
 R eo¿ A na¿ó¿ó Exchange l/o£. 10 [1984-85)

 T. Salat,  Department of Mathematics, University of Komenský, 84.2 15

 Bratislava , Czechoslovakia

 REMARKS ON UNIFYING PRINCIPLES IN REAL ANALYSIS

 1. Unifying principles for proving fundamental theorems in real analysis

 Several unifying principles for proving fundamental theorems in real

 analysis have been formulated in the mathematical literature. Such a

 principle is the principle of induction in continuum (cf. [7], [9], [10]).

 Some analogous principles are contained in [3], [¿], [5], [8], and [11]. In

 this part of the paper we shall investigate the principles formulated in [8]

 and [11]. In particular the principle from [8] seems to be a very effective

 tool for simplifying proofs of some fundamental theorems in analysis. (See

 the second part of this paper. )

 We shall formulate the principles from [8] and [11] for a chain (totally

 ordered set) (X,<) having minimal element (= a) and maximal element (= b)

 and we shall suppose that (X,<) has no gaps (i.e. for each two elements x,

 y e X with x < y there exists a z e X such that x < z, z < y). In what

 follows we denote the interval topology on X by T.

 The following properties (Pj.) and (P2) correspond to the principles

 from [8] and [11] respectively.

 The chain (X,<) is said to have the property (PL) provided < is the

 unique relation L on X satisfying the following conditions:

 (Al) L is transitive, i.e. if x L y and y L z, then x L z;

 (A2) L c < ;

 (A3) L is locally valid, i.e. if p e X, then there exists a neighborhood

 V(p) <= T of the point p such that

 x ć V(p), x < p => x L p , and

 x <= V(p), p < x => p L x .

 The chain (X,<) is said to have the property (P2) provided each system

 S of closed intervals [c,d] c x satisfying the conditions (Bl) and ( B2 )

 contains [a,b] (=X), where
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 (Bl) S is an additive system, i.e. if [c,d] g s, [e,f] g s and

 [c,d] n [e,f] ¿ 0, then [c,d] u [e,f] «= S;

 ( B2 ) S is local, i.e. if p g X, then there exists an interval [c,d] e s

 such that [c,d] is a neighborhood of p (i.e. p belongs to Int[c,d]).

 We shall show in the Corollary after Theorem 1.1 that the properties (PŁ)

 and ( P2 ) are equivalent and hence the principles of P. Shanahan and H.

 Leinfelder are equivalent.

 The chain (X,<) is said to be order-complete if each non-empty set

 M c X with an upper bound has a supremum in X (cf. [6], p. 58). It follows

 from the proof of Theorem 2 in [8] that every order-complete chain without

 gaps has the property (PŁ).

 We shall show that each of the properties (PŁ) and ( P2 ) is equivalent

 to the order -completeness of X.

 Theorem 1.1. Let (X,<) be a chain without gaps. let X have minimal

 element a and maximal element b .

 ( i ) The chain X has property ( PŁ ) if and only _if X is

 order -complete .

 ( ii ) The chain X has property ( P2 ) if and only if X is

 order -complete .

 Corollary. The chain X has property (PA) if and only of j.t has the

 property (P2).

 For the proof of Theorem 1.1 the following auxiliary result will be

 useful. (For the proof of the following Lemma 1.1 see [6], p. 58.)

 Lemma 1.1. Let (X,<) be a chain without gaps. Then the topological

 space (X,T) is connected if and only if (X,<) is order -complete .

 Proof of Theorem 1.1 (i) According to theorem 2 of [8] the relation <

 is the unique relation on X satisfying the conditions (Al) - (A3) if and

 only if (X,T) is a connected space. Hence according to Lemma 1.1 the chain

 ( X, < ) has property (P¿) if and only if it is order -complete .
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 (ii) If (X,<) is order -complete, then X has property (P2). This fact

 can be proved by the same procedure by which Lemma 1 in [11] is proved. We

 shall prove therefore only the fact that if X has property (Pz), then

 (X,< ) is order -complete .

 It suffices to prove that if (X,<) is not order - complete , then X does

 not have property (P2). Let H c [a,b], H/0. Suppose that H has no

 supremum in X = [a,b]. Denote by B(H) the set of all upper bounds of the

 set H in X. Define the system S of closed intervals [x,y] ex in the

 following way:

 [x,y] € S <=> t ( X 6 B( H ) ) /' (y € B( H ) ) ]

 '/ [(X ¿ B(HH) /' (y £ B( H ) ) ]

 We shall show that S satisfies conditions (Bl) and (B2).

 Let [x,y] e X, [u, v] e S, [x,y] n [u, v] ¿ 0. Let for example

 x<u<y<v. (In the other cases we proceed in an analogous way. ) If x,

 y 6 B(H), then u 6 B(H) and therefore also v e B(H), since [u,v] e S.

 But then we have [x,v] = [x,y] u [u, v] e S . If x ¿ B(H), y /£ B( H ) , then

 u jé B( H ) (since u < y) and therefore v ¿ B( H ) . We have again

 [x,v] = [x,y] u [u, v] e S. Hence S satisfies (Bl).

 Let p e X. If p ¿ B(H), then there exists an x e H such that p < x.

 But the interval [a,x] is a neighborhood of the point p and [a,x] e S.

 Let p e X. Let p e B(H). Since H has no supremum, there exists an

 element q e X, q < p, such that q is an upper bound of H ( q e B( H ) ) . But

 then [q,b] e S and [q,b] is a neighborhood of p. Hence S satisfies

 also the condition (B2). Since a /á B(H) and b e B(H), we see that

 [a,b] /á S. Hence X does not have property (P2). The proof is finished.

 2. Two applications of the principle of H. Leinfelder

 Using Theorem 1 from [8] we can give a simple proof of a known result in

 the theory of monotone functions. (See Theorem 2.1.) Recall that a function

 f:(a,b) - R is said to be increasing at the point p (a,b) if there exists

 an open interval I c (a,b) such that x, p e I, x > p, implies

 f ( x ) > f(p).
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 Theorem 2.1. If the function f:(a,b) - R is increasing at each point

 p e (a,b), then it is increasing on the interval (a,b).

 Proof . On (a,b) define the relation L in the following way:

 x L y <=> (X < y) /' (f(x) < f(y)) .

 Then L satisfies conditions (Al) and (A2). We shall show that it also

 satisfies (A3). Let c e (a,b). Since f is increasing at c, there exists

 an interval V(c) c (a,b) containing c such that

 X ć V(c), X < c => f(x) < f(c) (i.e. X L c ) ,

 xeV(c), c<x => f ( X ) < f ( X ) (i.e. cLx).

 But this shows that L satisfies (A3) too. Therefore according to Theorem 1

 of [8] we have L = < and so if x, ye (a,b), x<y, then f(x) < f(y).

 The proof is finished.

 We shall give another application of Theorem 1 of [8] in the theory of

 Lipschitzian functions. At first we shall introduce the definition of the

 concept of locally M- Lipschitzian functions. This definition is suggested by

 [2] and [1].

 Definition 2.1. Let I c r be an interval and let M > 0. The function

 f : I - R is said to be M-Lipschitzian at the point pel provided that

 there is a neighborhood V( p ) c i of the point p such that for each

 x e V(p) we have lf(x) - f(p)l < Mix - p| .

 Let us agree that Lip^ 1 stands for the class of all functions f : I - R

 that belong to the class Lip 1 with the constant M. Hence f *= l*iPM 1 if

 for each two points x, y e I we have |f(x) - f(y)l < Mix - y| .

 Theorem 2.2. Let fsl - R be M-Lipschitzian at each point pel. Then

 f e Lipj4 l.

 Proof. Define the relation LM on I in the following way:

 X lm y <=> (X < y) /' ( -M g f(X¿ " y(y) Š M)
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 Clearly LM satisfies the conditions (A2) and (A3) of Theorem 1 of [8].

 We shall show that it satisfies condition (Al) too. Let x Lļļ y, y z.

 Then x < y and y < z. Hence x < z. Further we have

 d» - & f<x> : ?y) s «
 and

 (2) v ' -M < f(y) • f(Z) < M . v ' = y - z =

 If a/b < c/d, then we have a/b < a+c/b+d < c/d. Therefore it follows from

 (1) and (2) that

 -M < f<X> - f(Z) < M .
 = x - z -

 Hence x L^ z .

 According to Theorem 1 of [8] for each two points x, y 6 I, x < y we

 have lf(x) - f(y)l < Mix - y| . The proof is finished

 Remark 2.1; Theorem 2.2 cannot be extended in the following way: "Let

 f : I - R be locally Lipschitzian at each point pel. (See [2], i.e. for

 each pel there exists such an M(p) > 0 and a neighborhood V(p) c i

 that for each x e V(p) we have lf(x) - f(p)l < M(p)|x - pl.) Then

 f e Lip 1 where Lip 1 = Lip^ 1". This fact follows from the following

 example.

 Example 2.1. Put I = [0,1], f(0) = 0 and f(x) = x sin 1/x for

 x 6 (0,1]. Then f is evidently locally Lipschitzian at 0 and it has a

 finite derivative at each point x e (0,1]. But it is easy to see that

 f £ Lip 1. Put

 x n = (2tt n f z 1, y n = ( 2tt n + ^) 2 1 (n = 1,2, • • • ) • n z n 2

 Then we have |f(xn) - f(yn)l - xn + /n and evident that for a fixed

 M > 0 the inequality xn + yn < M|xn - yn| cannot hold for each n =

 1,2,
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