
 R <¿aJL AnaLbiA Exchange. Vol. 10 (1984-&5)

 Ryszard Jerzy Pawlak,  Institute of Mathematics, Lodz University, Banacha 22,
 90-238 Lodz, POLAND.

 ON SOME RINGS OF SWIATKOWSKI FUNCTIONS

 In 1977, T. Mank and T. Świątkowski in paper [1] defined a new class of

 functions. According to the terminology adopted in [2] elements of this class

 we call Świątkowski functions.

 Defintion. We say that f : R - R is a Świątkowski function if for every

 two points x,y e R such that f(x) * f(y) there exists a point z of

 continuity of f such that z e (x,y) and f(z) e (f(x),f(y)).

 We assume the notation (a,b) in either case a < b or b < a.

 Let Cf (Df) denote the set of all continuity (discontinuity) points of

 f .

 It is known that there exist Świątkowski functions f and g such that

 f + g is not a Świątkowski function. So the question whether it is possible

 to form a ring of Świątkowski functions, containing all continuous functions

 and a fixed Świątkowski function f, seems to be interesting.

 For a Świątkowski function f:R - R let RS(f) denote the class of all

 complete rings K of Świątkowski functions such that f e K and C c k,

 where C denotes the class of all continuous functions. (A ring K of real

 functions is complete if for every g e K, |g| also belongs to K. )

 Now the above question can be formulated in the following way: Under what

 hypothesis on f is RS(f) * 0 ?
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 First we consider the simple case of Df = (x0}.

 Theorem 1. Let f be a Świątkowski function such that D^ = {x0}. Then

 RS(f) * 0 if and only if x0 is a Darboux point of f.

 The next theorem gives the answer to the above problem in a general case.

 In light of Theorem 1 we add the additional assumption that the functions

 under consideration are Darboux functions.

 Theorem 2. Let f be a Darboux, Świątkowski function in Baire class 1.

 Then RS( f )

 It is possible to construct an example of a nonmeasurable Świątkowski

 function such that RS(f) * 0. This fact follows from the next theorem.

 Theorem 3 . Let f be a Darboux function such that the set Df is a

 nowhere dense set and let f fulfill the following condition: for every

 point X € Df and every r) > 0 there exists 6(x,t)) > 0 such that if S is

 a component of Cf and p(x,S) < 6(x,r)), then p(f(x),f(S)) < rj. Then f

 is a Świątkowski function and moreover RS(f) * 0. (p(x,A) -

 infa<sA lx-a|).

 Theorem 3 is proved by constructing a topology 0 such that a ring of

 real functions continuous in the topology 0 belongs to RS(f). Moreover

 every real function f continuous in the topology 0 is a Darboux function.

 (See the proof of Theorem 1 in [3]. )
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 With regard to the above remarks we can formulate the following open

 problems.

 Problem 1. Characterize the Świątkowski functions f such that

 RS(f) * 0.

 Problem 2. Assuming that for some Świątkowski function f RS( f ) * 0,

 characterize the functions g belonging to some ring K e RS(f).

 Remark . The analogously questions can also be asked for Darboux

 functions . ( See [ 3 ] . )
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