RESEARCH ARTICLES Real Analysis Exchange vol. 12 No. 2 (1986-87)
Vasile Ene, Institute of Matbematics, str. Academiei 14, 70109 Bucharest, Ramania

MONOTONTCITY THEOREMS

In [2] Bruckner proved the following theorem:
Let f be a function satisfying the following conditions on an interval $[a, b]:$ (i) f is a Darboux function in Baire's class one; (ii) f is VBG; (iii) f is increasing on each closed subinterval of $[a, b]$ on which it is continuous and VB. Then f is continuous and nondecreasing on $[a, b]$.

Brickner obtained this result while answering affirmatively a problem presented by Zaborski in [24]. (This question was also answered independently by Swiatkowski in [23].)

In Cbapter III we generalize Bruckner's theorem, but the proof of our theorem is sborter. Te then give applications of this theorem whicb eeneralize consequences of Bruckner's theorem.

The following theorem of Banach ([21],p.286) is well known:
any function which is continucus and satisfies Lusin's condition (\mathbb{N}) on an interval, is derivable at every point of a set of positive measure.

Of course condition (N) implies $c=n d i t i o n ~ T_{2}$ and it is this fact that leads to the proof of Banach's theorem. In [9], Foran generalizes tbis result, sbowing that Banach's theorem remains true if condition (N) is replaced by Foran's condition (M).

An improvement of Foran's theorem is given in Cbapter IV (Theorem 9), which is then used to prove a monotonicity theorem (Theorem 10) which generalizes the following result of Nina Bary ([1] or [21],p.286). (Condition (N) is replaced by condition (M).)

Every continuous function F which satisfies condition (N) and whose derivative is nonnegative at a.e. point x where $P(x)$ is derivable, is monotone nondecreasing.

Purther we give many applications of Theorem 10.
One of the most remarkable results of Chapter V is Corollary 7, which is a partial answer to the Open problem of this chapter.

CHAPTER I - PRRIIMINARIES

For convenience, if P is a property for functions defined on a certain domain, we will aleo use P to denote the class of all functions baving the property P. We denote by \bar{A} the closure of the set A and by int(A) the intericr of the set A. By $B(F ; X)$ we denote the graph of F on the set X. We denote by $O(F ; I)$ the oscillation of the function F on the interval I and by $O(F ; x)$ the oscillation of the function F at the point x. The set $X \subset R$ has a pair of isolated neigbbours if there exist $x_{1}, x_{2} \in$ a such that x_{1} and x_{2} are isolated in \mathbf{X} and $\left(x_{1}, x_{2}\right) \cap X=\varnothing$. A property is said to bold n.e. (nearly everywhere) if it bolds except on a countable set of points. Let $F_{y}=\{x: f(x)=y\}$. It is called a level set of tie function f. Let $A_{1} \oplus \mathcal{A}_{2}$ (respectively $\mathcal{A}_{1} \oplus \mathcal{A}_{2}$) denote the linear space (resp. the semi-linear space) generated by the classes of functions A_{1} and A_{2}. Let \mathscr{C} denote the class of all continuous functions and let D be the class of all Darboux functions on $[C, 1]$.

Definition 1. [10]. Given a natural number N and a set E, a function F is said to $b e B(N)$ on E if there is a number $M<+\infty$, such that for any sequence $\left\{I_{k}\right\}$ of nonoverlapoing intervals nith $I_{k} \cap E \neq \varnothing$, there exist intervals $J_{k n}, n=1, \ldots, N$, for which

$$
B\left(F ; E \cap \bigcup_{k} I_{k}\right) \subset \quad \bigcup_{k} \bigcup_{n=1}^{N}\left(I_{k} \times J_{k n}\right) \quad \text { and } \quad \sum_{k} \sum_{n=1}^{N}\left|J_{k n}\right|<M
$$

Definition 2. [10]. Given a natural number \mathbb{N} and a set E, a function F will be said to be $\Delta(\mathbb{N})$ on \mathbb{I} if for evary $\varepsilon>0$, there is a $\delta>0$ sucb that if $\left\{I_{k}\right\}$ are nonoverlapping intervals with $I_{k} \cap \mathbb{F} \neq \varnothing$ and $\Sigma\left|I_{k}\right|<\delta$ then there exist intervals $J_{k n}, n=1, \ldots, N$ sucb that $B\left(F ; E \cap \bigcup_{k} I_{k}\right) \subset \bigcup_{k} \bigcup_{n=1}^{N}\left(I_{k} \times J_{k n}\right)$ and $\sum_{k} \sum_{n=1}^{N}\left|J_{k n}\right|<\varepsilon$.

Definition 3.[8]. Given a natural number N and a set E, a function F will be said to be $E(\mathbb{N})$ on \mathbb{E} if for every subset S of E, $|S|=0$, and for any $\varepsilon>0$ there exist rectangles $D_{k n}=I_{k} \times J_{k n}$, $n=$ $1, \ldots ., N$, with $\left\{I_{k}\right\}$ a sequence of nonoverlapping intervals, $I_{k} \cap s \neq \varnothing$ such that $B(F ; S) \subset \quad \bigcup_{k} \bigcup_{n=1}^{N} D_{k n}$ and $\sum_{k} \sum_{n=1}^{N} \operatorname{diam}\left(D_{k n}\right)<\varepsilon$.

Let \mathcal{F} (resp. $B, \mathcal{F}^{\mathcal{F}}$) be the class of all functions F, defined on a closed interval I, for whicb there exist a sequence of sets E_{n} and natural numbers N_{n} such that $I=U \mathbb{E}_{n}$ and F is $A\left(N_{n}\right)$ (resp. $B\left(N_{n}\right)$, $E\left(N_{n}\right)$) on E_{n}.

Let D be an additive class of functions derivable in a sense which is compatible with the ordinary derivative $F^{\prime}(x)$, i,e., $D F(x)$ $=F^{\prime}(x)$ at almost every point x where $\mathrm{F}^{\prime}(\mathrm{x})$ exists. Then $\mathcal{F} \cap 円 \cap \bigodot$ can be taken as a class of primitives and the $\mathcal{F I}$ - integral (the Foran integral) can be defined by $F 9-\int_{a}^{b} f(x) d x=F(b)-F(a)$, where $\operatorname{DF}(x)=f(x)$ a.e. on $[a, b]$.

Definition 4. A function F fulfils Lusin's condition (N) on a set E if $|F(S)|=0$ for every subset S of I for wich $|S|=0$.

Definition 5. A function $F:[0,1] \longrightarrow R$ is said to be B^{\prime} on $E C$ $[0,1]$ if there is a number in $<+\infty$ such that for any sequence $\left\{I_{n}\right\}$ of nonoverlapping intervals witö $I_{n} \cap \mathbb{E} \neq \not \varnothing$, there exists a sequence of closed sets K_{n} for which $3\left(F ;\left\{\bigcup_{n} I_{n}\right) \subset U_{n}\left(I_{n} \times \mathbb{R}_{n}\right)\right.$ and $\sum_{n}\left|\mathbb{K}_{n}\right|<M$.

Definition 6. [15]. A function $F:[0,1] \longrightarrow R$ is said to be $\overline{A C}$ on a set E if for every $\varepsilon>0$, there exists a $\delta>0$ sucb that $\sum\left(F\left(b_{i}\right)-F\left(a_{i}\right)\right)<\varepsilon$ for each sequence of nonoverlapping intervals $\left[a_{i}, b_{i}\right]$, with endpoints in E and $\sum\left(b_{i}-a_{i}\right)<\delta$. Let $A C=\{F:-F$ $\epsilon \overline{\mathrm{AC}}\}$. Then $A C=A C \cap \overline{A C}$.

Definition 7. A function F belongs to the class ACG (resp.VBG, B^{\prime}) on a set E if $E=U E_{n}$ and F is $A C$ (resp. $V B, B^{\prime}$) on each E_{n}. If condition $A C$ is replaced by $A C$ (resp. $\overline{A C}$) we obtain the class ACG (resp. $\overline{A C G}$). If the sets E_{n} are supposed to be closed we obtain the classes [ACG], [ACG], [$\overline{A C G}]$ and [VBG]. Olearly if $F \mid F$ is $B(N)$ then $\mathcal{F}_{\left.\right|_{\mathbb{F}}} \in B^{\prime}$, bence $\beta \subset B^{\prime}$.

Definition 8. A function $F:[0,1] \longrightarrow R$ satisfies, condition [$\bar{M}]$ (resp. [$\left.\overline{\underline{m}}_{\boldsymbol{*}}\right]$) on $\bar{S}=\bar{E} \subset[0,1]$ if F is $\overline{A C}$ on each closed subset of E on which F is $V B \cap \in$ (resp. $V B_{*} \cap \ell$). Let $[\underline{M}]=\{F:-F \in[\overline{\mathbb{H}}]\}$;
 F is [M] (resp. [$\left.\mathbb{M}_{*}\right]$) on E if F is $A C$ (resp. $A C_{*}$) on each closed subset of E on which F is $\forall B \cap C$ (resp. $\forall B_{*} \cap \mathscr{C}$). (For the second part see Theorem 8.8,p. 233 of [21].) Clearly [m] ${ }^{(1)}$ C identical with Foran's condition (M) (see [9]).

Definition 9. a function $F:[0,1] \longrightarrow \mathrm{R}$ satisfies conditicn[丽] if F is $\overline{A C}$ on each closed subinterval of $[0,1]$ on which it is

Definition 10. A function $F:[0,1] \longrightarrow$ a satisfies Bruckner's condition B_{i} on $[0,1]$ if F is increasing on eacb closed subinterval of $[0,1]$ on wisich it is VB $\cap \mathcal{C}$. Let $B_{d}=\left\{F:-F \in B_{i}\right\}$.

Definition 11. [4]. The function F has the property D_{d} on $[0,1]$ if $F([a, b])$ is everywhere dense on the closed interval with endpoints $F(a)$ and $F(b)$, for every subinterval $[a, b]$ of $[0,1]$.

Definition 12.[4]. The function $F \in D$ has the property D^{\prime} on $[0,1]$ if the values $y \in F([0,1])$ for winich E_{y} is countably infinite
and dense in the sense of order, form a null set. A function F bas the property $D^{\prime \prime}$ on $[0,1]$ if it bas property D^{\prime} on every interval $[a, b] \subset[0,1]$. (d set is dinse in the sense of order if between every two points of F there is a point of F_{o})

Definition 13. The function $F \in D$ satisfies condition (D) on $[0,1]$ if the values $y \in F([0,1])$ for which E_{y} is countably infinite and for which E_{y} does not contain a pair of isolated nei玉bbours form a null set. A function $F \in D$ has the property ($D_{r}^{\prime \prime}$) on $[0,1]$ if it is (D_{r}^{\prime}) on every subinterval of $[0,1]$.

Definition 14. [4]. The function F is [CG] (or B_{1}^{*}) on a set J if E can be expressed as the sum of a denumerable sequence of closed sets F_{n} over each of wich F is continuous.

Definition 15. [16]. A function $F:[0,1] \longrightarrow R$ is $u C N$ if F is increasing on the closed subinterval $[c, d] \subset[0,1]$ whenever it is so on the open interval (c, d). Let $10 M=\{F:-F \in u C M\}$ and let $C M=1 C M \cap u C M$.

Definition 16. For a function $F:[0,1] \longrightarrow R$ we denote by (+) and (-) the following properties:
$(+)$ for $0 \leqslant a<b \leqslant l$, if $F(a)<F(b)$ then $|F(P \cap[a, b])| \geqslant F(b)-F(a)$;
$(-)$ for $0 \leqslant a<b \leqslant l$, if $F(a)>F(b)$ then $|F(\mathbb{N} \cap[a, b])| \geqslant F(a)-F(b)$; where $P=\left\{x: 0 \leqslant F^{\prime}(x) \leqslant+\infty\right\}$ and $N=\left\{x: 0 \geqslant F^{\prime}(x) \geqslant-\infty\right\}$.

Definition 17. [22]. Let $F:[0,1] \longrightarrow R ; \mathrm{E}^{+\infty}=\left\{\mathrm{x}: \mathrm{F}^{\prime}(\mathrm{x})=+\infty\right\}$; $\mathbb{N}^{+\infty}=\left\{\mathrm{F}:\left|\mathrm{F}\left(\mathrm{I}^{+\infty}\right)\right|=0\right\} ; \mathrm{N}^{-\infty}=\left\{\mathrm{F}:-\mathrm{F} \in \mathrm{N}^{+\infty}\right\} ; \mathrm{N}^{\infty}=\mathbb{N}^{-\infty} \cap \mathrm{N}^{+\infty}$. Remark 1. a) Ccnditions $A(1)$ and $A C$ are equivalent. Also conditions $B(1)$ and $V B$ are equivalent. (See [10].)
b) ACG is strictly contained in \mathcal{F} and . TBG is strictly contained in $B(\underline{\text { see }}[8]) ; \mathcal{F} \cap B_{1}^{*}$ is strictly contained in $B \cap B_{1}^{*}$ (see [10]); B is strictly contained in \mathcal{B}^{\prime} (see the function F constructed in the procf of Theorem $1, c$) of [6]).
c) $\mathcal{F} \subset \mathcal{F} \subset(\mathbb{N}) \subset[\mathbb{M}]$ and all the inclusions are strict (see [6]).
d) $\mathcal{f} \oplus \mathcal{F}=\mathcal{E}$. (See the proof of Theorem 5, c) of [8].)
e) $[\overline{\mathbb{M}}] \subset\left[\overline{\mathbb{M}}_{*}\right]$ and $(\mathbb{N}) \subset \mathbb{N}^{\infty}$. (See $[22], \mathrm{p} .128$.)
f) $\overline{\mathrm{AC}} \subset V B C T_{2}$ for continuous functions on $[0,1]$.
g) $A C G \cap \subset \subset[A C G] \subset A C G$.
b) $B_{1}^{*} \cap[\mathrm{VBG}] \cap[\overline{\mathrm{M}}]=[\overline{\mathrm{ACG}}]$ and $\mathrm{B}_{1}^{*} \cap[\mathrm{ACG}]=[\mathrm{ACG}]$.

1) $\mathrm{DB}_{1} \oplus \mathscr{C}=\mathrm{DB}_{1}$ 으 $[0,1]$. (See $[3]$, Theorem $3.2, \mathrm{p} .14$.)
j) $(\mathbb{M}) \oplus A C G=(M)$ for continuous functions on $[0,1]$. (See [6].) In fact $[M] \square(A C G \cap C)=[M]$.
k) $(\mathbb{N}) \subset T_{2}$ for measurable functions. (See [4], Theorem IV,p.473,)
2) $D C u C M$ on $[0,1]$. The converse is not true.
m) $D \oplus \in \subset D_{d}$ on $[0,1]$. (See [4], Theorem V,p.473.)
n) $D_{d} \oplus \mathcal{C}=D_{d}$ on $[0,1]$. (See [5].)
o) $\left(D_{r}^{\prime}\right) \subset D^{\prime}$ and $\left(D_{r}^{\prime \prime}\right) \subset D^{\prime \prime}$ on $[0,1]$.
p) $\mathrm{VBG}_{*} \cap \mathcal{C} \subset \mathrm{~T}_{1} \subset \mathrm{~T}_{2} \cdot$ (See $[21]$, Theorem 6.3,p.279.)

Lemma A. [6] . A Darboux function $F:[0,1] \longrightarrow \mathrm{R}$ which is VB_{*} on a closed subset २ of $[0,1]$, is continuous on 2 . Theorem A. [9]. A contimuous function $F:[0,1] \longrightarrow R$ satisfies (ii) 으 $Q \subset[0,1]$ iff F is $A C$ on any set $T C Q$ on which F is monotone. Lemma $B_{\text {. }}[15]$. Let $F:[0,1] \longrightarrow R, F \in$ AC on $[0,1]$ and $F^{\prime}(x) \geqslant 0$ a.e. where $F^{\prime}(x)$ exists. Then F is increasing on $[0,1]$.

CHAPTER II - RELATIONS BEMWEEN SOME CLADSES OF FUNCTIONS

Theorem 1. a) There exists a function $F:[0,1] \longrightarrow[0,1], F \in$ $\left(D_{d}-D\right) \cap A C G$ guch that $F=G+H$, where $H \in A C G \cap\left(\left(D_{r}^{\prime \prime}\right)-D B_{1}\right)$ and $G \in$ ACG $\cap b$.
b) D is strictly contained in D_{d} on $[0,1]$.
c) $D B_{1}$ is strictly contained in $\left(D_{r}^{\prime \prime}\right)$ on $[0,1]$.
d) There is a function $f \in D_{2} \cap V B G$ such that $f \notin\left(D_{r}^{\prime}\right)$; There is a function $f_{1} \in D B_{2} \cap V B G \cap\left(D_{r}^{\prime}\right)$ such that $f_{1} \notin\left(D_{I}^{\prime \prime}\right)$.
e) If $f \in\left(D_{r}^{\prime \prime}\right) \cap T_{2}$ on $[0,1]$, thon f has properties (+) and (-).
f) If $f \in B$ on $[0,1]$ then f satisfies T_{2} on $[0,1]$.
g) The class [$\mathbf{M}]$ is strictly contained in $\left[M_{*}\right]$ on $[0,1]$.
b) The class $\left[M_{*}\right]$ is strictly contained in $[M ']$ on $[0,1]$.

Corollary_1. $C \subset D B_{1} \subset\left(D_{r}^{\prime \prime}\right) \subset\left(D_{r}^{\prime}\right) \subset D C D_{d}$ and all the inclusions are strict.

Proof of Theorem 1. a) Let $I_{p, k}=\left[a_{p, k}, b_{p, k}\right], k=1, \ldots, 2^{p-1}$, be the closures of the intervals contiguous to C, from the $p-t h$ step in the Cantor ternary process. ($C=$ the Cantor ternary set.) Let $B=[0,1]-\bigcup_{p, k} I_{p, k}$ and $d_{p, k}=\left(a_{p, k}+b_{p, k}\right) / 2$. Let $S_{n}=1+2+$ $+\ldots+n, S_{0}=0$. Bacb point $x \in C$ is uniquely represented hy $\sum c_{i}(x) / 3^{i}$. Let $F(x)=0, x \in B$ and $F(x)=i /(n+1), x \in I_{S_{n}+i, k}$, $i=1,2, \ldots, n+1$. Let $G(x)=0, x \in \mathcal{C}$ and let $G(x)=1 /(n+1), x=$ ${ }^{d_{S_{n}}+1, k}$. Bxtending G linearly on each of the intervals [$a_{S_{n}+i, k}$, $\left.{ }^{d} S_{n^{+}}, k\right]$ and $\left[d_{S_{n}+i, k}, b_{S_{n}+i, k}\right], i=1,2, \ldots, n+1$, we bave G defined and continuous on $[0,1]$. Let $H(x)=F(x)-C(x)$. Then $H:[0,1] \longrightarrow[0,1]$ and $H(x)=0, x \in \mathbb{E} ; H(x)=i /(n+1)$ if $x \in\left\{s_{s_{n}+i, k}, b_{S_{n}+i, k}\right\}$; $H\left(d_{S_{n}}+i, k\right)=(i-1) /(n+1) ; H(x)$ is linear on each of the intervals $\left[{ }^{s} S_{n+i}, k,{ }_{S_{n}+i, k}\right]$ and $\left[d_{S_{n}+i, k}, b_{S_{n}+i, k}\right], i=1,2, \ldots, n+1$. clearly $F, G, H \in A C G$ and $F \notin D$. Let $I=[a, b] \subset[0,1],(a, b) \cap C \neq \varnothing$. Then there exists an interval $I_{1}=[c, d], c, d \in c, c=\sum_{i=1}^{S_{n}} c_{i}(c) / 3^{i}$ and $d=c+\sum_{i=S_{n^{+1}}}^{\infty} 2 / 3^{i}$, for some natural number $n . I_{1}$ contains 2^{j-1}
intervals contiguous to C from the step $S_{n+j}, j=1,2, \ldots$, of the Cantor ternary process. We show that $F \in D_{d}$. Clearly $[0,1]$ contains the interval with endpoints $F(a)$ and $F(b)$, and $F(I) \supset \cup\{i /(n+j)\}$, $i=1,2, \ldots, n+j, j=1,2, \ldots$. Hence $\overline{F(I)}=[0,1]$ and $F \in D_{d}$. We show that $H \in\left(D_{r}\right)$ on $[0,1]$. For each $i=1,2, \ldots, n+1$, let $K(i)$ be a natural number sucb that $I_{S_{n}+i, K(i)} \subset I_{1}$. Then $H\left(I_{S_{n}+i, K(i)}\right) \subset$ $[(i-1) /(n+1), i /(n+1)]$. Hence $H\left(I_{1}\right)=[0,1]$ and $H \in D$. Let $J \in[0,1]$ be an irrational number. Then $I_{S_{n^{+1}}, K(i)} \cap E_{y}$ ccntains a pair of isolated neighbours, for some $i=1,2, \ldots, n+1$, and $H \in\left(D_{r}^{\prime \prime}\right)$. We show that $H \notin D B_{1}$. Suppose on the contrary that $H \in D B_{1}$. Then by Remark $1, i$), it follows that $~ H+G \in D B_{1}$. Contradiction.
b) The function F constructed in the proof of a) bas the folloxing properties: $F \notin D$ and $F \in D_{d}$.
c) The function H constructed in the procf of a) bas the following properties: $H \in\left(D_{r}^{\prime \prime}\right)$ and $H \notin D B_{1}$. It remains to show that the class $D B_{1}$ is contained in ($D_{r}^{\prime \prime}$). Let $f:[0,1] \longrightarrow R$ be a $D B_{1}$ function. Let Y_{2} be the set defined in [2](p.17), namely $Y_{2}=\{y \in f([0,1]):$ there is an $x \in E_{y}$ such that f attains a strict relative maximum or minimum at x$\}$. The set Y_{2} is at most denumerable ([21],p.261). By the proof of Theorem 1 of $[2](p .17)$ it follows that for every $y \in f([0,1])-Y_{2}$, if I_{y} is denumerable then E_{y} contains a pair of isclated neighbours. Since $\left|Y_{2}\right|=0, f \in\left(D_{r}^{\prime}\right)$. Hence $D B_{1} \subset\left(D_{r}^{\prime \prime}\right)$. d) Let (a_{n}, b_{n}) be the intervals contiguous to C and let f be a function defined as follows: $f\left(a_{n}\right)=1, n=1,2, \ldots ; f(x)=0, x \in$ $c, x \neq a_{n}, n=1,2, \ldots ; f$ is linear and continuous on each $\left[a_{n}, b_{n}\right]$. By [2](pp.16-17), it follows that $f \notin\left(D_{r}^{\prime}\right)$ and $f \in D B_{2} \cap$ VBG. Let $f_{1}(x)=f(x), x \in\left[0, a_{1}\right) \cup\left[b_{1}, 1\right] ; f_{1}\left(a_{1}\right)=0 ; f_{1}(x)=1, x=$ $\left(a_{1}+b_{1}\right) / 2=d_{1} ; f(x)$ is linear and continuous on $\left[a_{1}, d_{1}\right]$ and $\left[d_{1}, b_{1}\right]$. Clearly $f_{1} \notin\left(D_{r}^{\prime}\right)$ on $\left[0, a_{1}\right]$ and $\left[b_{1}, l\right]$. Hence $f_{1} \notin\left(D_{r}^{\prime \prime}\right)$.

For f the set E_{y} is countably infinite for each $y \in(0,1)$ and $E_{y} \cap$ $\left(a_{1}, b_{1}\right)$ bas a pair of isclatad neigbbiurs. Eence $f_{1} \in\left(D_{r}^{\prime}\right)$.
e) In fact we prove more, namely: Suppose that $f \in\left(D_{r}^{i}\right) \cap T_{2}$ on $[0,1]$ and let $I_{0}=[a, b] \subset[0,1]$. Then $P \cup N$ is nondenumerable, where $P=$ $\left\{x: f^{\prime}(x) \geqslant 0\right\}, N=\left\{x: f^{\prime}(x) \leqslant 0\right\}$. If $f(a)<f(b)$ then $f(P)$ is measurable and $|f(P)|=|f([a, b])|$. If $f(a)>f(b)$ then $f(N)$ is measurable and $|f(N)|=|f([a, b])|$. The proof is analogous to that of Bruckner's Theorem 2 of [2](p.18). Let $Y_{1}=\left\{y: E_{y}\right.$ is nondenumerable\}. Let Y_{2} be the set $d e f i n e d$ in the procf of c), and let $Y_{3}=\left\{y: F_{y}\right.$ is colntably infinite and J_{y} does not contain a pair of isolated nei bbours\}. Since $f \in T_{2},\left|Y_{1}\right|=0 . Y_{2}$ is at most denumerable (see [21],p.261) and $\left|Y_{3}\right|=0$ (since $f \in\left(D_{r}^{\prime}\right)$). Since $f \in D, f\left(I_{0}\right)$ is an interval. Hence $\left|f\left(I_{0}\right)\right|=\left|f\left(I_{0}\right)-\left(Y_{1} \cup Y_{2} \cup I_{3}\right)\right|$. Suppose that $f(a)>f(b)$. Fon each $y \in f\left(I_{0}\right)-\left(Y_{1} \cup Y_{2} \cup Y_{3}\right)$ there is an isolated point x_{y} of E_{y} such that the upper bilateral derivative $\bar{f}^{\prime}\left(x_{y}\right) \leqslant 0$. (If x_{y} is the only point of E_{y} then $\bar{f}^{\prime}\left(x_{y}\right) \leqslant 0$ since $f(a)>f(b)$. If E_{y} is finite and contains more than one point then clearly E_{y} bas a pair of isolated neichbours. If E_{y} is denumerable then B_{j} bas a pair of isolated neigbburs, since $f \in\left(D_{r}^{\prime}\right)$. Hence at one of these two points f^{\prime} is nonousitive.) For ach $y \in f\left(I_{0}\right)$ $\left(Y_{1} \cup Y_{2} \cup Y_{3}\right)$ selact a point X_{y} succ that $\bar{f}\left(X_{y}\right) \leqslant C$ and X_{y} is isclated in B_{J}. Let X be the set of points selected. Then $X=N \cup B$, where $B=\left\{x:-\infty<\bar{f}^{\prime}(x) \leqslant 0\right.$ and $\left.\bar{f}^{\prime}(x) \neq \underline{f}^{\prime}(x)\right\}$, and $\mathbb{N} \cap B=\not \subset$. $3 y$ $[21](p .270),|f(B)|=0$. Now $f(X)=f(N) \cup f(B)$ and $f(X)=f\left(I_{C}\right)-$ $\left(Y_{1} \cup Y_{2} \cup X_{3}\right)$. Hence $f(\bar{L})$ is ueasurable and $|f(X)|=\left|f\left(I_{0}\right)\right|$. It follous that $f(N)$ is measurable and $|f(N)|=\left|f\left(I_{0}\right)\right|$.
f) This follows by $[10](0.360)$ and $[11](0.35)$.
g) Let ($a_{i n}, b_{i n}$), $i=1,2, \ldots, 2^{n-1}$, oe the intervals contiguous to C from the stop n in the Cantcr ternary process. $(C=$ the Cantor
ternary set.) Let f be a continuous function on $[0,1]$ defined as follows: $f(x)=0, x \in C ; f(x)=1 / n, x=\left(a_{i n}+b_{i n}\right) / 2=d_{i n} ; f(x)$ is linear on $\left[a_{i n}, a_{i n}\right]$ and $\left[a_{i n}, b_{i n}\right], i=1,2, \ldots, 2^{n-1}$. Clearly $f \in$ ACG on $[0,1]$. Let $g=f+\varphi$. ($\varphi=$ the Cantor ternary function.) Clearly $\mathrm{g} \in \mathrm{VBG}$ on $[0,1]$. Since $\mathrm{g}_{\mid C}$ is $V B$ and $g_{\mid C} \notin A C(\varphi(C)=$ $[0,1])$, it follows that $g \notin(\mathbb{F})$. Ye show that $g \in\left[\mathbb{M}_{*}\right]$ on $[0,1]$. Clearly g'(x) does not exist (finite or infinite) for any point which is a right endooint of some interval contiguous to C. Let $I_{n}=\left(a_{n}, b_{n}\right)$ be the intervals contigucus to C. Let $x \in C, x \neq 0$, $x \neq b_{n}, n=1,2, \ldots$, and let $A(x)=\left\{n: c_{n}(x)=2\right\}$. (Each $x \in C$ is uniquely represented of $\sum c_{i}(x) / 3^{i}$.) Clearly $A(x)$ is a countable infinite set. For $n \in A(x)$ let $x_{n}^{\prime}=\sum_{i=1}^{n-1} c_{i}(x) / 3^{i}+\sum_{i=n}^{\infty} 2 / 3^{i}, x_{n}^{\prime \prime}=$ $\sum_{i=1}^{n-1} c_{i}(x) / 3^{i}+\sum_{i=n+1}^{\infty} 2 / 3^{i}$ and $x_{n}^{\prime \prime \prime}=\sum_{i=1}^{n-1} c_{i}(x) / 3^{i}+2 / 3^{n}$. Clearly $x_{n}^{\prime \prime}<x \leqslant x_{n}^{\prime}$. Let $I_{n}(x)=\left(x_{n}^{\prime \prime}, x_{n}^{\prime \prime \prime}\right)$. Clearly $I_{n}(x)$ is an interval contiguous to C from the step n in the Cantor ternary process. Let $d_{n}(x)=\left(x_{n}^{\prime \prime}+x_{n}^{\prime \prime \prime}\right) / 2$. Tien $0<x-d_{n}(x)<x_{n}^{\prime}-x_{n}^{\prime \prime}=2 / 3^{n}$ and $g(x)-E\left(d_{n}(x)\right)$ $=\varphi(x)-\left(\varphi\left(x_{n}^{\prime \prime \prime}\right)+1 / n\right) \leqslant \varphi\left(x_{n}^{\prime}\right)-\varphi\left(x_{n}^{\prime \prime \prime}\right)-1 / n=1 / 2^{n}-1 / n<0$. Hence $\left|g(x)-c\left(d_{n}(x)\right) /\left(x-d_{n}(x)\right)\right| \geqslant\left(1 / n-1 / 2^{n}\right) /\left(2 / 3^{n}\right) \longrightarrow+\infty, n \rightarrow$ $+\infty$. Thereficre $\underline{f}_{-}(x)=-\infty$. But $\lim (\varepsilon(y)-q(x)) /(y-x)=\lim (\varphi(y)$ $-\varphi(x)) /(y-x) \geqslant 0, y \longrightarrow x, y \in C$. It follews that for each $x \in \mathcal{O}, \varepsilon^{\prime}(x)$ does not exist (finite or infinite). Let a bea closed subset of $[0,1]$ such that $g_{\mid E} \in T B_{*}$. Then $g_{E \in C}{ }^{\text {is }} \mathrm{TB}_{*}$ and $g^{\prime}(x)$ does not exist for any point $x \in \mathbb{Z} \cap c, x \neq 0$. It follows by [21] (Theorem 7.2, p.230) that $|g(\Xi \cap C)|=\Lambda(B(g ; \exists \cap C))=C .(\Lambda(K)$ is the Hausdorff
 By [21] (Theorem 6.7,p.227), g|T is AC. By [21] (Theorem 8.8,p.233),

b) That [M_{H}] is contained in [Mi^{\dagger}] follows easily by definitions. Let $I_{n}=\left(a_{n}, b_{n}\right)$ be the intervals contiguous to C. Let F be a continuous function on $[0,1]$ defined as follows: $F(x)=0, x \in C ; F(x)$ $=b_{n}(x), x \in I_{n}, b_{n} \in A C G_{*}-A C,\left|b_{n}(x)\right|<1 / 2^{n}$. Let $G(x)=\varphi(x)+F(x)$. Clearly $G \in V B G_{*}$ on $[0,1]$ and $G_{C C}=\varphi_{\mid C} \in \operatorname{VB}_{*}$. Since $G(C)=[0,1]$, $G \notin A C_{*}$ on C. Hence $G \notin\left[\mathbb{N}_{*}\right]$. Let I be a subinterval of $[0,1]$, $\operatorname{int}(I)$ $\cap \subset \neq \varnothing$. Then for some $n, I \supset I_{n}$. Suppose on the contrary that $G_{I_{I}} \in$ $V B_{*}$. Then $\left.G^{G}\right|_{\bar{I}_{n}} \in T B_{*}$. Since $\left.{ }^{G}\right|_{I_{n}} \in A C G_{*}$, by $[21]$ (Theorem $6.7, p .227$ and Theorem 8.8,p.233) it follows that $\left.{ }^{G}\right|_{I_{n}} \in \dot{H C}$. Contradiction. Hence if $G_{I} \in V B_{*}$ then I is contained in some interval contiguous to C. Since $G \in a C G_{*}$ on each I_{n} it follows that $G \in A C$ on I and $G \in[H]$.

及emark 2. a) (ACG $\cap \subset) \oplus\left[\right.$ in $\left._{*}\right]=\left[\right.$ in $\left._{*}\right]$ on $[0,1]$, but (ACG $\left.\cap b\right) \oplus$ $\left[M_{*}\right] \notin\left[M_{+}\right]$on $[0,1]$. (For the first part see Theorem 6.7,p. 227 of [21]; The second part follows by the procf of Theorem 1,g).)
b) $\mathrm{AC} \oplus\left[\mathrm{M}^{\prime}\right]=\left[\mathrm{M}^{\prime}\right]$ on $[0,1]$ but $(A C G \cap C) \oplus\left[\mathrm{Ma}^{\prime}\right] \neq\left[\mathrm{Mi}^{\prime}\right]$ on $[0,1]$. (See Theorem 6.7,p.227 of [21] and the procf of Theorem 1,h).)

Remark 3. The functions F and \cong constructed in the proof of Theorem 1,a) are identical to those of Example 1 and Example 4 of [4](0p.484-485).

Thecrem 2. A function $F:[0,1] \longrightarrow$ balons $t=0 \cap\left(+i \cap i^{+\infty}\right.$ and F^{\prime} is summable on $P=\left\{x: F^{\prime}(x) \geqslant 0\right\}$ in and gnly if $F \in \overline{\operatorname{con}} \cap \boldsymbol{f}$ on $[0,1]$ 。

Proof. Suppose that $\mathrm{F} \in \mathrm{J} \cap \mathrm{C}$. By Theorem $1, e$) and Remark $1, f$) it follows that $\mathrm{F} \in(+)$. By [22] (pp.136-137) it follows that $\mathrm{F} \in \mathrm{in}^{+\infty}$. Tine summadility follows because $F \in V B$. Suppose that $F \in D \cap(+) \cap N^{+\infty}$ and F^{\prime} is summable on P. Let $\mathbb{m}^{+\infty}=\left\{x: F^{\prime}(x)=+\infty\right\}$ and $F_{+}=\{x:$ $\left.0 \leqslant F^{\prime}(x)<+\infty\right\}$. Vlearly $P=\mathrm{B}^{+\infty} \cup \mathrm{I}_{+}$. Let $g(x)=F^{\prime}(x), x \in \mathbb{E}_{+} ; \varepsilon(x)$ $=0, x \notin \mathbb{E}_{+}$and let $G(x)=\int_{0}^{x} g(t) d t$. Since F^{\prime} is summable on P it
fellowis that $G \in a C$ on $[0,1]$. since $F \in \mathbb{i n}^{+\infty} \cap(+)$ it follows that $F(d)-F(c) \leqslant|F([c, d] \cap P)|=\left|F\left([c, d] \cap \mathbb{E}_{+}\right)\right| \leqslant G(d)-G(c)$ for $0 \leqslant c<d$ $\leqslant 1$. (See [21], Theorem 6.5,p.227.) Let $\varepsilon>0$ and let $\&$ be the number given by the fact that $G \in A C$ on $[0,1]$. Let $I_{k}=\left(a_{k}, j_{k}\right)$ be a sequence of nonoverlapping intervals such that $\Sigma\left|I_{k}\right|<\delta$. Then $\sum\left(F\left(b_{k}\right)-F\left(a_{k}\right)\right) \leqslant \sum\left(G\left(b_{k}\right)-G\left(a_{k}\right)\right)<\varepsilon$. Hence $F \in \overline{C C}$ on $[0,1]$. Since $\overline{A C} C V B$ and $F \in D$, it follows that F is continuous.

Corollary 2. a) $\overline{A C}=V B \cap \mathbb{N}^{+\infty}$ for continuous functions on an interval. Hence $A C=J B \cap N^{\infty}$ for these functions.
b) Let $F:[0,1] \longrightarrow R$ be $D B_{1} \cap \mathbb{N}^{+\infty}$. Then $F \in \mathbb{A C} \cap C$ if and only if F^{\prime} is summable over P.

Theorem 3. A function $f:[0,1] \longrightarrow \mathrm{R}$ satisfies condition $\left[\bar{M}_{*}\right]$ (resp. [$\bar{M}]$) on a closed subset \mathbb{B} of $[0,1]$ if and only if $f \in A C$ 으 any closed subset of \mathbb{E} on which it is increasing and $V B_{\neq} \cap b$ (reso. increasing and ℓ).

Proof. We prove cnly the part with [$\overline{\mathbb{M}}_{*}$]. Suppose that f satisfies the second property and let $P=\bar{P} \subset \mathbb{F}$ be such that ${ }^{f} \mid P$ $\mathrm{VB}_{\star} \cap \mathcal{C}_{\text {. Let }} a=\inf (P), b=\sup (P)$ and $F(x)=f(x), x \in P$. Jxtending F linearly on each interval contiguous to P we bave F defined, continuous and VB on $[a, b]$. Let $E_{n}=\{x \in[a, b]:(F(x+h)-F(x)) / b>1$, $0<|b| \leqslant 1 / n\}$ and let $E_{\text {in }}=[i / n,(i+1) / n] \cap E_{n}$. By [21] (the proof of Theorem 10.1,pp.234-235), $\mathrm{F}_{\mathrm{I}}^{\mathrm{in}}$ is increasing and VB_{*}. Clearly $\mathrm{E}_{+\infty} \subset\left(\bigcup_{i, n} \mathbb{F}_{\text {in }}\right) \cap \mathrm{P}$, where $\mathrm{B}_{+\infty}=\left\{\mathrm{x}: \mathrm{F}^{\prime}(\mathrm{X})=+\infty\right\}$. The sets $\mathrm{E}_{\text {in }}$ may be supposed to be closed without loss of generality (see [21], Theorem 7.1,p.229). By bypothesis, $\left.f\right|_{\mathrm{E}_{\mathrm{in}} \cap P}$ is AC. Since $\left|\mathrm{E}_{+\infty}\right|=0$, it follows that $\left|\mathrm{F}\left(\mathrm{E}_{+\infty}\right)\right|=0$. Hence $\overline{\mathrm{F}} \mid[\mathrm{a}, \mathrm{b}] \in \mathrm{VB} \cap \mathbb{N}^{+\infty}=\overline{\mathrm{AC}}$ (see Corollary 2). Hence $f \in\left[\overline{\underline{H}}_{*}\right]$ on E . Conversely, let P be a closed subset of E such that f_{P} is increasing and $V B_{*} \cap \mathcal{C}$. Then by the
definition of $\left[\bar{M}_{*}\right], f_{\left.\right|_{P}} \in \overline{A C}$. Hence $\mathcal{I}_{I_{P}} \in A C$.
Theorem 4. Let $f:[0,1] \rightarrow R$ be [ACG]. Then $f \in[\bar{M}]$.
Proof. Let P be a closed subset of $[0,1]$ such that $f \mid P$ is contimous and increasing. By bypctbesis, there exists a sequence of closed sets P_{n} such that $f_{\left.\right|_{n}}$ is increasing and $\overline{A C}$. Hence $\left.{ }^{f}\right|_{P_{n}}$ is AC. It follows that $\left.f\right|_{P}$ is $V B \cap A C G=A C$. By Theorem 3 it follows that $\mathrm{f} \in[\overline{\mathrm{M}}]$.

Lemma 1. Let $f:[0,1] \rightarrow R$ and let P be a closed subset of $[0,1]$. If $f_{\mid P} \in V B \cap \overline{A C G} \cap C$ then $\left.f\right|_{P} \in \overline{A C}$.

Proof. Let $F(x)=f(x), x \in F \cup\{C, l\}$. Extending F linearly on each interval contigucus to $P \cup\{0,1\}$ we have F defined and VB@ $\overline{A C G}$ \mathfrak{C} on $[0,1]$. By Theorem 4, $F \in V B \cap \mathscr{C} \cap[\overline{\operatorname{rin}}]$ on $[0,1]$. Hence $F \in \overline{A C}$ on $[0,1]$ and $f_{p} \in \overline{A C}$.

Theorem 5. $[\overline{\mathrm{Li}}] \oplus\left([\overline{\mathrm{ACG}}] \cap \mathrm{B}_{1}^{*}\right)=[\overline{\mathrm{Mi}}]$ 으 $[0,1]$.
Proof. Let $f \in[\bar{M}], g \in[\overline{A C G}] \cap B_{1}^{+}$and $b=f+g$. Let P be a closed subset of $[0,1]$ such that $\left.b\right|_{P} \in V B \cap C$. Then $f_{\left.\right|_{P}} \in[\nabla B G] \cap B_{1}^{*}$, bence $f / P \in[\overline{\dot{A} G \bar{G}}] \cap B_{I}^{*}$. By Lecma $I, b / P \in \overline{\mathrm{CC}}$.

Lemma 2. Let $f:[0,1] \longrightarrow R$ and let P be an closed subset of $[0,1]$ such that $\left.f\right|_{P} \in V B_{*}, a=\inf (P), b=\sup (P)$. Let $F:[a, b] \longrightarrow \mathcal{B}, F(x)=$ $f(x), x \in P$. On each interval ($c, d) \subset[a, b]$ contiqucus to P, we define F such that its craph is the linear sement joining the points $(c, f(c))$ and $(d, f(d))$. Then there exists a set $N_{0} \subset P$ such that $\left|f\left(N_{0}\right)\right|=\left|N_{0}\right|=0$ and $f^{\prime}(x)=F^{\prime}(x)$ on $P-\mathbb{N}_{0}$.

Proof. Let $E=\left\{x \in P: f^{\prime}(x)\right.$ does not exist finite cr infinite $\}$; $\mathrm{E}_{1}=\left\{\mathrm{x} \in \mathrm{P}: \mathrm{F}^{\prime}(\mathrm{x})\right.$ does not exist finite or infinite $\} ; \mathrm{E}_{2}=\{\mathrm{x} \in \mathrm{P}:$ $f^{\prime}(x)$ and $F^{\prime}(x)$ exist, $\left.F^{\prime}(x) \neq f^{\prime}(x)\right\}$. Since $\mathbb{F}(x)=f^{\prime}(x)$ on P, $F^{\prime}(x)=f^{\prime}(x)$ except perhaps at endpoints of intervals contiguous to P. Hence F_{2} is a denumeraile set. By [22] (Mheorem 2,0.132) we
have $|f(\mathbb{I})|=|\mathbb{E}|=0$. Since $F \in V B$ on $[\mathrm{a}, \mathrm{b}],\left|F\left(\mathbb{E}_{1}\right)\right|=\left|f\left(\mathbb{E}_{1}\right)\right|=$ $\left|E_{1}\right|=0$. Clearly $\left|f\left(E_{2}\right)\right|=0$. Let $N_{0}=\mathbb{I} \cup \mathbb{E}_{1} \cup E_{2}$. Then $\left|f\left(N_{0}\right)\right|=$ $\left|N_{0}\right|=0$ and $f^{\prime}(x)=F^{\prime}(x), x \in P-N_{0}$.

Theorem 6. Let $f:[0,1] \longrightarrow R, f \in D$. Then $f \in \mathbb{N}^{+\infty}$ if and only if $f \in\left[\mathbb{M}_{*}\right]$ on $[0,1]$.

Proof. Suppose that $f \in \mathbb{N}^{+\infty} \cap D$ and let P be a closed subset of $[0,1]$ such that $f_{P} \in V B_{*} \cap \mathcal{C}$. Let $a=\inf (P), b=\sup (P), F(x)=$ $f(x), x \in P$. Extending F linearly on ach interval contiguous to P we have F defined and $\nabla B \cap \mathcal{B}[a, b]$. Let $\mathbb{B}^{+\infty}=\left\{x \in P: f^{\prime}(x)=\right.$ $+\infty\}$ and $\mathrm{E}_{1}^{+\infty}=\left\{x \in P: F^{\prime}(x)=+\infty\right\}$. By Lemma $2, \mathrm{E}_{1}^{+\infty}=\left(\mathrm{E}_{1}^{+\infty} \cap N_{0}\right)$ $U\left(\mathbb{E}_{1}^{+\infty} \cap\left(P-\mathbb{N}_{0}\right)\right) \subset \mathbb{N}_{0} \cup \mathbb{E}^{+\infty}$, bence $\left|\mathrm{F}\left(\mathbb{E}_{1}^{+\infty}\right)\right|=\left|f\left(\mathbb{R}_{1}^{+\infty}\right)\right| \leqslant\left|f\left(\mathbb{N}_{0}\right)\right|+$ $\left|f\left(\mathbb{B}^{+\infty}\right)\right|=0$. Therefore $F \in V B \cap \mathbb{N}^{+\infty}=\overline{A C}$ on $[\mathrm{a}, \mathrm{b}]$ (see Corollary 2). Hence $f_{\mid P} \in \overline{A C}$. Conversely, suppose that $f \in\left[\bar{M}_{*}\right] \cap D$. Let $E_{+\infty}=\{x:$ $\left.f^{\prime}(x)=+\infty\right\}$ and $E_{n}=\{x \in[0,1]:(f(x+b)-f(x)) / b>1,0 \leqslant|b|<1 / n\}$. Let $E_{i n}=[i / n,(i+1) / n] \cap E_{n}$. By [21] (the proof of Theorem lo.1, $\mathrm{pp} .234-235), \mathrm{P} \mid \mathbb{E}_{\text {in }}$ is increasing and $V B_{*}$ and $E_{+\infty}=\bigcup_{i, n} E_{i n} \cdot$ The sets $E_{i n}$ may be supposed to be closed without loss of generality (see [21], Theorem 7•1,p.229). Since $f \in D,\left.f\right|_{\text {in }} ^{\in C}$ (see Lemma 4). Since $f \in\left[\overline{\bar{M}}_{\#}\right]$, by Tieorem $3,\left.f\right|_{\mathbb{I n}_{i n}} \in A C$. Hence $\left|f\left(\mathbb{I}_{+\infty}\right)\right|=0$ (since $\left|E_{+\infty}\right|=0$).

Theorem 7. For functions defined on $[0,1]$ we have: $\left[\bar{M}_{*}\right] \square\left(\left[\mathrm{VBG}_{*}\right] \cap\left[\overline{\mathbb{M}}_{*}\right] \cap \mathrm{B}_{1}^{*}\right)=\left[\overline{\bar{M}}_{*}\right]$.

Prioof. Let $f \in\left[\bar{M}_{*}\right], g \in\left[\mathrm{VBG}_{*}\right] \cap\left[{\overline{M_{*}}}_{*}\right] \cap B_{1}^{*}=\left[V B G_{*}\right] \cap \overline{\operatorname{ACG}} \cap B_{1}^{*}$ and let $b=f+g$. Let P be a closed subset of $[0,1]$ such that $b_{p} \in$ $\mathrm{VB} \cap \cap$. Clearly $\left.\mathrm{f}\right|_{P} \in\left[\mathrm{VBG} G_{*}\right] \cap B_{1}^{*}$. By the definition of $\left[\overline{\bar{m}_{*}}\right], f /_{P} \in$ [$\overline{\mathrm{SG}}]$. Hence $\mathrm{b}_{\mathrm{P}} \in[\overline{\mathrm{ADG}}]$. By Lemma 1 , $\mathrm{b}_{\mathrm{P}} \in \overline{\mathrm{dC}}$.

Remark 4. Theorem 7 generalizes a result of [22] (Theorem 10, p.147).

APPITCATIORS.

Theorem 8. Let $\mathrm{f}:[0,1] \longrightarrow \mathrm{R}$ be a function satisfying the following conditions on $[0,1]$: (i) $f \in D \cap(-)$; (ii) $f \in \mathcal{B}^{\prime}$ on $H=$ $\{x \in[0,1]: f$ is continuous at $x\}$; (iii) $f \in B_{i}$ on $\sigma(f)=i n t(H)$. Then f is continuous and increasing on $[0,1]$.

Remark 5. Note that Bruckner's theorem follows from Theorem 8: VBGCTr (see [21], p.279); $D B_{1} \subset\left(D_{r}^{\prime \prime}\right)$ and ($\left.D_{r}^{\prime \prime}\right) \cap T_{2} \subset(-)$ (see Theorem
 the conditions of Theorem 8.

Let (i') $f \in\left(D_{r}^{\prime \prime}\right) \cap T_{2}$; (i") $f \in D B_{1} \cap T_{2}$; (iii') $f \in\left[M^{\prime \prime}\right]$ on $U(f)$ and $f^{\prime}(x) \geqslant 0$ a.e. where $f^{\prime}(x)$ exists on $U(f)$. If in Theorem 8: a) condition (i) is replaced by (i') or (i"); b) condition (iii) is replaced by (iii'); c) condition (i) is replaced by (i') or (i") and condition (iii) is replaced by (iii'); then we obtain scme additional monotonicity theorems. (Condition (i') implies (i) (see Theorem l,e)). Condition (i") implies (i) (see Theorem l, c),e)). Condition (iii') implies (iii): let $I \subset U(f)$ be a closed interval sucb that $f \in V B \cap \in$ on I. Since $f \in\left[\right.$ In $\left.^{\prime}\right]$ on $U(f), f \in A C$ on I. $3 y$ Lemma B, f is increasing on I. Hence $f \in S_{i}$ on $U(f)$.)

Iemma 3. Let $F:[0,1] \rightarrow R$ be a $V B G$ function on a nond θ numerable set $Q \subset[0,1]$. Then F is continuous n.e. on α.

Proof. (The proof is similar to that of [3],2p.196-197). Since $F \in V B G_{*}$ on Q, it follows that there exists a sequence of sets Q_{i} such that $Q=U Q_{i}$ and $\left.F\right|_{Q_{i}}$ is $V B_{*}$. By $[21]$ (Theorem 7.1, p.229), $F \mid \bar{\alpha}_{i} \in V B_{*} \cdot$ Let $I_{n}=\{x: O(F ; x) \geqslant 1 / n\}$. Then E_{n} is closed for each n. If $E_{n} \cap\left(\cup \bar{Q}_{i}\right)$ is nondenumerable then there exists a natural number
I_{0} such that $B_{n} \cap \bar{Q}_{\mathcal{L}_{0}}$ is nondemmerable. Let P be a nonempty perfect subset of $F_{n} \cap \bar{Q}_{H_{0}}$. Clearly $\left.F\right|_{P} \in V B_{*}$. Since $P \subset E_{n}, O(F ; x) \geqslant 1 / n$ for all x€P. Thus the oscillation of F on any interval determined by two bilateral limit points of P is at least $1 / n$. Since P is perfect we can choose as many such intervals as we like, and we can make them pairwise disjoint. It follows that $F \notin B_{*}$, a contradiction. Thus the set of points of discontinuity of F is at most denumerable.

Lemma 4. Let $f \in D \cap(-)$ on $[0,1]$ and let $H=\{x \in[0,1]: f$ is continuous at $x\}$. Then H is a G_{δ}-set, everywhere dense in $[0,1]$. Proof. Let $J \subset[0,1]$ be an interval. If f / J is monotone then by the Darboux property, $f \in \mathscr{C}$. Hence $J \cap H \neq \varnothing$. If f is not monotone then there exist $x_{1}, x_{2} \in J, x_{1}<x_{2}$ such that $f\left(x_{1}\right)>f\left(x_{2}\right)$. Then by (-), $\left|f\left(\mathbb{N} \cap\left[x_{1}, x_{2}\right]\right)\right| \geqslant f\left(x_{1}\right)-f\left(x_{2}\right)$. Hence $N \cap\left[x_{1}, x_{2}\right]$ is nondenumerable and $\left.f\right|_{N \cap} \cap\left[x_{1}, x_{2}\right]$ is VBG* (see [21],p.234). By Lemma 3, $\left[x_{1}, x_{2}\right]$ contains uncountably many points of continuity. Hence H is a G_{f}-set, everywhere dense in $[0,1]$.

Lemma 5. Let $f \in D \cap(-)$ on $[0,1]$. If $f \in \beta^{\prime}$ on $H=\{x \in[0,1]:$ f is continuous at $x\}$ then there exists a sequence $\left\{I_{n}\right\}$ of inter vals whose union is dense in $[0,1]$ and $g n$ each of which $f \in V B \cap C$. Froof. Since $f \in \mathcal{B}^{\prime}$ there exists a finite or denumerable sequence of sets H_{n} sucb that $H=\bigcup H_{n}$ and $f \in B^{\prime}$ on H_{n}. By Leama 4, H is a G_{δ}-set, everyかiere dense in $[0,1]$. By Baire's Caterory theorem there exist a positive integer p and an interval J suci that $H \cap \operatorname{int}(J) \neq \varnothing$ and $J \cap H \subset \bar{H}_{p}$. Ve show that $f \mid J \cap H \in B^{\prime}$. Let ICJ be an interval and let $f\left(I \cap H_{p}\right) \subset K_{p}=\bar{K}_{p}$. Then $f(I \cap H) \subset K_{p}$. By definition it follows now that f is B^{\prime} on $J \cap H$. We show that $f \in V B$ on $J=[a, \dot{0}]$. Suppose on the contrary that $f \notin V B$ on J. Then there exists a division of J, namely $a=a_{0}<a_{1}<\ldots<a_{n+1}=b$, such that
(1)

$$
\sum_{i=0}^{n}\left|f\left(a_{i+1}\right)-f\left(a_{i}\right)\right| \geqslant 4 \cdot M+|f(b)-f(a)|
$$

Where \mathbb{A} is the positive real number given by the fact that $f \in B^{\prime}$ on $J \cap H$. Let $\mathcal{A}=\left\{i: f\left(a_{i+1}\right)<f\left(a_{i}\right)\right\}$. Since $\sum\left(f\left(a_{i+1}\right)-f\left(a_{i}\right)\right)=$ $f(b)-f(a)$, by (l) it follows that

$$
\begin{equation*}
\sum_{i \in \Omega}\left(f\left(a_{i}\right)-f\left(a_{i+1}\right)\right) \geqslant 2 \cdot M \tag{2}
\end{equation*}
$$

Since $f \in(-), f\left(a_{i}\right)-f\left(a_{i+1}\right) \leqslant\left|f\left(N \cap\left[a_{i}, a_{i+1}\right]\right)\right|$ for each $i \in \mathcal{A}$. It is well known that the set $\left\{x: f^{\prime}(x)=0\right\}$ maps onto a set of measure 0 ([21], Theorem 4.5,p.271). It follows that $N_{i}=\left\{x \in\left[a_{i}, a_{i+1}\right]\right.$ $\left.:-\infty \leqslant f^{\prime}(x)<0\right\}$ is nondenumerable for each $i \in \mathcal{A}$. Furtbermore , $f \in \nabla B G_{*}$ on $N_{i}([21], p .234)$. Let $N_{i}=\left\{x \in N_{i}: f\right.$ is continuous at $\left.x\right\}$. Clearly $N_{i} \subset H$. By Lemma 3, we have

$$
\begin{equation*}
f\left(a_{i}\right)-f\left(a_{i+1}\right) \leqslant\left|f\left(N_{i} \cap\left[a_{i}, a_{i+1}\right]\right)\right| \leqslant\left|f\left(H \cap\left[a_{i}, a_{i+1}\right]\right)\right| \tag{3}
\end{equation*}
$$

For each $i \in \mathcal{A}$ let K_{i} be closed sets such that $f\left(H \cap\left[a_{i}, a_{i+1}\right]\right) \subset K_{i}$. By (2) and (3), $\sum_{i \in \mathcal{A}}\left|K_{i}\right| \geqslant 2 \cdot M$. Contradiction. Hence $f \in V B$ on J. Since $f \in D$ it follows that f is continuous on J. The argument we bave just given applies equally well to any subinterval of $[0,1]$. The conclusion of our lemma follows by repeated application of this process.

Proof of Theorem 8. By (i), (ii) and Lemma 5, it follows that there exists a sequence of intervals $\left\{I_{n}\right\}$ whose union is dense in $[0,1]$ and on each of which $f \in V B \cap C$. Let $\left[c_{n}, d_{n}\right] \subset I_{n}$. By (iii), f is nondecreasing on $\left[c_{n}, d_{n}\right]$. Since $\left[c_{n}, d_{n}\right]$ was an arbitrary subinterval of I_{n}, it follows that f is increasing on each I_{n}. The intervals I_{n} can be chosen to be maximal open intervals of monotonicity of f. We wisb to show that in fact there exists only one such maximal interval, namely the interior of $[0,1]$. Suppose that there
is more than one such maximal interval and let $Q=[0,1]-\left(U I_{n}\right)$. The set Q is a nonempty perfect subset of $[0,1]$ ($[2], p p .20-21$). Let $H_{1}=H \cap Q$. Then H_{1} is a $G_{\&}$-set. We show that H_{1} is everywhere dense in Q. Let J be an open subinterval of $[0,1]$ containing points of Q. Let $x_{0} \in Q \cap J$. Since $x_{0} \in Q, f$ cannot be nondecreasing on all of J. Thus J contains points z_{1} and $z_{2}, z_{1}<z_{2}$ such that $f\left(z_{1}\right)>$ $f\left(z_{2}\right)$. Let $\mathbb{N}=\left\{x:-\infty \leqslant f^{\prime}(x) \leqslant 0\right\} \cap\left[z_{1}, z_{2}\right]$. The set $\left\{x: f^{\prime}(x)=0\right.$ maps onto a set of measure zero, from which it follows (since $f \in$ $(-))$ that $\mathbb{N}^{\prime}=\left\{x \in\left[z_{1}, z_{2}\right]:-\infty \leqslant f^{\prime}(x)<0\right\}$ is nondenumerable. By [21] (p.234), f is $V B_{*}$ on N^{\prime}. Let $\mathbb{N}^{\prime \prime}=\left\{x \in \mathbb{N}^{\prime}: f\right.$ is continuous at x\}. Clearly $\mathbb{N}^{\prime \prime} \subset H_{1}$. By Lemma 3 and (-) we bave $f\left(z_{1}\right)-f\left(z_{2}\right)<\left|f\left(\mathbb{N}^{\prime \prime}\right)\right|$ $\leqslant\left|f\left(H_{1} \cap\left[z_{1}, z_{2}\right]\right)\right|$. Hence $\left[z_{1}, z_{2}\right] \subset J$ contains an uncountable set of points of continuity. Hence H_{1} is everywhere dense in Q and a $G_{\delta}-s e t$. Now the proof continues analogcusly to that of Lemma 5, if the set H (in the proof of Lemma 5) is replaced by H_{1}. Therefore we obtain tbat $f \in V B$ on J. Since $f \in D, f$ is continuous on J. Hence $J \subset ण(f)$. Let $(c, d) \subset J, c, d \in Q$. By (iii), f is increasing on $[c, d]$, a contradiction, since $[c, d]$ contains infinitely many points of Q.

Remark 6. If $f \in\left(D_{r}^{\prime \prime}\right)$ and $D F$ exists n.e. and $D F \geqslant 0$ a.e. then f is continuous and increasing on $[0,1]$. If $D F$ is the qualitative derivative of Marcus [18], the right derivative, the preponderant derivative, or the selective derivatives of O'Malley [20], tbe above statement about f is true. The proofs are as those in [17], [3] and [20].

See [7].for an additional monotonicity theorem.

CEAPTER IV - MONOTONICITY AND FORAN'S CONDITION (M).
 APPIICATIONS.

Lemma 6. Let $f:[0,1] \rightarrow R$ be a continuous function. Let $P=$ $\left\{x: f^{\prime}(x) \geqslant 0\right\}$. For any $a, b \in[0,1]$, if $a<b, f(a)<f(b)$ and $|f(P \cap[a, b])|=0$ then for each $c \in[0,1)$ there exist perfect nondense sets P_{c} and Q_{c} such that: a) $P_{c} \subset[a, b]$ and $\left.Q_{c} \subset[f(a), f(b)] ; b\right)$ $P_{c_{1}} \cap P_{c_{2}}=\varnothing$; c) f / P_{c} is increasing; d) $\left.f\left(P_{c}\right)=Q_{c} ; e\right)\left|Q_{c}\right| \geqslant$ $(f(b)-f(a)) / 2$.

Proof. Let $K_{1}=\left[a_{1}, b_{1}\right]$ and $K_{2}=\left[a_{2}, b_{2}\right]$ be two intervals. If $a_{1}<b_{1}<a_{2}<b_{2}$ then we denote this by $K_{1}<K_{2}$. Let $\left(e_{i}\right)_{i=1}^{\infty}, e_{i} \in$ $(0,1)$ be a sequence of real numbers such that $\left(1-\theta_{1}\right) \cdot\left(1-\theta_{2}\right) \cdot \ldots \geqslant$ $1 / 2$. We shall construct the sets P_{c} and Q_{c} by a transfinite process. Suppose that $a<b,[a, b] \subset[0,1], f(a)<f(b)$ and $|f(P \cap[a, b])|=0$. Step 1. We show that there exists a positive integer m such that if $\mathcal{A}=\left\{1,2, \ldots, m_{1}\right\}$ then the rectaneles $D_{i_{1}}^{c_{1}}=K_{1_{1}}^{c} \times J_{i_{1}}$, $i_{1} \in \mathcal{A}$, $c_{1} \in\{0,1\}$, have the following properties:
(i) $\quad K_{i_{1}}^{C_{1}}$ is a closed subinterval of $[a, b] ; K_{i}^{l}\left\langle K_{j}^{0}\right.$, for $i, j \in \mathcal{A}$, $i<j$, and $K_{i}^{0}<K^{l}$, for $i \in \mathcal{A}$.
(ii) $J_{i_{1}}$ is a closed subinterval of $[f(a), f(b)] ; J_{i}<J_{j}$, for $i, j \in \mathcal{A}, i<j ;$
(iii) $B\left(f ; K_{i_{1}}^{c}\right) \subset D_{i_{1}}^{C_{1}}$; The left side luwer corner and the right side upper corner of $D_{i_{1}}^{C}$ belong to $B\left(f ; K_{i_{1}}^{C}\right) ; \sum_{i_{1}}\left|J_{i_{1}}\right|>$ $(f(b)-f(a)) \cdot\left(1-e_{1}\right)$.

Step 2. For $i_{1} \in \mathcal{A}, c_{1} \in\{0,1\}$ there exists a positive integer $m_{2}\left(i_{1} c_{1}\right)$ such that, if $\mathcal{A}\left(i_{1} c_{1}\right)=\left\{1,2, \ldots, m_{2}\left(i_{1} c_{1}\right)\right\}$ then the
rectangles $D_{i_{1} i_{2}}^{c_{1}}=K_{i_{1} i_{2}}^{c_{1}} \times J_{i_{1}}^{c_{1}}, i_{2} \in A\left(i_{1} c_{1}\right), c_{2} \in\{0,1\}$, have the following properties:
(i)

$$
\begin{aligned}
& K_{i_{1} i_{2}}^{c_{1}} \text { is a closed subinterval of } K_{i_{1}}^{C_{1}} ; \quad K_{i_{1}}^{c_{1}, i}<K_{i_{1}}^{c_{1}}, 0, \text { for } \\
& i, j \in \mathcal{A}\left(i_{1} c_{1}\right), i<j, \text { and } K_{i_{1}, i}^{c_{1}, 0}<K_{i_{1}}^{c_{1}, i}, \text { for } i \in \mathcal{A}\left(i_{1} c_{1}\right) \text {; }
\end{aligned}
$$

(ii) $J_{i_{1} i_{2}}^{i_{1}}$ is a closed subinterval of $J_{i_{1}} ; J_{j_{1}, i}^{C_{1}}<J_{i_{1}}^{c}, j$, for

$$
i, j \in A\left(i_{1} c_{1}\right), i<j ;
$$

(iii) $B\left(f ; K_{i_{1}}^{c_{1}} c_{2}\right) \subset D_{i_{1} i_{2}}^{c_{1}}$; The left side lower corner and the right side upper corner of ${D_{i} i_{1} i_{2}}_{i_{2}}$ belong to $B\left(f_{i} K_{i_{1}}^{c_{1} c_{2}}\right)$;

$$
\begin{aligned}
& \sum_{i_{2}}\left|J_{i_{1} i_{2}}^{c}\right| \geqslant\left|J_{i_{1}}\right| \cdot\left(1-e_{2}\right) \cdot \text { Hence } \sum_{i_{1}} \sum_{i_{2}}\left|J_{i_{1} i_{2}}^{c}\right| \geqslant\left(1-e_{2}\right) \cdot \\
& \sum_{i_{1}}\left|J_{i_{1}}\right| \geqslant\left(1-e_{1}\right) \cdot\left(1-e_{2}\right) \cdot(f(b)-f(a)) ;
\end{aligned}
$$

Step $(n+1) .(n \geqslant 2)$. Let $i_{1} \in \mathcal{A}, \ldots, i_{n} \in \mathcal{A}\left(i_{1} c_{1} \ldots i_{n-1} c_{n-1}\right), c_{i} \in$
$\{0,1\}$ for each i. We show that there exists a positive integer $m_{n+1}\left(i_{1} c_{1} \ldots i_{n} c_{n}\right)$ such that if $\mathcal{A}\left(i_{1} c_{1} \ldots i_{n} c_{n}\right)=\{1,2, \ldots$, $\left.m_{n+1}\left(i_{1} c_{1} \ldots i_{n} c_{n}\right)\right\}$ then the rectangles

$$
D_{i_{1} \cdots i_{n+1}^{c_{1}} \cdots c_{n+1}}^{c_{n+1}^{c_{1}} \cdots c_{n+1} \times J_{i_{1}}^{c_{1} \cdots i_{n}} \cdots i_{n}^{i_{n+1}}} \text {, } i_{n+1} \in \mathcal{A}\left(i_{1} c_{1} \cdots i_{n} c_{n}\right)
$$

have the following properties:

(iii) $B\left(f ; K_{i_{1}}^{\left.c_{1} \cdots{ }^{c} i_{n+1}\right) \subset D_{i_{1}}^{c_{1}} \cdots{ }_{1} \cdots i_{n+1}}\right.$; The left side lower corner and the right side upper corner of ${D_{i}}_{i_{1}} \ldots{ }_{1} \ldots i_{n+1}$ belong to $B\left(f ; \mathbb{K}_{i_{1}}^{\left.c_{1} \cdots c_{n+1}\right)} ; \sum_{i_{n+1}}\left|J_{i_{1}}^{c_{1}} \cdots i_{n} i_{n}{ }_{n+1}\right| \geqslant\left|J_{i_{1}}^{c_{1}} \cdots{ }_{n-1}^{i_{n-1} i_{n}}\right| \cdot\left(1-\theta_{n+1}\right)\right.$,
hence $\sum_{i_{1}} \sum_{i_{2}} \ldots \sum_{i_{n+1}}\left|J_{i_{1}}^{c} \cdots \dot{i}_{n}{ }_{n}{ }_{n+1}\right| \geqslant\left(1-\theta_{1}\right) \cdot\left(1-\theta_{2}\right) \cdot \ldots:\left(1-\theta_{n+1}\right) \cdot$ - $(f(b)-f(a))$.

Now we can define the sets P_{c} and \mathcal{Q}_{c}. Let $c \in[0,1)$, then there exist $c_{i} \in\{0,1\}$ such that c is uniquely represented by $\sum_{i=1}^{\infty} c_{i} / 2^{i}$. (Ne choose the infinite representation when two different representations exist.) Then

It follows that P_{c} and Q_{c} bave the desired properties. It remains to show that the facts stated in step 1 , step $2, \ldots$, are true. It suffices to show step 1. It is known that $f(P)$ is a measurable set. Let $E_{y}=\{x: f(x)=y\}, x_{y}=\inf \left(E_{y} \cap[a, b]\right)$ and $A=\left\{x_{y}: y \in\right.$ $[f(a), f(b)]\}$. Let $\alpha=\inf (\bar{A})$ and $\beta=\sup (\bar{A})$. Let $A_{1}=\{x \in A:$ $\left.f_{+}^{\prime}(x)=-\infty\right\}$. Then we have: 1) f / \bar{A} is increasing; 2) \bar{A} is nowhere dense in $(\alpha, \beta) ; 3) \bar{A}=a \cup\left\{b_{n}\right\}$, where $I_{n}=\left(a_{n}, b_{n}\right)$ are the
intervals contiguous to A with respect to (α, β); 4) $a_{n} \in A ;$
5) If $x \in\left[a_{n}, b_{n}\right]$ then $\left.f(x) \leqslant f\left(a_{n}\right) ; 6\right) f\left(a_{n}\right)=f\left(b_{n}\right)$; 7) \bar{a} is a perfect set; 8) If $x \in A$ then $f(x) \geqslant 0 ; 9)\left|f\left(A_{1}\right)\right|=f(b)-f(a)$. The justifications of 1) tbrough 9) are brief:

1) By the definition of A and the continuity of f it follows that f / a is increasing. Applying again the continuity of f it follows that $\mathrm{f} / \overline{\mathrm{A}}$ is increasing.
2) Suppose on the contrary that $\bar{A} \supset\left[\alpha_{1}, \beta_{1}\right], \alpha_{1} \neq \beta_{1}$. Then by 1), $f \mid\left[\alpha_{1}, \beta_{1}\right]$ is increasing. Hence $f \mid\left[\alpha_{1}, \beta_{1}\right]$ is ∇B_{*}. Juppose that $f\left(\alpha_{1}\right.$ $<f\left(\beta_{1}\right)$ then by [21] (Theorem 7.2,p.230), $|f(P \cap[a, b])| \geqslant f\left(\beta_{1}\right)-f\left(\alpha_{1}\right.$ $>C$. This contradicts the fact that $|f(P \cap[a, b])|=0$. Therefore $f\left(\alpha_{1}\right)=f\left(\beta_{1}\right)=\gamma$. Since $x_{\gamma} \leqslant \alpha_{1}$ it follows that $\left(\alpha_{1}, \beta_{1}\right) \cap A=\varnothing$. Hence $\left(\alpha_{1}, \beta_{1}\right) \cap \bar{A}=\varnothing$, which contradicts our supposition. Therefort \bar{A} is nowhere dense in (α, β).
3) Clearly $\bar{a} \mathcal{D} \cup\left\{b_{n}\right\}$. Conversely, let $x \in \bar{A}-A$ and let $y=f(x)$. Then $x_{y} \in A$ and $x_{y}<x$. Suppose on the contrary that $\left(x_{y}, x\right) \cap \bar{A} \neq \varnothing$, then there exists $x_{1} \in\left(x_{y}, x\right) \cap \overline{\mathbb{A}}$. By 1$), f \mid \overline{\mathrm{A}} \cap\left[x_{y}, x\right]$ is constant, bence $f\left(x_{y}\right)=f\left(x_{1}\right)=f(x)$. Since $x_{1} \in \bar{A}$ there is an $x_{2} \in\left(x_{y}, x\right)$ such that $x_{2} \in A$ and $f\left(x_{2}\right)=f\left(x_{y}\right)$, bence $x_{2}=x_{y}$, a contradiction. Thus $\left(x_{y}, x\right) \cap \bar{A}=\varnothing$ and $\left(x_{y}, x\right)$ is an interval conticuous to A with respect to (α, β), namely $I_{n}=\left(a_{n}, b_{n}\right)$, for some n. Hence $x=b_{n}$ and $\bar{A}=A \cup\left\{b_{n}\right\}$.
4) Suppose on the contrary that $a_{n} \notin A$. Then by 3), $a_{n}=b_{k}$, for some $k \in N$. Then $\left(a_{k}, b_{k}\right) \cap \bar{A}=\left\{a_{n}\right\}$. It follows that a_{n} is an isolated point of A. Hence $a_{n} \in A$, a contradiction. This $a_{n} \in A$. 5) Suppose on the contrary that there exists $x_{n} \in\left(a_{n}, b_{n}\right]$ such that $f\left(x_{n}\right)>f\left(a_{n}\right)$. Let $\gamma_{n}=\left(f\left(x_{n}\right)+f\left(a_{n}\right)\right) / 2$. By 1) and 4), since $x_{\gamma_{n}} \in A$ it follows that $a_{n}<x_{\gamma_{n}}<b_{n}$. Indeed, $\left.a_{n} \in A(b y 4)\right), x_{\gamma_{n}} \in A, x_{f}\left(x_{n}\right)$

EA. By 1), since $f\left(a_{n}\right)<f\left(X_{\gamma_{n}}\right)<f\left(x_{n}\right)$, it follows that $a_{n}<x_{\gamma_{n}}<$ $x_{f\left(x_{n}\right)} \leqslant x_{n} \leqslant b_{n}$. Hence $x_{\gamma_{n}} \in\left(a_{n}, b_{n}\right) \cap$. Contradiction.
6) By 5), $f\left(b_{n}\right) \leqslant f\left(a_{n}\right)$ and by 1$), f\left(a_{n}\right) \leqslant f\left(b_{n}\right)$. Thus $f\left(a_{n}\right)=f\left(b_{n}\right)$.
7) Suppose on the contrary that there exists $X_{0} \in(\alpha, \beta) \cap \bar{A}$, isolated in A. Then there exist two intervals contiguous to \bar{A}, I_{j} and I_{k}, such that $x_{0}=b_{j}=a_{k}$. By 6), $f\left(a_{j}\right)=f\left(a_{k}\right)$ and by 4), $a_{j}, a_{k} \in A$, a contradiction.
8) Let $x \in A$. Then $f_{-}^{\prime}(x)=\lim \inf \left(f\left(x^{\prime}\right)-f(x)\right) /\left(x^{\prime}-x\right), x^{\prime} \longrightarrow x, x^{\prime}<$ x. Suppose on the contrary that $f\left(x^{\prime}\right)>f(x)$, for $x^{\prime}-x<0$. Then $x^{\prime} \geqslant$ $x_{f\left(x^{\prime}\right)}>x($ by 1$)$) and $x^{\prime}>x$, a contradiction. Hence $f\left(x^{\prime}\right)-f(x) \leqslant 0$. 9) For each $x \in A-A_{1}$, $f(x)>-\infty$ (this follows by 8)). By [21] (Theorem 10.1,p.234), f is $V B G_{*}$ on $A-A_{1}$. Let $B=\left\{x \in \mathbb{A} A_{1}: f^{\prime}(x)\right.$ exists finite or infinite at $x\}$. By 8), $B C P \cap[a, b]$. Hence $|f(B)|=$ $|f(P \cap[a, b])|=0$. Let $B_{1}=\left(A-A_{1}\right)-B$. Then by [21] (Theorem 7.2, p.230), $\left|f\left(B_{1}\right)\right|=0$, bence $\left|f\left(A-A_{1}\right)\right|=0$. Since $f(A)=[f(a), f(b)]$ it follows that $\left|f\left(A_{1}\right)\right|=f(b)-f(a)$.

Now we cover the set $f\left(A_{1}\right)$ with a collection of closed intervals in the Vitali sense: Let $x \in A_{1}, \varepsilon>0$ and $f(x, \varepsilon)>0$ be such that $f([x, x+\varepsilon(x, \varepsilon)]) \subset[f(x)-\varepsilon / 2, f(x)+\varepsilon / 2]$. By I), fis increasing on $\bar{A} \cap[x, x+\delta(x, \varepsilon)]$. Since $f_{+}^{\prime}(x)=-\infty$, it follows that there exists $y \in[x, x+\varepsilon(x, \varepsilon)]-\bar{A}$ such that $f(x)>f(y)$. Let $n(x, y, \varepsilon)$ be a positive inteser such that $y \in I_{n(x, y, \varepsilon)}$. Let $m_{n(x, y, \varepsilon)}=$ $\inf \left\{f(t): t \in I_{n(x, y, \varepsilon)}\right\}$. Let $c^{l}(x, y, \varepsilon)=\inf \left\{t \in I_{n(x, y, \varepsilon)}: f(t)\right.$ $\left.=m_{n(x, y, \varepsilon)}\right\}$ and $d^{l}(x, y, \varepsilon)=b_{n(x, y, \varepsilon)} ; c^{0}(x, y, \varepsilon)=A \cap m_{\left.m_{n(x, y}, \varepsilon\right)} ;$ $d^{0}(x, y, \varepsilon)=a_{n(x, y, \varepsilon)} ; J(x, y, \varepsilon)=\left[f\left(c^{0}(x, y, \varepsilon)\right), f\left(d^{0}(x, y, \varepsilon)\right)\right]=$ $\left[f\left(c^{l}(x, y, \varepsilon)\right), f\left(d^{l}(x, y, \varepsilon)\right)\right]$. Then $f(x) \in J(x, y, \varepsilon)$ and $|J(x, y, \varepsilon)|<\varepsilon$.

Let $K^{0}(x, y, \varepsilon)=\left[c^{0}(x, y, \varepsilon), d^{0}(x, y, \varepsilon)\right] ; K^{l}(x, y, \varepsilon)=\left[c^{l}(x, y, \varepsilon)\right.$, $\left.d^{l}(x, y, \varepsilon)\right]$. Then $f\left(A_{1}\right) \subset \underset{x \in A_{1}}{\bigcup} J(x, y, \varepsilon)$. By [2l] (Vitali's theorem, p.109), there exist a natural number m_{1} and intervals $J_{1} \prec \ldots \prec J_{m_{1}}$ such that $J_{1}, \ldots, J_{\mathrm{m}_{1}} \in \bigcup_{\mathrm{x}} J(x, y, \varepsilon)$ (therefore we bave (ii)) and $\sum_{i_{1}=1}^{m_{1}}\left|J_{i_{1}}\right|>(f(b)-f(a)) \cdot\left(I-\theta_{1}\right)$ (we have (iii)). Now we have the corresponding intervals $\left\{\underline{K}_{i_{1}}^{0}\right\}, i_{1}=1,2, \ldots, \mathbb{m}_{1}$, and $\left\{\underline{K}_{1_{1}}^{1}\right\}$, $i_{1}=$ $1,2, \ldots, m_{1}$. By 1), we have (i).

Theorem 9. Suppose that $f:[0,1] \longrightarrow R$ is a continuous function which satisfies $[\bar{\pi}]$ 으 $[0,1]$. Then f is derivable on a set of positive measure. horejver, if there exist $0 \leqslant a<b \leqslant l$ such that $f(a)<f(b)$ then $|f(P)|>0$, where $P=\left\{x: f^{\prime}(x) \geqslant 0\right\}$.

Procf. If f is decreasing the proof is obvious. Suppose that f is not decreasing on $[0,1]$. Then there exist $a, b \in[0,1], a<b$ sucb that $f(a)<f(j)$. Suppose on the contrary that $|f(P \cap[a, b])|=0$ Then by Lemma 6, there exist infinitely many sets P_{t} and Q_{t} such toat $\left|P_{t}\right|=0,\left.f\right|_{t}$ is increasing, $f\left(P_{t}\right)=Q_{t}$ and $\left|Q_{t}\right|>(f(b)-f(a))$, 2. By Tbeorem 3, $f \mid P_{t}$ is AC. Hence $\left|Q_{t}\right|=0$, a contradiction. Muert fore, if $f(a)<f(b)$ then $|f(P)|>0$. By Remark I, θ) and Theorem 6 it follows that $\left|f\left(\mathrm{E}^{+\infty}\right)\right|=0$, where $\mathrm{E}^{+\infty}=\left\{\mathrm{x}: \mathrm{f}^{\prime}(\mathrm{x})=+\infty\right\}$. By [21] (p .236), $\left|\mathrm{I}^{+\infty}\right|=0$, hence $\left|\mathrm{P}-\mathrm{B}^{+\infty}\right|=|\mathrm{P}|>0$ (since $\mathrm{f} \mid \mathrm{P}-\mathrm{B}^{+\infty} \mathrm{F}^{+\infty}(\mathbb{N})$), ([21] , Theorem 4.6,2.271).

Theorem 10. If a continuous function $f:[0,1] \longrightarrow R$ satisfies $[\overline{i n}$. on $[0,1]$ and if $f^{\prime}(x) \leqslant 0$ at almost every point x where $f^{\prime}(x)$ exists and is finite then f is decreasing on $[0,1]$.

Proof. Suppose that $f \in[\bar{M}]$ and there exist $a, b \in I, a<b$ such that $f(a)<f(b)$. Let $P=\left\{x:+\infty \geqslant f^{\prime}(x) \geqslant 0\right\} ; P_{0}=\left\{x: f^{\prime}(x)=0\right\}$; $E_{+}=\left\{x: 0<f^{\prime}(x)<+\infty\right\} ; E_{+\infty}=\left\{x: f^{\prime}(x)=+\infty\right\}$. Then $P=P_{C} \cup \mathbb{E}_{+}$ $\cup E_{+\infty},\left|f\left(P_{0}\right)\right|=0$ (see [21], Theorem 4.5,0.271), $\left|E_{+}\right|=\left|E_{+\infty}\right|=0$ (by hypothesis). By [21] (Theorem 4.6,p.271), $f \in(\mathbb{N})$ on E_{+}, bence $\left|f\left(\mathbb{E}_{+}\right)\right|=0$. By Remark $\left.1, e\right)$ and Theorem 6 it follows that $\left|f\left(\mathbb{E}_{+\infty}\right)\right|$ $=0$. Thus $|f(P)|=0$ which contradicts Theorem 9 .

Corollary 3. (An extension of a theorem of Nina Bary - [1],0. 199 오 [21],p.286). If a continuous function f satisfies Foran's condition (\mathbb{N}) on $[0,1]$ and if $f^{\prime}(x) \geqslant 0$ at almost every point x where $f^{\prime}(x)$ sxists and is finite, then f is $A C$ and increasinc $\underline{\text { ch }}$ $[0,1]$.

Theorem 11. Let $f:[0,1] \longrightarrow R$ be a function belonging to $u C H \cap B_{1}^{*} \cap[\underline{H}]$. If $f^{\prime}(x) \geqslant 0$ a.e. where $f^{\prime}(x)$ exists and is finite then f is increasing on $[0,1]$.

To prove this theorem we need the following lemma.
Lemma 7. Let Q be a nonempty perfect set. Let $a=\inf (\downarrow), b=$ $\sup (Q) \cdot$ Let $I_{n}=\left(a_{n}, b_{n}\right)$ be the intervals contiguous to Q with respect to $[a, b]$. Ift f be la function defined on $[a, b]$, ith the following properties: (i) $f \in \mathscr{C}$ on Q; (ii) $f\left(a_{n}\right) \leqslant f\left(b_{n}\right)$; (iii) $f\left(I_{n}\right) \subset\left[f\left(a_{n}\right), f\left(b_{n}\right)\right]$. Let f_{1} be a continucus function on $[a, i]$, defined as follows: $f_{1}(x)=f(x), x \in G_{i} ; f_{1}(x)=\left(x-a_{n}\right) \cdot\left(f\left(b_{n}\right)-\right.$ $\left.f\left(a_{n}\right)\right) /\left(b_{n}{ }^{-a_{n}}\right)+f\left(a_{n}\right), x \in\left(a_{n}, b_{n}\right)$ Let $\mathbb{E}=\left\{x \in q_{\text {a }}: f^{\prime}(x)\right.$ exists finite or infinite $\} ; \mathbb{E}_{1}=\left\{x \in Q: f_{i}(x)\right.$ exists finite or infinite $\} ;$ $T=\left(E-E_{1}\right) \cup\left(\mathbb{E}_{1}-\mathbb{E}\right)$. Then we have: a) If $A \subset Q$ then $f_{A} \in V B G_{*}$ if and only if $f_{1 \mid A} \in V_{*} ;$ b) $|f(T)|=|T|=0$ and $f^{\prime}(x)=f_{i}(x)$ a.e. on ${ }^{\mathrm{E}}$. Proof. Let $c, d \in \&$. By (ii) and (iii) we bave:
(4) $\quad O(f ;[c, d])=O\left(f_{1} ;[c, d]\right)$.

Iet $A \subset Q$. Then $f_{\left.\right|_{A}} \in V B_{*}$ if and only if $f_{1 \mid A} \in V B_{*}$ (by (4) and by the definition of $V B_{*}$). Hence $f_{\mid A} \in V B G_{*}$ if and only if $f_{1 \mid A} \in V B G_{*}$, and we bave a). Let $T_{1}=E_{1}-\mathbb{T}, T_{2}=E-\mathbb{T}_{1}$. Te show that $\left|f\left(T_{1}\right)\right|=$ $\left|T_{1}\right|=0$. We have $f_{1 \mid T_{1}} \in$ VBG $_{*}$ (see [21], Theor em 10.1,p.23.4). By a), $\left.f\right|_{T_{1}} \in V G_{*}$. Since $f^{\prime}(x)$ does not exist (finite or infinite) on T_{1}, by $[21]\left(p .230\right.$, Theorem 7.2), $\left|f\left(T_{1}\right)\right|=\Lambda\left(B\left(f ; T_{1}\right)\right)=0$. Similarly, $\left|f\left(T_{2}\right)\right|=\Lambda\left(B\left(f ; T_{2}\right)\right) .(\Lambda(X)$ is the Hausdorff length of X.) Clearly $|E|=\left|F_{1}\right|=\left|Z \cap F_{1}\right|$. Since $f=f_{1}$ on Q and Q is perfect, it follows that $f^{\prime}(x)=f_{i}(x)$ on $E \cap E_{1}$.

Proof of Theorem 11. Suppose that $f \in u C M \cap B_{1}^{+} \cap[M]$. Since $f \in$ B_{1}^{*} on $[0,1]$, there exists a sequence of intervals I_{n} whose union is dense in $[0,1]$ and on each of which f is continuous. By Theorem 10, f is increasing on I_{n}. Hence $f \mid \bar{I}_{n}$ is increasing. The intervals I_{n} can be chosen to be maximal coen intervals of monotonicity of f, We wisb to show that in fact there exists only one such maximal open interval, namely the interior of $[0,1]$. Suppose that there is more than one such maximal interval ard let $Q=[0,1]-\left(U I_{n}\right)$. The set Q is a perfect subset of $[0,1]$, for Q is oiviously closed and if x_{0} is isolated in $\&$ then f vould be increasing on some \bar{I}_{j} (since $f \in u C h i$, baving x_{0} as a rieht-band endpoint, and scne interval \bar{I}_{x} (since $f \in u O M$), baving x_{0} as a left-hand erdpoint. Then f is increasing on $I_{j} \cup I_{k} \cup\left\{x_{j}\right\}$, that would contradict the maximality of the intervals I_{j} and I_{k}. By Baire's Catesory theorem, there exist $a, b \in[0,1], a<b$, sucb that $Q \cap(a, b) \neq \varnothing$ and $f \mid \& \cap[a, b]$ is continuous. Let $f_{1}(x)=f(x), x \in Q \cap[a, b]$. Axtending f_{1} linearly on the closure of each interval contiguous to Q we have $f_{1} d e f i n e d$ and continuous on $[a, b]$. Also $f_{1} \in[\underline{M}]$ on $[a, b]$. Indeed, let $A=\bar{A}$ $\subset[a, b]$ be such that $f_{1 \mid A} \in V B$. Then $\left.f\right|_{A \cap \cap_{Q} \in V B \cap C \text {. Since } f \in[i \underline{~}]}$
 $f_{1} \in \mathbb{A C}$ on A. Hence $f_{1} \in[M]$. By Lemma $7, f_{i}(x)=f^{\prime}(x)$ a.e. on F. Since $f^{\prime}(x) \geqslant 0$ a.e. on \bar{B}, it follows that $f_{i}(x) \geqslant 0$ a.e. where $f_{i}(x)$ exists on Q. On each interval contiguous to Q, f_{1} is increasing. Hence $f_{i}(x) \geqslant 0$ a.e. Where $f_{i}(x)$ exists on $[a, b]$. By Theorem $10, f_{1}$ is increasing on $[a, b]$. Hence $\left.\left.f\right|_{Q \cap} \cap a, b\right]$ is increasing. But ${ }^{f} \mid \bar{I}_{n}$ is also increasing (since $f \in u C N$). Thus f is increasing on $[a, b]$, a contradiction.

Theoram 12. Let $f:[0,1] \longrightarrow R$ be a $D B_{1}^{*}$ function. Let $U(f)=$ $\operatorname{int}\{x: f$ is continuous at $x\}$. Juppose that $f \in[\underline{M}]$ on $U(f)$. If $f^{\prime}(x) \geqslant 0$ a.e. on $U(f)$ where f is derivable, then f is continucus and increasing on $[0,1]$.

Procf. Suppose that $f \in[\mathbb{K}]$. It should be ncted that $U(f)$ is a dense open subset of $[0,1]$, since $f \in B_{1}^{*}$. First we show that f is increasing on every component of $U(f)$. Lat J be a component of $U(f)$ and $[c, d] \subset J$. By Theorem 10 , f is continucus and increasing on the interval [$c, d]$. Since $[c, d]$ was an arbitrary subinterval of J, f is increasing on J. Since $f \in D, f / J$ is continuous and increasing. Suppose that $U(f) \neq(0,1)$. Then $\varepsilon=[0,1]-U(f)$ is a perfect set (if necessary without 0 and 1). Sinca $f \in B_{1}^{*}$, there exist $a, b \in \&$, $a<b$, such that $(a, b) \cap Q \neq \varnothing$ and $f \mid \nabla \cap[a, b]$ is sontinucus. It $f=1 l o \pi s$ that $\left.f\right|_{[a, b]} \in \mathcal{G}$, bence $(\exists, b) \subset U(f)$, a contradiction. Therefore $U(f)=(0,1)$ and f is continuous and increasing on $[0,1]$.

Remark 7. If $f^{\prime}(x)$ is replaced by $f_{\text {ap }}^{\prime}(x)$, Theorem 12 rsmains true, and this is in fact an extension of Moeorem 2 of [$[6$.

Theorem 13. Iet $T:[C, 1] \longrightarrow a$ be ZB_{1}^{A} function and $\mathrm{U}(f)=$
 $U(F)$. Let $P=\left\{x: F\right.$ is derivable at x and $\left.F^{\prime}(x)>0\right\} \cap U(F)$. Then
F is $\overline{A C} \cap C$ (resp. $A C$) on $[0,1]$ iff F^{\prime} is summable on P.
Proof. The necessity is obvious. We prove the sufficiency. Let $g(x)=F^{\prime}(x), x \in P$ and $g(x)=0, x \in[0,1]-P$. Let $G(x)=\int_{0}^{x} g(t) d t$. Then $G(x)$ is $A C$ and nondecreasing on $[0,1]$. Let $H(x)=G(x)-T(x)$. Then $H \in D B_{1}^{*}$ on $[0,1]$. Let $U(H)=\operatorname{int}\{x: H$ is continuous at $x\}$. Then $U(H)=U(F)$. Te show that H is incressing and continuous on $[0,1]$. Clearly $H \in[\underline{M}]$ on $U(F)$. Iet $x \in U(F)$ be any point at which botb F and G are derivable, then H is derivable at x and $H^{\prime}(x)=$ $G^{\prime}(x)-F^{\prime}(x)$. If $x \in P$ then $H^{\prime}(x)=0$ and if $x \notin P$ then $F^{\prime}(x) \leqslant 0$ and $G^{\prime}(x) \geqslant 0$. Hence $H^{\prime}(x) \geqslant 0$. Consequently, $H^{\prime}(x)$ is nonnesative at almost all points x where $H^{\prime}(x)$ exists on $U(F)$. By Theorem 12, H is increasing and continuous on $[C, I]$. It follows that $F \in V B \cap C$ on $[0,1]$. By the definition of [$\overline{\mathrm{B}}]$ (resp. [mi$]$) it follows that $\mathrm{F} \in$ $\overline{\mathrm{aC}}$ (resp. AC) on $[0,1]$.

Remark 8. Theorem 13 ceneralizes Thecrem 7.7 of [21] (p.285) and Theorem 1 of [15](p.261).
 int $\{x: F$ is continucus at $x\}$. Supoose that $F \in[\bar{N}](\underline{r e s p} \cdot[i x]$) on $U(F)$. Let $F^{*}(x)=F^{\prime}(x)$ if it exists and is finite; ctberwise, let $F^{*}(x)=0$. Let $F_{a p}^{*}(x)=F_{a p}^{\prime}(x)$ if it exists and is finite; other wise let $F_{a p}^{*}(x)=0$. If there Exists a continuous function $G:[0,1] \longrightarrow R$ such that:
 (resp. ACG $\cap \mathfrak{C}$) on $[0,1]$;
 $\cap b($ resp. Δ a.e. \cap.re $\cap b)$ gn $[0,1] ;$
c) $G \in \underline{\text { qGG }}, G_{a p}^{\prime}(x) \geqslant F_{a p}^{*}(x)$ a.e. on $[0,1]$, then $F \in \overline{A C G} \cap b$ (resp. $A C G \cap b)$ on $[0,1] .\left(\Delta_{\text {a.e. }}=\{F:[0,1] \longrightarrow R, F\right.$ is derivable a.e. $\}$.

Proof. Let $H(x)=G(x)-F(x)$. Then $H \in[$ II $]$ on $U(F)=U(H)=$ int $\{x: H$ is continucus at $x\}$. For $a), b), H^{\prime}(x) \geqslant 0$ a.e. on $U(H)$ where $H^{\prime}(x)$ exists and is finite, and for c), $H_{a p}^{\prime}(x) \geqslant 0$ a.e. on U(H) where $H_{a p}^{\prime}(x)$ exists and is finite. By Tieorem 12 and Remark 7, H is increasing and continuous on $[0,1]$. Now $F=G-H \in V B G$ and by the definition of $[\bar{M}]$ (resp. $[\mathrm{M}]$) it follows that $\mathrm{F} \in \overline{\mathrm{ACG}}$ (resp.a.GG). Clearly for a) and $b), F \in V B G$ and $F \in \Delta_{\text {a.e. }}$. respectively. Since $\nabla B G_{*} \cap A C G \cap \mathcal{C}=A C G_{*}$ on $[0,1]$ (see Thecrem 8.8,p. 233 of [21]) the proof is complete.

Remark 9. i) Theorem 14 remains true if: I) " $G^{\prime}(x) \geqslant F^{+}(x)$ a.日. on $[0,1] "$ is replaced iny $C^{\prime}(x) \geqslant F^{\prime}(x)$ a.e. on $U(F)$ where $F^{\prime}(x)$ exists and is finite" in cases a) and b) ; 2) " $G_{a p}^{\prime}(x) \geqslant F_{a p}^{*}(x)$ a.e. on $[0,1] "$ is replaced by " $G_{a p}^{\prime}(x) \geqslant F_{a p}^{\prime}(x)$ a.e. on $U(F)$ xbere $F_{a p}^{\prime}(x)$ exists and is finite" in case c).
ii) The second part of Thecrem 14 is an extension of a theorem ef Saks (see [21], י.286).
iii) The second part of Theorem $14, c$) is an extension of Tbeorem 2 of $[12](p .446)$.
iv) Since an approximately differentiable function F is $D B_{1}^{*} \cap$ (iv)C $D B_{1}^{*} \cap[\mathrm{~W}]$ (see [15],p.251), by the second part of Theorem 14,a), we have the following thecrem of [14](p.295):

Let $F:[0,1] \longrightarrow a$ be approximately differontiable. If F^{*} is Perron interrable on $[0,1]$ then F is $40 \sigma_{*}$ cin $[0,1]$. v) In Theorem 14,0) we cannot give up the condition Δ a.e. on $[0,1]$ (see Example 2 of $[13], 0 \cdot 305$).

CEAPTER - MONOTONICITY AND PROPERTIES $\left[M_{*}\right],\left[M_{*}\right],\left[\bar{M}_{*}\right]$. APPIICATIONS.

Recall that by Theorem 6 it follows that for Darboux functions on $[0,1],\left[M_{*}\right]=\mathbb{N}^{\infty},\left[\mathbb{M}_{*}\right]=N^{-\infty}$ and $\left[\bar{M}_{*}\right]=N^{+\infty}$.

Theorem 15. If $F:[0,1] \longrightarrow \mathrm{B}$ belcngs to $D \cap(+) \cap N^{+\infty}$ and $F^{\prime}(x) \leqslant$ 0 a.e. on $[0,1]$ where $F^{\prime \prime}(x)$ exists and is finite then F is continuous and decreasing on $[0,1]$.

Proof. By Theorem 2 and by Lemma B, Fis decreasing on [0,1]. Since $F \in D$ it follows that F is continuous on $[0,1]$.

Corollary 4. Let $F:[0,1] \longrightarrow R$ be a function with the following properties on $[0,1]$: (i) F is measurable and ($D_{r}^{\text {M }}$) (particularly Fe DB_{1}); (ii) $\mathrm{FC}(\mathbb{N})$; $\mathrm{F}^{\prime}(\mathrm{x}) \geqslant 0$ a.e. where F is derivable. Then F is increasing and $A C$ on $[0,1]$.

Proof. It follows by Remark $1, c$), e), k) and Theorem (, c), e), and by Theorem 15 .

Open problem. Note that the second part of Corollary 4 is in fact C.M. Lee's Theorem 1 of [15]. Does C.in. Lee's tbeorem remain true if condition (N) is replaced by condition [M] ?

Corollary 5. Let $F:[0,1] \longrightarrow R$ be a $D B_{1} \cap \mathcal{G} \cap D$ function. Let $F_{9}^{*}(x)=D F(x)$ if it exists and is finite; otberwise, let $F_{9}^{*}(x)=0$. If F_{D}^{*} is F-integrable on $[0,1]$ then $F \in \mathcal{F} \cap \ell \cap B$ on $[0,1]$.

Proof. Let $G(x)=F D \int_{0}^{x} F_{D}^{*}(t) d t$. Then $D G(x)=D H_{d}^{*}(x)$ a.e. on $[0,1]$ and $G \in \mathcal{F} \cap \mathfrak{C} \cap \mathscr{D}$. Let $H(x)=G(x)-F(x)$. Then $H \in D B_{1} \cap \mathcal{G} \cap \boldsymbol{P}$ and $H^{\prime}(x)=0$ a.e. where H is derivable on $[0,1]$. By Corollary 4 (the second part), H is constant on $[0,1]$. Therefore $F \in \mathcal{F} \cap \ell \cap \mathfrak{D}$ on $[0,1]$.

Example. There exists a continuous function $g:[0,1] \longrightarrow[0,2]$ with the following properties: (i) $\mathrm{g}^{\prime}(\mathrm{x})$ exists on $[0,1]-C \quad(C=$ the Cantor ternary set); $g^{\prime}(x) \leqslant 0$ on $[0,1]-\infty$; if $x \in C$ then $g^{\prime}(x)$ does not exist (finite on infinite); (ii) $g \in \mathbb{N}^{\infty}=\mathbb{N}^{+\infty} \cap \mathbb{N}^{-\infty}$; (iii) $g \notin(+) \cap(\mathbb{W})$.

Proof. For each $x \in C$, let $g(x)=g\left(\sum c_{i}(x) / 3^{i}\right)=\sum c_{2 i}(x) / 2^{i}$. Then g is continuous on C. Bxtending g linearly on each interval contiguous to C we bave g defined and continuous on $[0,1]$. (i) We observe that if I is an interval contiguous to C from the step $2 k$ in the Cantor ternary process tbeng is constant on I and if I is an interval contiguous to C from the step $2 \mathbb{k}+1$ in the Cantor ternary process then g is strictly decreasing on I. It follows that g is derivable on $[0,1]-C$ and $g^{\prime}(x) \leqslant 0$ on $[0,1]-C$. Let $x_{0} \in C$ and let $c_{i} \in\{0,2\}$, sucb that $x_{0}=\sum c_{i} / 3^{i}$. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}, x_{n}, y_{n}$ $\in C$, be two sequences which converge to $x_{0}: x_{n}=\sum_{i \neq 2 n+1} c_{i} / 3^{i}+$ $\left(2-c_{2 n+1}\right) / 3^{2 n+1}, \quad y_{n}=\sum_{i \neq 2 n} c_{i} / 3^{i}+\left(2-c_{2 n}\right) / 3^{2 n}$. Clearly $\left|x_{n}-x_{0}\right|=$ $2 / 3^{2 n+1},\left|y_{n}-x_{0}\right|=2 / 9^{n}, g\left(x_{n}\right)=g\left(x_{0}\right)$ and $\left|g\left(y_{n}\right)-g\left(x_{0}\right)\right|=2 / 2^{n}$. Hence $\left|\left(g\left(x_{n}\right)-g\left(x_{0}\right)\right) /\left(x_{n}-x_{0}\right)\right|=0$ and $\lim \left|\left(g\left(y_{n}\right)-g\left(x_{0}\right)\right) /\left(y_{n}-x_{0}\right)\right|=$ $+\infty, n \rightarrow+\infty$. Therefore $E^{\prime}\left(x_{0}\right)$ does not exist.
(ii) by (i), $\mathbb{B}^{\infty}=\varnothing$. Fence $g \in \mathbb{N}^{\infty}$.
(iii) Let Q be a perfect subset of $C, Q=\left\{x \in C: c_{2 n+1}(x)=0\right.$, $n=$ $1,2, \ldots\}$. Clearly $g(2)=[0,2]$. We show that g is increasine on Q. Let $x, y \in Q, x<y$ and let m be the first natural number sucb that $c_{2 m}(x)<c_{2 m}(y)$. Then $c_{i}(x)=c_{i}(y), i=1,2, \ldots, 2 m-1$ and $g(y)-g(x)$
$\geqslant 2 / 2^{m}-\sum_{i=1}^{\infty} 2 / 2^{m+i}=0$. Hence $g(y) \geqslant g(x)$. By Theorem $A, g \notin(\mathbb{N})$.

Since $[g(0), g(1 / 3)]=[0,2]$ and $|g(P \cap[0,1 / 3])|=0$, it follows that $g \in(+) .\left(P=\left\{x: g^{\prime}(x) \geqslant 0\right\}.\right)$

Remark 10. The Bxample shows that we cannot give up the condition (+) in Theorem 15.

Theorem 16. Let $b:[0,1] \longrightarrow R$ be a function belonping to $\left(\mathrm{DB}_{1} \cap \mathrm{~T}_{2} \cap \mathbb{N}^{+\infty}\right)$ 田 ($\left.\ell \cap V B G_{*} \cap \mathbb{N}^{+\infty}\right)$. If $\mathrm{h}^{\prime}(\mathrm{x}) \leqslant 0$ a.e. where b is derivable, then b is continucus and decreasing on $[0,1]$.

Froof. Let $f, g:[0,1] \longrightarrow R, f \in\left(D B_{1} \cap T_{2} \cap \mathbb{N}^{+\infty}\right)$ and $g \in\left(C \cap V B G_{*}\right.$ $\left.\cap \mathbb{N}^{+\infty}\right)=\left(\mathscr{C} \cap V B G_{*} \cap \overline{A C G}\right)$, sucb that $b=f+g$ on $[0,1]$. By Remark 1 , i), $b \in D B_{1}$ on $[0,1]$. For g there exists a sequence of intervals I_{n} whose union is dense in $[0,1]$ and on eacb of which $g \in \overline{A C} \cap b$. Iet $\left[c_{n}, d_{n}\right] \subset I_{n}$. Since $b \in\left(D B_{1} \cap T_{2} \cap \mathbb{N}^{+\infty}\right) \boxplus(\overline{A C} \cap C)$ on I_{n}, by Corollary $2, b), f \in \overline{A C}$ on $\left[c_{n}, d_{n}\right]$, bence $b \in \overline{A C}$ on $\left[c_{n}, d_{n}\right]$. By Lemma B, b is decreasing on $\left[c_{n}, d_{n}\right]$. Since $b \in D, b$ is continuous and decreasing on \bar{I}_{n}. The intervals I_{n} can be chosen to be maximal open intervals of monotonicity of b. Suppose that $Q=[0,1]-\left(U I_{n}\right)$ $\neq \varnothing$. Then Q is a perfect nonempty subset of $[0,1]$ (if necessary without 0 and 1). Let $0 \leqslant a<b \leqslant 1$ such that $(a, b) \cap Q=\varnothing$ and $g \mid[a, b] \cap_{Q} \in \overline{A C} \cap V_{*} \cdot$ Let $g_{1}(x)=g(x), x \in[a, b] \cap Q$ and let g_{1} be linear on the closure of each interval contiguous to Q with respect to $[a, b]$. Then $g_{1} \in V B_{*} \cap \mathcal{C}$ on $[a, b]$. Let $f_{1}(x)=b(x)-$ $g_{1}(x)$. By Remark $\left.1, i\right), f_{1} \in D B_{1}$ on $[a, b]$. Since $f \in T_{2}$ and $f_{1} \in \overline{A C}$ on each I_{n}, it follows that $f_{1} \in T_{2}$ on $[a, b]$ and $f_{1} \in \mathbb{N}^{+\infty}$ on each I_{n}. Let $Q_{1}=\bar{Q}_{1} \subset[a, b] \cap Q$ such that $\left.f_{1}\right|_{Q_{1}} \in V B_{*}$. Since $\varepsilon_{1} \in V B_{*}$ on $[a, b]$ it followis that $b=f_{1}+g_{1} \in V B_{*}$ on Q_{1}. Hence $f=h-g \in V B_{*}$ on Q_{1}. Since $f \in \mathbb{N}^{+\infty}$, by Lemma $A,\left.f\right|_{Q_{1}}$ is $\left.\overline{\text { ac. Hence }} f_{1}\right|_{Q_{1}} \in \overline{A C}$. It follows that $f_{1} \in\left[\overline{\mathbb{M}}_{*}\right]$ on $Q \cap[a, b]$. Hence $b=f_{1}+g_{1} \in\left(D B_{1} \cap T_{2} \cap \mathbb{N}^{+\infty}\right)$ $\square(\overline{A C} \cap b)$ on $[a, b]$. Now b is decreasing on $[a, b]$, a contradiction.

Corollary 6. Let $F, G:[0,1] \longrightarrow R$ be two functions such that $F \in D B_{1} \cap T_{2} \cap N^{+\infty}$ (resp. $D B_{1} \cap T_{2} \cap N^{\infty}$), $G \in A C E \cap B \cap V B G$ and $G^{\prime}(x) \geqslant$ $F^{\prime}(x)$ a.e. where F is derivable. Then $F \in \overline{A C G} \cap V B G_{*} \cap \boldsymbol{C r e s p}$. $A C G *$ $\cap b)$ on $[0,1]$ and $H=F-G$ is continuous and decreasing on $[0,1]$.

Proof. Clearly $\mathrm{H}^{\prime}(\mathrm{x}) \leqslant 0 \mathrm{a} \cdot \boldsymbol{\theta}$. on $[0,1]$ where H is derivable. By Theorem 16, H is decreasing and continuous on $[0,1]$. Hence $F \in$ $V B G_{*} \cap C_{\text {. Now }} \mathrm{F} \in \overline{\mathrm{ACG}}$ (resp. $A C G_{*}$) on $[0,1]$.

Remark 11. By Corollary 6 we bave the following theorem:
Let $F:[0,1] \longrightarrow R, F \in D B_{1} \cap T_{2} \cap N^{\infty}$. If F^{*} (see Theorem 14) has a maior function in the Perron sense then $F \in A C G \cap C$ on $[0,1]$.

This theorem is an extension of a theorem of Saks (see [21], p.286). (See also Remark 9,ii).)

Corollary 7. Let $b:[0,1] \longrightarrow \mathbb{R}$ be a function belonging to $\left(D_{1} \cap(\mathbb{N})\right)$ 田 $\left(A C G_{f} \cap b\right)$ on $[0,1]$. If $h^{\prime}(x) \geqslant 0$ a.e. xhere b is derivable then $b \in A C$ and is increasing on_ $[C, 1]$.

Remark 12. In [20], Mazurkiewicz has constructed a continuous function $f(x)$ on $[0,1]$ such that for $b \neq 0$ the function $f(x)+b x$ doss not satisfy Lusin's condition (iN). Therefore $\mathrm{DB}_{1} \cap(\mathbb{N}) \subset\left(\mathrm{DB}_{1} \cap(\mathbb{N})\right)$ $\oplus\left(A C G_{*} \cap \ell\right) \subset \mathrm{DB}_{1} \cap[\mathrm{M}]$ on $[0,1]$. Thus Corcllaryfis a partial answer for the Open problem.

We are indebted to Professor Solomon Liarcus for his belp in preparing this article and to the anonymous reviewers for their valuable suggestions and careful reading.
[1] Bary, \mathbb{N}_{0} : Mémoire sur la répresentation finie de fonctions continues. Misth.Ann.,103,(1930),185-248 and 598-653.
[2] Bruckner,A.M.: An affirmative answer to a problem of Zaborski and some consequences. Mich.watb.J.,13(1966),15-26.
[3] Bruckner,A.M.: Differentiation of Real Functions. Lecture Notes in Mathematics, 659, Springer-Verlag, New York(1978).
[4] Ellis,H.N.: Darboux Properties and Applications to non-absolutely convergent integrals.Canad.Journal Math.,3 (1951), 471-485.
[5] Ene,G:: Monotonicity and Darboux properties. Rev.Roumaine Math.Pures appl. Tome $\mathrm{XXX}, 9$ (1985), 737-743.
[6] Ene,G. and Ene, V.: Nonabsolutely Convergent Integrals. Real Analysis ßxchange,11 (1985-86), 121-134.
[7] Ene,V.: A theorem wbich implies botb Tolstoff's theorem and Zaborski's theorem on monotonicity. Rev. Roumaine Math. Pures appl. (to appear).
[8] Ene, V.: A study of Foran's conditions $A(\mathbb{N})$ and $B(\mathbb{N})$ and bis classf. Real Analysis Exchange, 10 (1985),194-211.
[9] Foran,J.: A Generalization of sbsolute Continuity. Real Analysis Exchance, 5 (1979-80), 82-91.
[10] Foran, J.: an Extension of the Denjoy Integral. Proc.Amer. Matb.Soc.,49 (1975), 359-365.
[11] Fcran,J.: On continuous functicns xith eraphs of σ-finite linear measure.Proc.Cambridge Pbilos.Soc.,76(1974),33-43.
[12] Foran,J.: A Chain Rule for the Approximate Derivative and Cbange of Variabies for the \mathcal{D}-Integral. Real Analysis Đxchange, 8 (1982-83), 443-454.
[17] Foran, J. and O'Malley,R.J.: Integrability Conditions for Approximative Derivatives. Real Analysis Exchange, 10 , (1984-85), 294-306.
[14] Fleissner,R. and O'Malley,R.J.: Conditions Implying the Summability of Approximate Derivatives.Coll Matb.41(1979) 257-263.
[15] Lee,c.M.: An analogue of the theorem Hake-Alexandroff-Looman. Fund .\#ath ., C(1978),69-74.
[16] Lee, C M. : On Naire one Darboux functions with Iusin's condition (N). Real Analysis Exchange,7(1981),61-64.
[17] Ieonard, J.: Some conditions implying the monotonicity of a real function. Rev.Roumaine Matb.Pures Appl. 12 (1972) 757-780.
[18] Marcus,s.: Sur la dérivée approximative qualitative (in Roumanisn). Ccm.Acad. R.P.Rcmâne, 3(1953), 361-364.
[19] Mazurkiewicz,S.: Sur les fonctions qui satisfont a la condition (N). Fundam diatb.,16, (1930), 348-352.
[20] O'Malley,R.J.: Selective derivatives. Acta Matb.Acad.Sci. Hung., 29 (1977), 77-79.
[21] Saks,S.: Theory of the integral. 2nd.rev.ed.incnografie inatematyczne, 7 (1937), PinN, Warsaw.
[22] Saks,S.: Sur certaines classes de fonctions continues. Fund. Matb.,17 (1931), 124-151.
[23] Swiatkowski,T.: On the conditions of monctonicity of functions. Fund Matb.,59 (1966), 189-201.
[24 Zaborski,Z.: Sur la première dérivée. Trans. 细er. Wath. Soc., 69 (1950), 1-54.

