Ryszard Jerzy Pawlak, Institute of Mathematics, Lodz University, Banacha 22, 90-238 LOdz, POLAND.

ON SOME RINGS OF SWIATKOWSKI FUNCTIONS

In 1977, T. Mank and T. Swiatkowski in paper [1] defined a new class of functions. According to the terminology adopted in [2] elements of this class we call Swiatkowski functions.

Defintion. We say that $f: R \rightarrow R$ is a Swiatkowski function if for every two points $x, y \in R$ such that $f(x) \neq f(y)$ there exists a point z of continuity of f such that $z \in(x, y)$ and $f(z) \in(f(x), f(y))$.

We assume the notation (a, b) in either case $a<b$ or $b<a$.

Let $C_{f}\left(D_{f}\right)$ denote the set of all continuity (discontinuity) points of f.

It is known that there exist Swiatkowski functions f and g such that $f+g$ is not a Swiatkowski function. So the question whether it is possible to form a ring of Swiatkowski functions, containing all continuous functions and a fixed Swiatkowski function f, seems to be interesting.

For a Swiatkowski function $f: R \rightarrow R$ let $R S(f)$ denote the class of all complete rings K of Swiatkowski functions such that $f \in K$ and $C \subset K$, where C denotes the class of all continuous functions. (A ring K of real functions is complete if for every $g \in K,|g|$ also belongs to K.

Now the above question can be formulated in the following way: Under what hypothesis on f is $R S(f) \neq \varnothing$?

First we consider the simple case of $D_{f}=\left\{X_{0}\right\}$.

Theorem 1. Let f be a Swiatkowski function such that $D_{f}=\left\{x_{0}\right\}$. Then $R S(f) \neq \varnothing$ if and only if x_{0} is a Darboux point of f.

The next theorem gives the answer to the above problem in a general case. In light of Theorem 1 we add the additional assumption that the functions under consideration are Darboux functions.

Theorem 2. Let f be a Darboux, Swiatkowski function in Baire class 1. Then $R S(f) \neq \varnothing$.

It is possible to construct an example of a nonmeasurable Swiatkowski function such that $\operatorname{RS}(f) \neq \varnothing$. This fact follows from the next theorem.

Theorem 3. Let f be a Darboux function such that the set D_{F} is a nowhere dense set and let f fulfill the following condition: for every point $x \in D_{f}$ and every $\eta>0$ there exists $\delta(x, \eta)>0$ such that if s is a component of C_{f} and $\rho(x, S)<\delta(x, \eta)$, then $\rho(f(x), f(S))<\eta$. Then f is a Swiatkowski function and moreover $\quad R S(f) \neq \varnothing . \quad(\rho(X, A)=$ $\left.\inf _{a \in A}|x-a|\right)$.

Theorem 3 is proved by constructing a topology 0 such that a ring of real functions continuous in the topology 0 belongs to $R S(f)$. Moreover every real function f continuous in the topology 0 is a Darboux function. (See the proof of Theorem 1 in [3].)

With regard to the above remarks we can formulate the following open problems.
Problem 1. Characterize the Swiatkowski functions f such that
$\operatorname{RS}(f) \neq \varnothing$.

Problem 2. Assuming that for some Swiatkowski function $f \quad R S(f) \neq \varnothing$, characterize the functions g belonging to some ring $K \in R S(f)$.

Remark. The analogously questions can also be asked for Darboux functions. (See [3].)

REFERENCES

[1] Mank, T. and Swiatkowski, T., "On some class of functions with Darboux's characteristic", Zesz. Nauk. P.L .Mat.z.11, 1971.
[2] Pawlak, H. and Wilczynski, W., "On the condition of Darboux and Swiatkowski for functions of two variables", Lesz. Nauk. P.L. Mat.z.15, 1982, pp. 31-35.
[3] Pawlak, R.J., "On rings of Darboux functions", Colloquium Math. (to appear).

