB2nVBGn(Dp such that f x¿ (Dp,

 e) If f 6 (D£)H T 2 2£ [0»l] » th*11 f bas properties (+) and (-).
 f) If f 6 S oņ [p»l] then f satisfies 25 C°»^3 •
 g) The class [ll] is strictly contained in [M#] on [0,1].
 b) The class [a ] is strictly contained in [ M '] on [o , l] •

 Corollary 1. ifCDBļCKDp C(D¿)CDCDd and all the inclusions
 are strict«

 Proof of Theorem 1. a) Let Xp ^ = [a^ bp,k3» ^ ~ 1 1 • • • » 2? »
 be the closures of the intervals contiguous to 0, from the p-th

 step in the Cantor ternary process. (C = the Cantor ternary set.)

 let S = [0,1] - Ulp.k ana dp>i£ » Op.k+Vk:5''2* LrtSisl,2t
 P , K

 + ... ♦ n, Sq s 0. 3ach point x£G is uniquely represented lay

 Sc^x)/?1. Let F(x) = 0, xeS and F(x) s i/(n+l), x6Ig +ijk ,
 i = l,2,...,n+l. Let G(x) = 0, x£ 0 and let G(x) = l/(n+l), x =

 dg +i Extending G linearly on each of the intervals [ja^

 d3 +ijk] and [d~ +ijk»"bs +i^]» 1 = l,2,...,n+l, we bave G defined

 and continuous on [0,l]. Let H(x) = F(x)-G(x). Then H: [0,1]- ,[0,1]

 and H(x) s 0, x€Sî H(x) = i/(n+l) if x 6 +i , k } »
 H(dQ . , ) = (i-l)/(n+l); H(x) is linear on each of the intervals

 Ün+1,K

 t-s3Q+i , fc*^Sn+i , 3nd td3n+i,k-b3n+i,te]' 1 " l.a.-M^l. Clearly
 F,G ,H 6 ACG and D. Let I = [a,b]c[o,l], (a,b)fìO 4 0. Then

 s* i
 there exists an interval I-. x = [c,d1 , c.dGC, c = 2 c.«(c)/3 1 and x , i=l ' 1
 o° i i-1

 d s c + 2 2/3 , for some natural number n. I-, contains 2°
 i=Sn+l
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 intervals contiguous to C from the step SQ+.., j = 1,2,..», of the
 Cantor ternary process. We show that FeD^. Clearly [0,1] contains
 the interval with endpoints F(a) and F(b), and F(I) O U li/(n+ j)} ,

 i = 1,2, ...,n+j, ļ = 1,2,... . Hence F(I) = [0,1] and FGD^. We
 show that H6(D"r) on [0,ÍJ • For each i = l,2,...,n+l, let K(i) be

 a natural number such that I3n+i,K(i)CIl* Tben n^S^+i.KCi)^
 ßi-l)/(ttfl), i/(n+l)] . Hence HCI^ = [0,1] and H6D. Let ye dO,l]

 be an irrational number. Then 1^ K(i)^^y c011^3^113 a Pai^ of

 isolated neighbours, for some i = l,2,...,n+l, and H€(DjJ). We

 show that H^DBļ. Suppose on the contrary that H€DB^. Then by

 Remark l,i), it follows that H+G6D3^. Contradiction.
 b) The function F constructed in the proof of a) has the following

 properties: F^D and FGD^.
 c) The function H constructed in the proof of a) has the following

 properties: HS(D^) and H$DB^. It remains to show that the class
 DB^ is contained- in (D£). Let f:[o,l] - >R be a DB^ function. Let

 Ï2 bô "the set defined in [2](p.l7), namely 1 ^ s{y6f([0,l]) :
 there is an xgE such that f attains a strict relative maximum or

 o

 minimum at x}# The set Y2 aļ: ®ost denum arable ( [21] ,p .261) . By
 the proof of Theorem 1 of C23(p.l7) it follows that for every

 y 6f( L0»1] ) ~ ^2» ^ à enumerable then 3 contains a pair of
 J o

 isolated neighbours. Since ļ ļ = O, f 6 (D¿) . Hence DB^ C (^).
 d) Let (an»bn) be the intervals contiguous to C and let f be a
 function defined as follows: f(an) = 1, n = 1,2,...; f(x) = 0, x€
 C, x aQ, n = 1,2,...; f is linear and continuous on each [ani^n]»
 By [2] (pp. 16-17), it follows that f$(D¿) and f€DB2OVBG. Let

 fx(x) s f(x), x6[0, a^) JJ [b^, l] ; f^a^ = 0; fx(x) = 1, x =
 (ai+bi)/2 s d^; f(x) is linear and continuous on [ai»dj and
 [^ljbJ . Clearly f-^CD^) on [Oja^] and [b-pi]. Hence fļ^(D£).
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 For f the set E is countably infinite fox each y e (0,1) and B H
 «/ %f

 (al,bi) bas a paix of isolated neighbours. Hence f^6(D¿).
 e) In fact we prove mere, namely: Suppose that f e(D^)HT2 on [0,l]

 and let Iq s [a,b]C [0,l]« Then PUN is nond e numer able, where P =

 {x : f'(x)>o}, ĪT = {x : ff(x)<o}. If f(a)<f(b) then f(P) is
 measurable and |f(P)| s |f([a,b])|. If f(a)>f(b) then f (N) is
 measurable and ļf(N)| = ļf([a,b])ļ . The proof is analogous to that

 of Bruckner's Theorem 2 of [2](p.l8). Let Y^ = ^y : By is non-
 denumerable} . Let Y2 ^e ^ù9 se^ defined in the prccf of c), and
 let X-z = { y : 3 is countably infinite and 3 does not contain a J v t J

 pair of isolated neighbours}. Since fGT2, |^]J = 0. Y2 most
 denumerable (see [2l],p.261) and | Y^ ļ = 0 (since f 6 (Dp), Since
 f6D, f(I0) is an interval. Hence |f(IQ)| = |f(I0) - (ïxU Y2U •
 Suppose that f(a)">f(b). For each yßf(lQ) - ( ^ there is
 an isolated point x of 3 such that the upper bilateral derivative

 %t %/

 f'(Xy)^0. (If Xy is the only point of By then 7' (Xy )^0 since
 f(a)^>f(b). If 3 is finite and contains more than one point then

 «/

 clearly 3 has a pair of isolated neighbours. If 3 is denumerable
 «/ v

 then 3 has a pair of isolated neighbours, since f 6 (D'). Hence at
 J

 one of these two points f* is nonpositive.) For each yGf(lQ) ~

 (Y^UY^Y^ select a point Xy such that f'(Xy)^C and Xy is
 isolated in 3 . Let Z be the set of points selected. Then Z = ItfUB,

 «

 where B s ļx : -o© < f ' (x)^.0 and f'(x) ¿ f_' (x)} , and ITOB= 0. 3y

 [21] (p. 270), ļf (3)1 = 0. Fow f(Z) = f(N)Uf(3) and f'(Z) = f(I0) -

 (Y1UY2UY3). Hence f(Z) is measurable and |f(Z)| = |f(I0)|. It
 follows that f (IT) is measurable and |f(H)| = |f(Ic)| i
 f) This follows by M Cp • 360) and [11] (p. 35).
 ?r) Let (a. ,b. ) , i = 1,2, . . . ,2n"' be the intervals contiguous to
 G from the step n in the Cantor ternary process. (C = the Gant or
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 ternary set .) Let f be a continuous function on [Ò,lJ defined as

 follows: f(x) = 0, xeO; f(x) •» Vu, x s (ain+bin)/2 s din; f(x)
 is linear on and [din»bŁn], i s 1,2, . . Clearly fe
 ACG on [o,l]. Let gsf+vp, (4* = tbe Cantor ternary function.)

 Clearly ggVBG on [0,1] • Since g|g is 73 and gļ^AC ( <P( C) s
 [0,l]), it follows that g^(M). We show that g€ on [p,l].
 Clearly g'(x) does net exist (finite or infinite) for any point

 which is a right endpoint of some interval contiguous to C. Let

 IQ = ^e "^e intervals contiguous to C. Let x£C, x jé 0,

 X j£ bn, n s 1,2,..., and let A(x) = [n : cQ(x) = 2}. (Each x£C
 is uniquely represented by 2 ^(x)^1* ) Clearly A(x) is a countable

 ^_~1 1 00 •
 infinite set. For neA(x) let x' n = 2 c.»(x)/3 + 2 2/3 , x" 11 = n i=l x i=n , 11

 11¿1ci(x)/3i 1 + 2 2/31 and x"' n = V^iCx)^1 x + 2/3n. Clearly 1=1 1 i=n+l n i=l x

 x£<x^x¿. Let In(x) = (xļļ, xļļ' ). Clearly In(x) is an interval con-
 tiguous to C from the step n in tbe Cantor ternary process. Let

 dn(x) = (xļļ+x£ )/2. Then 0< x-dn(x)< x¿-x¿ = 2/3n and g(x)-g(dQ(x))

 = 9(x) - ( 9 (x£ )+ 1/n) < 9(x¿) - <P(x»' ) - 1/n = 1/231 - 1/n < 0.

 Hence |g(x)-g(dn(x))/(x-da(x))| > (1/n - l/2n)/(2/3n) - ►+<?<» , n- *•
 +0». Therefore f_(x) = -00, 3ut lim(g(y)-g(x))/(y-x) = litn( *-P Cy )

 - vP(x))/(y-x)>0, y - >x, y€C. It follows that for each x£C, g'(x)

 does not exist (finite or infinite). Let 3 be a closed subset of

 [0,ļ] such that Sļ-g€73^. Then is 7B# and g'(x) does not
 exist for any point x£ SOG, x 4 0. It follows by [2lļ (Theorem 7.2,

 p. 230) that |g(30c)| = A(3(g;^nc)) = C. (A (2) is the Hausdorff
 length, of the set X.) Heņce Sļ^pi^ satisfies Lusin's condition (IT).

 3y [21] (Theorem 6. 7, p. 227), gj^ is AC. By (2 1] (Theorem 8. 8, p. 233),

 g|se Mof.
 429



 h) That ["J is contained in [m] follows easily by definitions.
 Let In = (an,bn) be the intervals contiguous to 0. Let F "be a con-
 tinuous function on [0,11 defined as follows: F(x) = 0, x6 C; F(x)

 s hQ(x), x6ln, hn6AGG#-A0, |bn(x)| < l/2n. Let G(x) = q>(x)+F(x).

 Clearly GGV3G# on [0,l] and G|Q = *f|06VB#. Since G(C) = [o,l] ,
 G^AC# on 0. Hence g£ [mJ . Let I be a subinterval of [0,l] , int (I)

 OC 4 0. Then for some n, IDIQ. Suppose on the contrary that G| j6

 VB * . Then Gi^ 6VB * • Since GļT £ACG * , by [2l] (Theorem 6.7,p«227 * 'An * 'n *

 and Theorem 8. 8, p. 233) it follows that GrT 6AC. Contradiction» ,xn
 Hence if then I is contained in some interval contiguous to

 C. Since G 6 ACG# on each IQ it follows that G£AC^ on I aod G£ [M1] •

 Remark 2. a) (ACG^fl^ )0[m#] = [M#] on [0,l], but (ACGO€ )@
 TbJ * O,] on [0,1] . (For the first part see Theorem 6.7»P*227 of
 M i The second part follows by the proof of Theorem l,g).)

 b) AC© [M'J s [M1] oņ [0,1] but (,iCG#fl€ ) © [M1] ¿ [M'] on [0,1] .
 (See Theorem 6.7,p.227 of [2l] and the proof of Theorem l,b).)

 3emark 3. The functions F and G constructed in the proof of

 Theorem l,a) are identical to those of 3xar.pl e 1 and Example 4 of

 [4] Cpp • 484-485) •

 Theorem 2. 4 function F : [Ò , l] - * 1. baloncs tç E O (+ )0 ÌT*00

 and F1 is, summ 3b le on P = ^x : F' (x)>0 J if and only if, F G IÕÍ'&

 on [0,1].
 Proof. Suppose tbat F G .13" Ol? • By Theorem l,e) and Remark l,f)

 it follows that FG (+) . 3y [22] (pp. 136-137) it follows that F e N+°®.
 The summability follows because F673. Suppose that F6 Dn(+)fììi+OD

 and F1 is summ able on P. Let 3*°° = {x : F ' (x) = +00 } and 3+ = { x ;

 O^F1 (x)<+ooj . Clearly ? = 3+c°U 3 . Let g(x) = F'(x), xgS^; g(x)
 x

 = 0, x$B^ and let G(x) = J g(t)dt. Since F' is summable on P it
 0
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 follows that G6äG on [0,11. ¿ince FSE*00 H (+) it follows that

 F(d)-F(c)^|F( [c,d]nP)| = |F( [c,d]n S^)| < G(d)-G(c) for 0<c<-d
 ^1. (See |~2lJ , Theorem 6.5»p.2270 Let £>0 and let & be the

 number given by the fact that G6 AC on [0,lj. Let s Cajc»bjc) be a
 sequence of no nov er lapping intervals such that Then

 S(S(bk)-G(ak))<8 . Hence F€ IS on [0,l] . Since
 ISCVB and F€D, it follows that F is continuous.

 Corollary 2. a) ÃÕ = 73 fi N"*"00 for continuous fu net! ons on an

 interval. Hence AC = 7BOIT0® for these functions,

 b) Let F:[0,l] - >R be DB^^0* . Then FÊ ISfrď if and only if F*
 is summ ab le over P •

 Theorem 5. A function f : |p,l] - >R satisfies conditi on

 Cres-p. [m!) on a closed subset 3 of [Ò , lļ if and only if f 6 AO on

 any closed subset of E on which it is increasing and 7B#H"£ Cresp.
 increasing and ^ ) .

 Proof . We prove only the part with Suppose that f

 satisfies the second property and let P = PCB be such that

 re>r't . Let a = inf(P), b = sup(P) and F(x) = f(x), xSP. Extending

 F linearly on each interval contiguous to P v.e have F defined, con-

 tinuous and 73 on [a,b]. Let =£ x€ [a,b] : (F(x+h)-F(x))/h *> 1,
 0<ļbļ<Ll/n} and let E^ = ^i/n, (i+l)/ri] O EQ. 3y [21] (the proof

 of Theorem 10 .l,pp .234-235) , F|s I is increasing and 7B . Clearly I ûia

 B+oo 00 C (U lin)nP, where 3+o^ 00 s{x : F'(x) = +00} . The sets Eia 00 i,n 00
 may be supposed to be closed without loss of generality (see [2l' ,

 Theorem 7.1,p.229). By hypothesis, fjg^ Qp is AO. Since ļE^ļ s 0,

 it follows that |F(E+oa)| s 0. Hence F| ^ ^6 730^°® = Ã0 (see
 Corollary 2). Hence fGpí .] on E. Conversely, let P be a closed

 subset of E such that f|p is increasing and . Then by the
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 definition of [m#] , f|p€AC. Hence fj^eAC.

 Theorem 4. Let f : [0,l] - >R be [ÃÕG] . Then f € [if].

 Proof. Let P be a closed subset of [0,l] such that fjp is con-
 tinuous and increasing. By hypothesis, there exists a sequence of

 closed sets Pn such that fjp is increasing and AO. Hence f|p is

 AO. It follows that fjp is VBOACG s AO. By Theorem 3 it follows
 that f € [I].

 Lemma 1. Let f : [o , l] - * R and let P be, a closed subset of [o , l] .

 If f |p€ YBOlCGOtf theņfļpGĀO.
 Proof. Let F(x) = f(x), x€PU{0,l) . Extending F linearly on

 each interval contiguous to PU {,0,1} we have F defined and VBHACG

 Ot? on [0,1] . By Theorem 4, FSVBOI^ 0[m] on [o,l] . Hence F€AC on

 1o,l] and fjpS J3.

 Theorem 5. UTlr+l ([ScgIHbJ) = [ïï] on [0,l].
 Proof. Let f 6 [ST], g 6 [AGG] fl 3* and h = f+g. Let P be a closed

 subset of [0,1] such that bJp6VBn"ď • Then f jp€ [tbg]0 B^, hence

 f jp 6 [ICG] O b£. By Lemma 1, h|p8 ¿C.

 Lemma 2. Let f : [o , l] - > R and let P b£ a closed subs et of [0 , l]

 such that fļpCTB^, a = inf(P), b = sup(P). Let F; [a,b] - »R, F(x) =
 f (x) , xeP. On each interval (c,d)C [a,b] contiguous to P, we
 define F such that its graph is the linear s e -ment .joining the

 points (c,f (c) ) and (d ,f (d ) ) . Then there exists a set NqC P such

 that |f(IT0)| = ļNQļ = 0 and fł(x) = F'(x) onP-NQ.
 Proof « Let E = £xGP : f 1 (x) does not exist finite or infinite};

 Ei = £x€P : F'(x) does not exist finite or infinite}; S2 = { xS P :
 f'(x) and F'(x) exist, F'(x) 4 f'(x)^. Since F(x) = f(x) on? ,
 F*(x) = f'(x) except perhaps at endpoints of intervals contiguous

 to P . Hence a d enumerable set. By [22] (Theorem 2, p. 132) we
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 have |f(E)| = |s| = 0. Since FS VB on [â,b], |FCE1)| = ^(E^ļ =
 ļE-L I = 0. Clearly |f(S2)| = 0. Let NQ = SU^U^- Then 1 f (Nq ) | s
 'ITq ' = 0 and f'(x) = F'(x), xgP-Ng.

 Theorem 6. Let f :[0,l] - *H, f GD. Then f S N+°° if_ and only if

 ffc[®#] ss [0,1] •
 Proof « Suppose that fSlT^OD and let P be a closed subset of

 [0,1] such that fļpSTB J'& . Let a = inf(P), b s sup(P), F(x) =
 f(x), 3CSP« Extending F linearly on aach interval contiguous to P

 we have F defined and TS>C'€ on [a,b]. Let 3+0° s ļx6P i f'(x) s

 •h»} and E^0" = [x£P x p'(x) = +oo) .- By Lemma 2, E = (E^fl NQ )
 UCE^n CP-N0))C NqUE400, hence iFCE^00)! = |f (Eļ00 ) |< |f (NQ)| +
 ļf(E*°°)ļ = 0. Therefore F G VB n E*00 = 13" on [a, 10 (see Corollary 2).

 Hence fjp6 Ič. Conversely , suppose that f6[M"^]riD. Let E+<># = {.*:
 f'(x) = +ooj and EQ =[xfe[o,l]: (f (x+h)-f (x) )/h> 1, 0 <ļh|< l/n^.
 Let B1ti = [i/n, (i+l)/n]fiEn. By [2l] (the proof of Theorem 10.1,

 pp.234- 235), f[E. is increasing and VB# and E+qo s JJ "Ein. The

 sets E^n may be supposed to be closed without loss of generality
 (see [21], Theorem 7«1,P*229). Since f6D, fr-ņ (see Lemma A).

 '"in

 Since fG[lL], by Theoren. 3, f|t? € AC. Hence If (3 )| I =0 (since T I ^ +OO I

 ls«=l = O-
 Theorem 7. For functions defined on [p , l] have :

 [ā,ļ □ ( [vas,] n [ïj n 3') = [īt].
 Proof . Let f S [5#] , g 6 [VBG^ļ O [S J O Bļ = [7B3J fi Í35 O B*

 and let h = f+g. Let P be a closed subset of [0,1] such that h|p6

 73^0^ . Clearly f |p 6 [73G^]0 B*. 3y the definition of [m#] , f|p€

 [¿CG] . Hence [aCG]. By Lemma 1, hļpG Äü.

 Remark 4. Theorem 7 generalizes a result of [22] (Theorem 10,
 p. 147).
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 CHAPTER III - Ag EXTENSION O? BRUCKNER 'S ŁDNOTONICITY THEO RM.

 APPLICATIONS»

 Theorem 8, Let f : {o , l] - ► R be a f mie ti on satisfying the

 following conditions on [0,lj : (i) f€ DO (-) i (ii) f 6 &' on H =

 £xS [0,l] : f is continuous at-xj; (iii) f6B^ onïï(f) = ~int(H).
 Then f is continuous and increasing on [o , l] •

 Remark 5. Note that Bruckner's theorem follows from Theorem 8:

 7BGCT2 (see [2l] ,p.279); DBjC (Dp and (DJ)OT2C(-) (see Theorem
 l,c),e)); 7BGC Ä' (see Remark l,b)); it follows that f satisfies

 the conditions of Theorem 8.

 Let (i') f6(DpOT2; (i") f 6 DBjO T2 ; (iii') f 6 [E'] on
 U(f) and f'(x)>0 a.e. where f'(x) exists onïï(f). If in Theorem 8:

 a) condition (i) is replaced by (i') or (i")î b) condition (iii) is

 replaced by (iii1)» c) condition (i) is replaced by (i1) or (i")

 and condition (iii) is replaced by (iii')î then we obtain some

 additional mono tonicity theorems. (Condition (i') implies (i) (see

 Theorem l,e)). Condition (i") implies (i) (see Theorem l,c),e)).

 Condition (iii1) implies (iii): let ICU(f) be a closed interval

 such that fSVSn-g on I. Since f6 [M'J on LT(f), fG ÀQ on 1 . 3y

 Lemma B, f is increasing on I. Hence fGB^ onU(f).)

 Lemma 5. Let F î [Ó , lj

 able set QC [0,1] • Then F continuous n.e. on Q.

 Proof. (The proof is similar to that of [$] ,pp .196-197) .Since

 FGVBG^ on Q, it follows that there exists a sequence of sets

 such that Q = U% and ?J is [2l] (Theorem 7.1,P»229),
 Fjtt-€ VB • Let "3„ = [x j 0(F;x)^.l/n} . Then 3 is closed for each n.
 I # H n

 If ^n^(^Qi) ^-s nond enume rabie then there exists a natural number
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 i such tbat-B ûo^enumerable. I»0t P be a nonempty perfect
 O

 subset of ®a^Qi • Clearly Since PCBn, 0(l?;x)^l/n for
 o

 all x6?* Thus the oscillation of F on any interval determined by

 two bilateral limit points of P is at least 1/n. Since P is perfect

 we can choose as many such intervals as we like, and v. e can make

 them pairwise disjoint. It follows that F$VB#, a contradiction.
 Thus the set of points of discontinuity of F is at most d enumerable.

 Lemma 4. let f 6 DO(-) on jo,lJ and let H = £x 6 [0,1} î f is
 continuous at x). Then H is a Gj -set, everywhere dense in [o , lļ .

 Proof* Let JÇ|Õ,l] be an interval. If fjj is. monotone then
 by the Darboux property, f • Hence JO H 4. 0« If f is not mono-

 tone then there exist x^jXgGJ» Xļ<X£ su'ch that fCx^)>f(^)« Then
 by ("•)» |f (^n [x^fXg] )| > f (x^)-f (Xg). Hence NOQcpX^ is nonde-

 numerable and f Isn^,*,] 13 7BG, M-s .234). By Lemma 3,
 Cx1,3C2] contains uncountably many points of continuity. Hence H is

 a Gj -set, everywhere dense in [0,lļ .

 Lemma 5. Let f 6 DO (-) on [O , Í] . If f6 on H = { x6 ļjO , t

 f is continuous at x) then there exists ¿ sequence {ln} ¿f inter-
 vals whose union is dense in [0,1]

 Proof. Since f6 ft* there exists a finite or denumerable

 sequence of sets Hn such that H =U^n and f 6 3' on Hn. 3y Lemma 4-,

 H is a 5^ -set, everywhere dense in [0,^ • 3y 3aire's Category
 theorem there exist a positive integer p and an interval J such

 that Hfiint(J) 4 0 and 'He show that fļjnH63'* Let IC J
 be an interval and let f(IOH0)CKp = Then f(iriH)CK0. 3y
 definition it follows now that f is 3* on J OH. ïïe show that fS73

 on J s [a,bļ . Suppose on the contrary that f$V3 on J. Then there

 exists a division of J, namely a = a^< a^< .. . <an+]_ = b, such that
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 (1) S |f(a, A+x 1)-f(ai)ļ> VB + |f(b) - f(a)|, i_0 A+x

 where M is the positive real number given by the fact tbat f SB1

 on JflH. Let Ji = ^i : f (ai+1)<f (a^} . Since Z(f (ai+1)-f (a^) =
 f(b) - f(a), by (1) it follows tbat

 (2) 2 (f (a^)-f (ai+1) 2-M.
 í&ďt

 Since fe(-), f (ai)-f (ai+1X |f 0* 0 &i»ai+J) | for eacb i€,A . It

 is well known tbat the set [x : f'(x) = o} maps onto a set of mea-

 sure O ( [2lļ , Theorem 4.5,p«271). It follows, that =£xS[aļ>ai+J
 : -oo ^ f'(x)<o} is nond enumerable for each Í&A • Furthermore ,

 fSVBG^ on C C^Xj ,p.234-). Let līļ = ļx6]Jļ t f is continuous at x}.
 Olear ly 1Ī1CH, By Lemma 3, we have

 (3) fCa^-fCaj^X IfC^OCai.a^J)!« |f(Hn [a1>aļ+1])| .
 Por eacb i€«A. let be closed sets such that f (H O [a^, a^+ J )(!.%•
 By (2) and (3), 2 I K. 1 l^2*M. Contradiction, Hence f6TB on J. i eJt 1
 Since fSD it follows that f is continuous on J. The argument we

 have just given applies equally well to any subinterval of [o,]] •
 The conclusion of our lemma follows by repeated application of this

 process .

 Proof of Theorem 8« 3y (i), (ii) and Lemma 5» it follows that

 there exists a sequence of intervals {ln^ whose union is dense in
 [0,1] and on each of which f€VBfVť» • Let 05n,djcin* By (iii), f
 is nond ecr easing on Ecn>än3. Since Ccn,dEL] was an arbitrary subin-

 terval of In, it follows that f is increasing on each In» The in-
 tervals 1^ can be chosen to be maximal open intervals of monotoni-
 city of f. We wish to show that in fact there exists only one such

 maximal interval, namely the interior of [o,i]. Suppose that there
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 is more than one such maximal interval and let Q = [p>íl ™ (UIn)*
 The set Q is a nonempty perfect subset of [p,í1 ([2], pp. 20- 21) • Let

 s HOQ. Then is a G$. -set. We show that is everywhere

 dense in Q. Let J be an open subinterval of [0,1] containing points

 of Q« Let xQ6 qHJ. Since xqGQ, f cannot be nondecreasing on all

 of J. TJqus J contains points z^ and z^» z^<zg such that f(Zļ)>
 f(z2). Let N = £x : -o®^f ' (x)^o} fi 'z'tz2' • ^ke se^ iz : f (x) = Q
 maps onto a set of measure zero, from which it follows (since f£

 (-)) that N' as ļ x£ Cz1»z23 ! is nond enumerable. By
 [21] (p .234), f is on IT'. Let N" = £ x 6 II1 if is continuous at
 xj. Clearly N"C H^. By Lemma 3 and (-) we have f (z^)-f (z£) < ļf (N")'

 ^jf (H^O [?i»z¿] )ļ • Hence [z^jZg^ClJ contains an uncountable set
 of points of continuity. Hence H^ is everywhere dense in Q and a
 GS -set. Now the proof continues analogously to that of Lemma 5, if

 the set H (in the proof of Lemma 5) is replaced by H^. Therefore
 we obtain that f€VB on J. Since f6D, f is continuous on J . Hence

 JCïï(f). Let (c,d)CJ, c,d6Q. By (iii), f is increasing on [c,dj ,

 a contradiction, since [c,d] contains infinitely many points of Q.

 Remark 6. If f 6 (Dp and DP exists n.e. and DF^O a.e. then
 f is continuous and increasing on [0,l]. If DF is the qualitative
 derivative of Marcus &8] , the right derivative, the preponderant

 derivative, or the selective derivatives of O'Malley [20] , the
 above statement about f is true. The proofs are as those in [17] ,

 [3] and [20] .
 See [7], for an additional monotonicity theorem.

 437



 CHAPTER TT - MONOTONIC ITY AND FORAIT S CONDITION CM).

 APPLICATIONS.

 Lemma 6> Let f : [O , l] - »R be a continuous function. Let P =

 ļx : f ' (x)>0} • For agy a,bg [0,11 , if a<b, f(a)<f (b) and
 Jf (P H ļa,b] )| s 0 then for eacb c € [0,1) there exist perfect non-

 dense sets Pc and ^ sa eh that; a) PcC [a,b] and QqC [f(a),f(b2 »b)
 PcnPc a 0; O f|p is increasing; d) f(Pc) = e) [ ^ ļ > 12 c

 (f(b)-f(a))/2.

 Proof. Let = [a^,bj and s [^»bgļ be two intervals. If
 a-j_< b^< a2<-b2 then we denote this by Let (e^j^ļ,
 (0,1) be a sequence of real numbers such that (l-e^) • (1-62) * . • • ^

 1/2. We shall construct the sets Pc and by a transfinite process,
 Suppose that aCb, [a,b]C [p»l] , f(a)<f(b) and |f (P O ļa,b] )| = 0.
 Step 1. We show that there exists a positive integer nu such that

 O C T

 if J{= {l,2, . . then tbe rectangles ,

 c^€{o,l}, have the following properties:
 (J «i ļ ^

 (i) is a closed subinterval of [a,b] ; , for i,j€«/l ,

 i-ej, and for ieJl •

 (ii) J. is a closed subinterval of Lf(a),f(b)]; 1 for 1 J

 i<á;

 ci ci
 (iii) B(f}Kj )C » The left side lower corner and the right

 n X1
 °1 °1

 side upper corner of D-. belong to 3(f;&i ): 2 J-? I ">
 H Ł1 ix H1

 (f(b)-f(a))* (l-ex) .

 Step 2. For iļS Jl , c^G £o,l' there exists a positive integer

 m2^1cl) suc^ that, if Aci lcl) = {,1 » 2, . . . ,m2(i]_c 1)] then the
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 Ci Cp Ci Cp Cļ a ^
 rectangles ^ = i *^i i » C2€^P»^» ^ ûave 1 2 1 2 1 2

 the following properties:

 C-i Cp Cļ Cļ i 1 Cļ jO
 (i) K, * is a closed subinterval of L ; Ł Ą .¡, for ł1ł2 1 l'1 Ą n»3

 1,3« Adjc-^, Kj, and K^° "<^^1' ior 16 lACii®!5'
 Cļ Cn Cļ

 (ii) Ją 4 is a closed subinterval of J* ; ^ for
 ł1ł2 1 1» l'3

 i,je ACijCj), i<ô ;
 C ļ Cp C ļ Cp

 (iii) B(fiŁ ą )c Dì J The left side lower corner and the 12 ą ł1ł2
 Cļ Cp

 right side upper corner of D* ¿ belong to B(f;Ki * ) ;
 12 • 12

 ? IJM,I X ¿ > Kl'Cl-ea). i. Henee 2 S I Al J» ¿ >U-e2)- i»2 X ¿ i. J» ¿

 2 I J± I > (l-e1).(l-e2)-Cf(b)-fCa)) ;
 i1 1

 Step (n+1) » (n^2) » Let iļ€ t/l, <A(i^Ci«»*ijj^ l®n- l^ *

 £o,l} for each i. We show that there exists a positive integer

 mn+i(^lcl* ••iQcn) such that if Jl( i^c^» • «i^c^) = ^1,2,..«,

 mû+^(i^c^. . .inca) ^ then the rectangles

 Cļ •• «C^ ļ Ci • • «C -i C -i • • • C,_ A

 Di Cļ n'^n+l •• «C^ i ļ = Ki Ci • • in+1XJi1 -i C -i • • • ^ C,_ , i n+r £ «AcíjC,...! A 11 11 c n ), n'^n+l i = Ki V-Vl H'^Vn+l , n+r 11 11 n
 have the following properties:

 (i) 4U+^ is a closed subinterval of L^" *n ; Por i< 3,
 1* * n+1 l' • * n

 cļ«**c_,l Cļ...c ,0
 i,á € JlCi^j^. ..incn) we have Kļ Ł Ł -<% .i j i For 1 n* 1 a1

 a Cļ • • «c^ ) 0 Cļ • • • c^. ) 1

 i© JfcCijC^ a ..incn) we have ^...ì^ì Cļ • «c^ ) -< *1^.. Cļ .iQ,i • c^. ) '♦
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 Cļ«««C_ 1
 (ii) Jj ą * is a closed subinterval of J* * * ; For l"* ą xn+l * 1* *,iii-l * * n

 '

 , i<3, ~ Q,Ą _ ļ'_ v TC1#*,CI1 y _cl** *cn , i<3, ~ Q,Ą _ v -< y j '»

 (iii) BCfjE^ in+^) C -<n+^ ; TŁ10 left side lower corner V'^n+l lł## n+1

 CX. •• C + ļ
 and tbe right side upper corner of Dj_ # * ^ + "belong to 1 # * n+1

 Cļ * • *C «i « i Ci • • «C-, Cn # • • C i

 B(f Cļ n,##1n+l * • . *C i +1); «i 2 « l^1 i Ci • * • ' «C-, ^ I^Jļ1 Cn 1l,*#Łn-l1nl # • • i C i i Kl-*™.])» n+1 n,##1n+l . i iQ+1 1* * ' n n+l 1l,*#Łn-l1nl i i Kl-*™.])» n+1

 henee 2 2 ...2 |ji1 ini ļ ^ (1-e-, ) • (l-e?) • . . .*(l-e_ -,)•
 il h in+l r' û

 .(f(b)-f(a)).

 Now we can define the sets Pc and Let cc[o,l), then there
 oo -•

 exist c^S to, lì such that c is uniquely represented by 2] c^/2 .

 (We choose the infinite representation when two different

 representations exist.) Then

 P„ c =• (UK?1)0(U U . . . n (U . . *?n)n ... and c iŁ H i1 i2 ł1x2 . ix in 1* * n

 <v ^ = (u Ji )n (U u j l1, )n ... ri(u ...u Ji1*"in"1i * )n ... . <v ^ ix X1 ix i2 12 ... ix in 1* * n-1 n
 It follows that Pç and have tbe desired properties. It remains
 to show that the facts stated in step 1, step 2,..., are true. It

 suffices to show step 1. It is known that f(P) is a measurable set*

 Let Ey = {x : f(x) = y} , = inf(Ey f| [a,bj) and A = {x^ : y e
 [f(a),f(b)]j . Let = inf(Ã) and £ = sup (a). Let =1_x£a :
 f_^(x) = - oo} . Then v. e have: 1) fļj-is increasing; 2) A is nowhere
 dense in (oc,Ji); 3) J = AU{bn}, where In = (a^jb^ are the
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 intervals contiguous to A with respect to (<*,£); 4) aQ6 A}
 5) If xe [an»^n] then f (x)^f (an> ; 6) f (an) = f(bn) ? 7) I is a
 perfect set; 8) If xeA then fļ(x)>0 ; 9) IfCA^ļ s f(b)-f(a).
 The justifications of 1) through 9) are "brief:

 1) By the definition of A and the continuity of f it follows that

 fļ£ is increasing. Applying again the continuity of f it follows

 that fj-j- is increasing.
 2) Suppose on the contrary that X Then by 1) ,

 f I jp^i is increasing. Hence f/ is Suppose that f(<=<1
 <f(Ą) then by [23] (Theorem 7 .2, p. 230), |f (PO [a,b] )|> f (£x)-f 0*r
 >C. This contradicts the fact that ļf(PO (a,b])| s 0. Therefore

 f(<*ļ) = f(Ą_) = )f . Since it follows that A = 0.
 Hence (°^, j8ļ)OA = 0, which contradicts our supposition. Therefor«
 A is nowhere dense in (<* , A ) .

 3) Clearly XDAU{bn5* Conversely, let xgl-A and let y s f(x).

 Then Xy€ A and xy<x. Suppose on the contrary that (Xy,x)OX ¿ 0,

 then there exists x^6 (Xy »x)0 A. By 1), f|Jfļ[^,x] constant,
 hence f(Xy) = f(X]_) - f(x). Since x^s X there is an (x y »x)
 such that X2&A and f(x2) = f(x^), hence ^ - *y» a contradiction.
 Thus (x^,x)OA = 0 and (Xy,x) is an interval contiguous to A with
 respect to (*,£), namely In = (a^jb^, for some n. Hence x = bn
 and A = AU £bn} .

 4) Suppose on the contrary that an^A. Then by 3), an = b^, for
 some k61T. Then (a^b^flî = {an}* ^ f°ll°ws that an is an iso-
 lated point of A. Hence an©A, a contradiction. Thus an6A.

 5) Suppose on the contrary that there exists xQ6 (an,bn] such that

 f(xn>f(an). Let ļrn= (f(xn)+f(an))/2. By 1) and 4), since x^6A

 it follows that an-<x y <bn. Indeed, an6A (by 4)), x^-BA, ^
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 6A. By 1), since f (an)<f (xy )<f (x^), it follows that an<x^<
 *f Hence e(an,bn)OA. Contradiction.

 6) By 5), fCbn)<fCan) by 1), f(anXf(ba). Thus f(an) = f(bn).
 '

 7) Suppose on the contrary that there exists xQ£ 0*,£)O A, isolated

 in A • Then there exist two intervals contiguous to T, 1^ and 1^,

 such that xQ s bj s a^. By 6), f(a.j) » f(ak) and by 4), a^ĄgA,
 a contradiction.

 8) Let x6A. Then f^(x) = lim inf (f (x* )-f (x))/(x'-x) , x' - >x, x'<

 X. Suppose on the contrary that f(x')>f(x), for x'-xCO. Then x1^

 x^^x,^>x (by 1)) and x'>x, a contradiction. Hence f (x' )-f (x)^0 •

 9) For each xgA-A^, £.(x)>--oo (this follows by 8)). By [21]

 (Theorem 10.1, p. 234), f is VBG# on A-A^. Let B = £x€A-A^ : f'(x)
 exists finite or infinite at x}. By 8), BCPO [a, Id] . Hence |f(B)| =

 |f (P O [a, tí] ) I = 0. Let B]_ s (A-Aj^-B. Then by [2Í] (Theorem 7.2,

 p. 230), |f(Bx)| = 0, hence |f(A-A1)| = 0. Since f(A) = [f(a),f(b)]
 it follows that lf(Ax)l = f(b)-f(a).

 Now we cover the set f(A^) with a collection of closed inter-

 vals in the "Vitali sense: Let xQÂ^f £>0 and 0 "be such
 that f ( jx,x+ & (x,g)3 )CZļf (x)- £/2, f(x)+ ê/2]» By 1), f is in-

 creasing on A 0[x,x+ Sr(x,8)ļ . Since f^(x) = -oo, it follov.s that
 there exists y 6 [x,x+ &(x,S)] -X such that f(x)>f(y). Let n(x,y,g)

 be a positive integer such that y6ln(x y • Let y -

 infļf(t) , teln(XtyiS)j. Let ^(x.y.g) = inflt ein(x>y,£) « W

 • mn(X,7,í)l anâ * Vx.y.L)' = An'(x,y,è);
 d°(x,y ,£) s an(Xt7jg)i J(x,y,8) = [f (c°(x,y ,6)) ,f (d°(x,y ,8))J =

 [f (cX(x,y ,£)) ,f (dX(x,y ,g))] . Then f (x) G J(x,y,ê) and | J(x,y ,£)|<Č.
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 Let K?(x,y,S) = [c° (x,y ,S) ,d°(x,y ,&)] ; Kl(x,y,S) = [c^x^a),

 d^(x,y,£)3« Then f (li)C U J(x,y,g). By [2l] (Vit a li1 s theorem,
 x6A1

 p. 109), there exist a natural number and intervals •• •

 such that 6 U J(3C,y,£) (therefore we have (ii)) and
 1 X

 ml

 2 I J* I "> (f 0>)-f (a) ) * (I-®! 1 ) 0*9 have (iii)). ÎTow we have the
 ijsl xl 1
 corresponding intervals , i^ = 1,2, ...»m^, and i%'ì. ii -
 1,2, By 1), we have (i).

 Theorem 9. Suppose that f : ļp , ļ]

 which satisfies [lTI on [Ò , īļ • Then f i¿ derivable on a set of
 positive measure. Moreover . if there exist 0^.a<b^l such that

 f(a)<f(b) then |f(P)j>0, where P = ļx : f'(x)^o}.
 Proof . If f is decreasing the proof is obvious. Suppose that

 f is not decreasing on [0,l] . Then there exist a,b£ [o»íl » aCb
 such that f(a)<f(b). Suppose on thé contrary that ļf(Pfļ ļa/o] )| =0

 Then by Lemma 6, there exist infinitely many sets P^. and such

 that ļ Pļ_ ļ = 0, fļp is increasing, f(P^) = fy- and ļ fy. ļ>(f (b)-f (a) ), t

 2. By Theorem 3, f/ P* "t is ¿0. Hence ļ fy. ļ =0, a contradiction. Tberc "t

 fore, if f(a)<f(b) then ļf(P)|">0. By Remark l,e) and Theorem 6 Ü

 follows that ļf(E+0o)ļ = 0, where S+°° = ^x s f'(x) = +o»}. By [2l]

 (p .236) , |s+°°| = 0, hence |P-S+00| = | p|>0 (since fjp_3+o#(N)) ,
 ([21] , Theorem 4. 6, p. 271) •

 Theorem 10. If a continuous function f : [o , ĪJ - > H satisfies [m ,

 on [o , J and if f ' (x)^0 at almost ev ery point x where f ' (x) exists

 and is finite then f is_ decreasing on [o ,l] .
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 Proof. Suppose tbat f€ [m*] and there exist a,bel, a-<b such

 that f(a)<f(b). Let ř = [ x : +00 f ' (x)> o}; Pq = {x : f'(x) = 0};
 E+ = £x : O < f ' (x) <+00} ; E+oo = ļ x : f ' (x) = +00} . Then P = P^lJ E+

 UE+eř, UCP0)| = 0 (see [21] , Theorem 4.5,p.2?l), ļE+| = | E+ J = 0
 ("by hypothesis), 3y [2]3 (Theorem 4-.6,p.271), f6 (N) on E+, hence

 |f(B+){ s 0« 3y Remark l,e) and Theorem 6 it follows that I^C^+oo)l
 =0. Thus |f(P)| =0 which contradicts Theorem 9»

 Corollary 3. (An extension of a theorem of Nina 3a ry - üi],p.

 199 or [21] ,p.286) « If a continuous function f satisfies For an* s

 condition (M) on [o,l] and if f 1 (x)^0 at almost every point x

 where f ' (x) exists and is finite . th en f i£ AC and increasing; on

 [0,1] .

 Theorem 11. Let f : {o , lj - »R be a function be longing to

 uCMOBjn[M] • If f 1 (x)^.0 a .a . vthere f ' (x) exists and is finite
 then f is increasing on [o , lj •

 To prove this theorem we need the following lemma.

 Lemma 7. Let Q b£ a nonempty perfect set. Let a = inf (Q) , b =

 sup(Q) • Let In = (an»bn) be the intervals contiguous to Q wit h
 Tespe et tiS ļa,bj . Let f be a. f nnction defined on [a,bļ , 7. it h the

 following properties: (i) f6 ^ on Q; (ii) f (an)^f (bn) ; (iii)
 f (In)C [f (an) ,f (bn)] . Let f^ be a continuous function on [ a,b ] ,

 defined as follows: f-^x) = f(x), x£Qî f]_(x) - (x-an) • (f (ba) -
 f (an))/(bn-an) + f(an), xe (an,bn) . Let S = { x£ 3. : f'(x) exists
 f inite or infinite*^; =ļx£Q : fļ(x) exists finite or inf initefr;
 T = (S-E^)U (3^- E) . Then we have : a) If ACQ then f j^S VBG^ if. and

 only if fj^eVBG, ; b) |f(T)ļ = |t| = 0 and f * (x)=fļ(x) a. e. on 2.
 Proof. Let c,d€ 3. By (ii) and (iii) *e have:

 (4) 0 (f ; [c,d]) = 0(fL; [c , d] ) .
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 Let ACQ* Tbea fU€ V3* if and only if fl|A6VB# ^by ^ and by
 the definition of VB#) . Hence fj^eVBG^ if and only if f^ļA€VBG#,
 and tie bave a). Let T^ = B^-S, - E-S^. 77e show that |f(T^)| =
 'Tļ' s O. We have f VBG^ (see [21] , Theorem 10.1, p. 224-) • By

 a), f | ^6 VBG^ . Since f'(x) does not exist (finite or infinite) on

 Tl, by [21] (p. 230, Theorem 7.2), jfCT^ļ = ACBCf;^)) Ä 0.
 Similarly, ļ f (T^ ) 1 = A(B(f;T2)). (A 00 is the Hausdorff length
 of X») Clearly ļsļ = ļ I = ļlSOS^l . Since f = on Q and Q is
 perfect, it follows that f'(x) s fļ(x) on SOS^.

 Proof of Theorem 11. Suppose that f£ uCMOB^ntX]. Since f£

 B^ on [0,lJ, there exists a sequence of intervals In whose union
 is dense in £0,l] and on each of which f is continuous. By Theorem

 10, f is increasing on IQ. Hence f j-j is increasing. The intervals

 In can be chosen to be maximal open intervals of monotonicity of f ,
 We wish to show that in fact there exists only one such maximal

 open interval, namely the interior of [0,1]. Suppose that there is
 more than one such maximal interval and let Q = [0,1] -(UIJ. The
 set Q is a perfect subset cf Co,l] > Q i-s obviously closed and
 if X is isolated in Q then f would be increasing on some I • (since
 ^ J

 fGuCM), having x_ as a right-hand endpoint, ^ grid some interval I. 'J ^ &

 (since fSuOM), having xQ as a left-hand endpoint. Then f is in-

 creasing on I^UIķU {xji > that would contradict the maxima lity of
 the intervals I* and I . By Baire's Category theorem, there exist

 U

 a,b£[p,ļ] , a<b, such that ^0(a,b) 4 0 and fļ is con-
 tinuous. Let f^(x) = f(x), xSQn[a,bļ. Extending f^ linearly on
 the closure of each interval contiguous to Q we have f^ defined

 and continuous on Ja,bļ . Also f^6 fe] on [a,bj . Indeed, let A = A

 CO*,*»] be such that f-^ ^SVB. Then fļ^^eVBrrg . Since f£ [ M.~]
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 it follows that f Siiy on AO^. Heneó f^6 [^CG] on <*. By Lauma 1,

 f 2^6 on A. Hence f^SpiiJ* 3y Lemma 7, fļ(x) = f'te) a.e. on E.
 Since f'OO^O a.e. on 2, it follows that fļ(x)$s-0 a.e. where

 fļ(x) exists on Q. On each interval contiguous to Q, f^ is in-
 creasing. Hence fļ(x)^.0 a.e. where fļ(x) exists on 0>,b] . By

 Theorem 10, is increasing on[a,b3. Hence fļqf^ļa b] ^û~
 creasing. But fi^- 1 is also increasing (since fSuCM). Thus f is 1 n

 increasing on [a,b] , a contradiction.

 Theorem 12. Let f : [0 , lj - ►R be. ¡a DB^ fi; net i on. Let U (f ) =

 int{x s f is continuous at x} . Suppose that f £ [m] ¿n IJ(f ) . If

 f ' (x)^0 a .e . on U(f ) where f i£ derivable« then f _i¿ continuous

 and increasing on Qo , lļ .

 Proof. Suppose that f€[j¿]. It should be noted that 11(f) is a

 dense open subset of [o,lļ, since f€B^. First we show that f is
 increasing on every component of U(f). Let J be a component of U(f)

 and [c,dļCJ. By Theorem 10, f is continuous and increasing on the

 interval ļc,dļ . Since [c,d] was an arbitrary subinterval of J, f is

 increasing on J. Since fSD, fjj-is continuous and increasing.
 Suppose that ü(f) ¡¿ (0,1). Then Q = ļO,l]- TJ(f) is a perfect set
 (if necessary without 0 and 1). Since f63*, there exist

 a<Tb, such that (a,b)OQ / 0 and fļ ^^ļ-a is continuous. It

 f ollows that f I , hence (a,b) C tf(f ) , a contradiction.

 Therefore ïï(f) = (0,1) and f is continuous and increasing on [b,l] .

 Remark: 7. If f'Cx) is replaced by f¿ (x), Theorem 12 remains

 true, and this is in fact an extension of Theorem 2 of [joļ.

 Theorem 13. Let 7 : [c , lj - » El be £ DB* fu net i on and ïï ( f ) =

 int[x : F is continuous at x} . Suppose that F € f Ml (resp ) oņ
 U (F) . Let P = ļ X : F is. d er iv able at x and .F ' (x)>oj OU(?) . Then
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 P is AO H •£ (resp. AO ) on [0 , l] iff F 1 is summable on P .

 Proof. The necessity is obvious. Tve prove the sufficiency. Let
 x

 g(x) = F'(x), ï€P and g(x) = O, xG D?»1] ~ G(x) = J" g(t)dt.
 0

 Then G(x) is AO and nondecreasing on [o,]] • E(x) = G(x)-F(x).

 Then HGDB^ on ļo,l] • Let U(H) = int{x : H is continuous at xj-.
 Then ÏÏ(H) = ÏÏ(P). We show that H is increasing and continuous on

 [o,l]. Clearly H g[m] on TJ(F). Let xG Ü(F) "be any point at which

 both P and G are derivable, then H is derivable at x and H* (x) =

 Gf (x) - F' (x). If x6P then H'(x) = 0 and if x^P then F' (x)< 0
 and G'(x)^0. Hence H'(x)^0. Consequently , H' (x) is nonnegative

 at almost all points x where H'(x) exists onïï(F). By Theorem 12,

 H is increasing and continuous on [c,l]. It follows that F Ç.Y3C'€

 on [o,l] • By the definition of [k] (resp.[nļ) it follows that FG
 AC (resp. J»C) on [0,lj *

 Remark 8. Theorem 13 generalizes Thaorem 7.7 of [21] (p. 285)

 and Theorem 1 of [15] (p. 261).

 Theorem 14-. Let F : [o , l] - »H b<3 _a DB* function and let U (F ) =

 int{x i F .is continuous at x} . Suppose that F 6 [¥](resņ.[īu] ) oņ

 ÏÏ(F). Let F*(x) = F1 (x) if it exists and i^ fi nit e; otherwise. 1st

 F#(x) = 0. Let Fgp(x) = F^Cx) if it^ exists and is finite; other-
 wise let F*p(x) =0. If there exi sts a_ continuous function
 G:[0,l]

 a) GGVBG#OAÇG, G'(x)> F*(x) a.e. on [c,l], then F6 VBG^fl IČGfhď
 (resp. ACG#0 ) on [O , l] ;

 b) GGAa,e,n¿£2, G'(x)>F*(:c) a.e. oņ [C,l], then F6 A a.e .0 IÜG
 fl-ď (re sp. A g ł0 #n ) oņ [o,3 ;

 c) G G ACG T Gļp(x)^F*p(x) a.e. on [0,1], then. FG ACGQ-£ (resp.
 ACG ) on tp.3- CAa.e. =iF!Lo.l] - -^3, F is derivable a.e. J.
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 Proof. Let H(x) = G(x)-F(x). Then H6[M] oil U(F) = ÏÏ(H) =

 int£x : H is continuous at xj. For a),b), H' (x)>»0 a.e. on U(H)

 where H' (x) exists and is finite, and for c), H^p(x)>0 a.e. on
 U(H) where H¿p(x) exists and is finite. By Theorem 12 and Remark 7,
 H is increasing and continuous on |0,l] • ITow F = G -HS V3G and by

 the definition of [¥ļ(resp.[M] ) it follows that FSlü£ (resp.ACG).

 Clearly for a) and b), F6 7BG and FSAa ^ a respectively. Since iř ^ • a 0 •

 VBG^n ACGOi£ = ACG# on [o,l] (see Theorem S.8,p.233 of [2l] ) the
 proof is complete.

 Remarle 9. i) Theorem 14- remains true if: 1) "G' (x)^-F* (x) a.e.

 on [o,lļ 11 is replaced by "G* (x)^F' (x) a.e. on U(F) where F' (x)
 exists and is finite" in cases a) and b); 2)"GJL (x)^fIL (x) a.e.
 m^mmmmb mmm «mmmmmm mmmm mmmmmm «mmm

 on Jp,l3,ł is replaced by "G.ļp (x)^Fļ0 (x) a.e. on U(F) where F¿p(x)
 exists and is finite" in case c) .

 ii)'The second part of Theorem 14 is an extension of a theorem of

 3a ks (see [21] ,P .286) .

 iii) The second part of Theorem 14, c) is an extension of Theorem 2

 of [12] CP .446).

 iv) Since an approximately diff erentiable function F is DB'oGOC

 DB* O [m] (see [l53iP»2Sl), by the second part of Theorem 14, a), u e

 have the following theorem of [l4](p.295)î

 Let F: [O »iļ- be. approximately diff erentiable. If F* is
 Perron integrable on [C , l] then F is^ -*CG çn [O , ij .

 v) In Theorem 14, b) we cannot give up the condition Aa.e oa
 [p,l] (see Example 2 of D-3]»P«305)«

 448



 CHAP TEH - MONOTOfllCITY AM) PROPERTIES [M#] , []Ļ] , [Iff ] .
 APPLICATIONS.

 Secali that by Theorem 6 it follows that for Darboux functions

 on [0,lj , [Mj = H1» , [ąj = and [IJ = IT** .
 Theorem 15. If F ; [o , l] - >R belongs to D O (+)0 if00 and ? ' (x)^

 O a. e. oņ 1o,lJ where F' (x) exists and is finite theaF is con-
 tinuous and decreasing on |0,ļ3 •

 Proof. By Theorem 2 and by Lemma B, F is decreasing on £o,l] .

 Since F6 D it follows that F is continuous on 1o,iQ •

 Por ol lary 4. Let F: [0,1] - bę, a function with the following

 properties on ļo,l] x (i) F is. measurable and (D£) (particularly F6
 DB^)j (ii) F6 (N) ; F' (x)^O a.e. where F i£ derivable. Then F is
 increasing and AO on [o,ļ] .

 Proof. It follows by Remark l,c),e),k) and Theorem l,c),e),

 and by Theorem 15.

 Open problem. ITote that the second part of Corollary 4 is in

 fact C.M. Lee's Theorem 1 of M- Does C.M. Lee's theorem remain
 true if condition (ET) is replaced by condition M ?

 Corollary 5. Let F : ļjD ,l]

 F*(x) = DF(x) if it exists and is finite; otherwise, let F^(x)=0.
 If Fjļļ is, 33) -int g °:r ab le on [o , then F € oņ [o , l] .

 x

 Proof . Let G(x) = J' F*(t)dt. Then DG(x) = (x) a.e. on
 0

 ¡p,l] and Gein-^na . Let H(x) = G(x)-F(x). Then H€ DB^flT» OS
 and H' (x) = 0 a.e. where H is derivable on [0,l3 • By Corollary Wi-

 ethe second part), H is constant on Qo,l]. Therefore F€3-T|"£n3>

 on [0,]ļ .
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 Example « There exists a continuous function g : [0 , l] - > |o , 2]

 with the following properties ? (i) g' (x) exists on [o , l] -0 (0 =

 the Cantor ternary set); g'(x)^0 on jp,ļļ -0; if x6C then g*(x)
 does not exist (finite or infinite) î (ii) ge = N*00 O ;

 (iii) g Ą (+) fļ(M) .
 Proof . For each x€C, let g(x) s sCS®^*)/?*) s S®2i^x^2Í#

 Then g is continuous on 0. Extending g linearly on each interval

 contiguous to 0 we have g defined and continuous on [0,í] • (i) We
 observe that if I is an interval contiguous to 0 from the step

 in the Cantor ternary process the«g is constant on I and if I is

 an interval contiguous to C from the step 2Ë+1 in the Cantor ter-

 nary process then g is strictly decreasing on I, It follows that

 g is derivable on [o,lJ-C and g'(x)^0 on ļp,iļ-<5. Let xQS C and

 let Cļ© {p,2j , such that xQ = 2 cŁ/3 • Let ļxnJ and [yQJ , xn,yn

 €C, be two sequences which converge to xQ : xn = 2 c^/31 +

 (2-c2»l)/52n*1' 7n = V?1 + (2-o2a)/5211- deaily |xn-*0| =
 ijc¿n

 2/32û+1, Uq-Xq I = 2/9n , g(xn) = g(x0) and |g(yn)-g(xQ) | = 2/2n.

 Hence | (g(xn)-g(xQ) )/(xn-xQ) ļ = 0 and lim |(g(ya)-g(x0) )/(yn-x0)| =

 +o® , n - k+oo • Therefore g'(x0) does not exist.
 (ii) by (i), S 00 = 0. Hence g s N°° .

 (iii) Let Q be a perfect subset of C, Q = ļx€C i c2n+l^x^ = 0» ^
 1,2,...}. Clearly g(Q) = [0,2] • We show that g is increasing on Q.
 Let x,y€Qi x<y and let m be the first natural number such that

 C2m(x)<c2m(y)» Then cj.(x) = Cļ(y)» * = l,2,...,2m-l and g(y)-g(x)
 oo

 >2/2m - 2 2/2m+1 = 0, Hence s(y)^g(x). By Theorem A, g£(M).
 i=l
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 Since [g(0) ,g(l/3)] = [0,2] and |gOPO[o, 1/3] ) | = 0, it follows
 that g€(+). CP = {x » g'(x)>o}.)

 Remark 10. The Sxample shows that we cannot give up the con-

 dition (+) in Theorem 15.

 Theorem 16. Let h : [0,1] - *R be, a function belonging to

 (DB1nT2nN+0° )[3 (TfnVBG^niT*00 ). If h*(x)^0 a.e. where h is
 derivable, then h i¿ continuous and decreasing on [0,1] .

 Proof. Let f,g:[0,l] - >R, f £ (DBjO T20 ti*00 ) and gg( -ďOVBG^

 niT+00) = (€OVBG#niüÜ), such that h = f+g on [0,l] . By Remark: 1,

 i), heDBļ on [0,1]. For g there exists a sequence of intervals In
 whose union is dense in [o,iļ and on each of which gSÄGHTf . Let

 &n,dn]CIn. Since h © (DB1f| TgO IT*"00 ) [+] (ĀGC'1S ) on I , by
 9

 Gorollary 2,b)t f€ÃÕ on ļcn,d ], hence h € AC on [Cj^dJ . By Lemma

 B, h is decreasing on jcn,dn]. Since h6D, h is continuous and
 decreasing on The intervals IQ can be chosen to be maximal
 open intervals of monotonicity of h. Suppose that 1: [o,l]-(U*ii)
 /0. Then Q is a perfect nonempty subset of [0,l] (if necessary

 without 0 and 1). Let 0<a<b^l such that (a,b)0 Q s Çf and

 s I Ja,t5] ®l^x ) s g(x) , X 6 [a,b] fi Q aD^ let g^ be
 linear on the closure of each interval contiguous to Q with

 respect to ļa,b] . Then g^SVB^Olf on [a,b] . Let f^(x) = h(x) -
 gļ(x). By Remark l,i), f^GDB^ on [a, 10 . Since f 6 T2 and f^GAO

 on each In, it follows that f^6T2 on [a,b] and f^Gť00 on each

 In. Let Qj. = QiC [a,bļOQ such that f^ļ^ 6"/B#. Since gļ6VB# on
 [a,b] it follows that h = fļ+gļSV3^ on Q^. Hence f = h-gGVB# on

 Q]_. Since fSF1"®0 f by Lemma k% is Hence f^j^S AO. It
 follows that f]_€[M#] on Qfi[ai^l • Hence h = f ]+gļ_ € (DBļOT2n E*00)

 [T| (iõn^) on [a,b] . ïïcw h is decreasing on [a,b] , a contradiction.
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 Corollary 6« Let F,G:[Otl] - >R be two functions euch that

 F 6 DBjTl ^2^ Cjesp> DBj^n^ON00). G fi ACGD # OVBG^ and G1 (x)>

 F' (x) a.e. where F derivable « Then F6 AÜGn VBG#OlT (resp « ^CG#
 n-é) on [0 , 1] and H = F -G i¿ continuous and decreasing on |0 , l] •

 Proof . Olear ly H'OO^O a. e. on [0,l3 where H is derivable.
 By Theorem 16, H is decreasing and continuous on [0,l] . Hence FS

 VBG#01? • Now F€ AGG (resp. ACG^) on 1p,£].

 Remark 11« By Corollary 6 we have the following theorem:

 Let F:|0,lJ - >R, F 6 DBjO I2 H . If F* (see Theorem 14) has

 a ma.ior function in the Perron sense then F S ACG^OlS on ļo , ]J •
 This theorem is an extension of a theorem of Saks (see [21J ,

 p. 286). (See also Remark 9,ii)0

 Corollary 7. Let h : ft) , l]

 (DBļOCN)) 0 (ACG^n-ê) on [o,ļ] . If h' (x)>0 a. e. where h is
 derivable then h 6 AC and is increasing on lb , Í1 •

 Remark 12. In [20] , Mazurkiewicz has constructed a continuous

 function f(x) on [0,l] such that for b¿0 the function f(x)+bx does

 not satisfy Lusin's condition (N). Therefore DB^O (íOC. (DBjH (10 )

 @ (ACG#n Ì? ) C DB-^n [mI on [0,l3* Thus Corollary/ is a partial
 answer for the Open problem.

 7/e are indebted to Professor Solomon Marcus for his help in

 preparing this article and to the anonymous reviewers for their

 valuable suggestions and careful reading.
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