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 SOME PROBLEMS IN DIFFERENTIATION THEORY

 Let (X,px) and (Y ,py) be complete metric space and let ß be a

 measure defined on a a -algebra M which contains all Borei sets in X. We

 assume that there exists a differentiation base (F,=>) in X, where F is

 a family of open sets of finite, positive ß measure and a contraction =>

 of sequences of sets in F to points x e X is such that

 (1) In => X iff X e In for n = 1,2,... and lin^-o, d(In) = 0, where

 d( In ) denotes the diameter of the set In ; and

 ( 2 ) if X € X, then there exists at least one sequence of sets of F

 which tends to x.

 For a fixed set E e M and a point Xq e X the upper ( resp . lower )

 density of E at Xq is

 d~( E , Xq ) = 1 im sup /i(E n I) / ß(I)
 I => Xq

 ( d_( E , Xq ) = lim inf ß(E n I) / |i( I ) ).
 I => Xo

 Here the notation I => Xq is used to signify that we consider all possible

 sequences of open sets of F tending to x.

 Definition 1. Let fsX - Y be a ¿¿-measurable function. Then f

 satisfies the locally preponderantly Lipschitz condition at a point Xq e X,

 iff there exist a set E e M, a number s = 6(Xo) > 0 and a constant L =

 L( Xq ) > o such that

 ß(E n I) / p(l) > 1/2 for all sets I e F containing Xq

 with d( I ) < 6 and

 Py( f ( x ) , f ( Xq ) ) š L Px(x,x o) for every x e E .

 Definition 2. ([1] and [2]). A function f : X - Y is [CG] if and only

 if for every closed set CCX(C/<t>) there is an open set U c x with

 C n U ^ <J> such that f |c is continuous on C n U.
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 Tamm i. Let A c X be a set and f:Cfi A - Y be a function (A * <t> and

 Cfi A denotes the closure of the set A). If the function f is not

 continous at a point x e CU A, then there exist a number c > 0, a point y

 e CU Pí and a sequence of points Xai€A(m = l,2,...) which tends to y and

 such that py( fiy),^^)) > c for every m.

 Proof. Since f is not continuous at a point x, there exist a number

 c > 0 and a sequence of points 1% e CU A (m = 1,2,...) which tends to x

 and such that py( f(x),f(um)) > 2 c for every m. If ünit-um,t£A
 f(t) = f(um) for every m, then there exists a sequence of points xm ^ A

 such that px( *01» um) < V» and Py( f( um) » f( Xm) ) < c for m = 1,2,... . Thus

 PYÍfíXm^fíx)) £ PY(f(um),f(x)) - pyCfiUm^fiXm)) > 2c - c = c for m =

 1,2,... . If there exists an m such that either the limit limt-Um, t6Af( )
 does not exist or differs from f(um), then Lemma 1 is fullfilled.

 Theorem 1. If f:X - Y satisfies the locally preponderantly Lipschitz

 condition at every point x e X, then f is [CG].

 Proof. Let C c x be a nonempty perfect set. For every natural number

 n let An be the set of all points x e C so that there is a set E(x) e M

 such that ¿i(E(x) n I)//jl(I) > 1/2 for every set I e F with d(I) < 1/n and

 Py(F(u),f(x)) < npx(x,u) for u 6 E(x). Since C = un Cfi An, by the Baire

 Category Theorem it suffices to show that the function flci An continuous
 for each n. Suppose that for some n the function flci An n°t continuous
 at a point x e Ci An. Then by Lemma 1 there exist a number c > 0, a point

 y 6 Ci An and a sequence of points Xjq e An which tends to y and such that

 Py( f(y ) , fix^) ) > c for every m. Let 6 = min( l/¿n,c/¿n,c/¿L(y ) ) and I e F

 be an open set such that d(I) < 6 and x e I and /¿(E(x) n I)/ji(I) > 1/2.

 There exists an such that x^ e I. Since /¿(Efx^ ) n I )/M( I ) > 1/2,
 there exists a point u e Eix^) n E(y) n I. Then

 PY<£(y),£(xmo)) « py( f(y),f(u)) + py( <

 L(y)Pxí*»u> + UXm0)Px(xm0>u) « L(y)p + np «

 L( y )c/¿L( y ) + nc/4n = c/2 < c .

 This contradicts the fact that py( f( y ) , f( ) ) > c.
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 II. Let X be an open, nonempty subset of k -dimensional Euclidean space

 R*, let ß be Lebesgue measure in Rk, let (F,=>) be the ordinary
 differentiation basis ([3]) and let Y be a separable, Banach space.

 Definition 3. A function f:X - Y is approximately differentiable at a

 point Xq if there exist a set E e M containing Xq with d_(E,Xo) = 1
 and a continuous linear operator A:R* - Y (A e L( R*, Y ) ) such that

 lim (f(Xo + h) - f(Xo) - Ah)/|h| = 0 .
 h-O.Xo+heE

 We shall write

 f(x¿ + h) = f(Xo) + Ah + «XQÍhilhl for every h e R^

 such that Xq + h e E where lim ev ( h ) = ex (0) = 0. Then the
 h-0 °

 operator A is called the approximate derivative f¿p( Xq ) of the function
 f at the point x¿.

 Theorem 2. If a function f:X - Y is approximately differentiable at

 every point x e X, then the approximate derivative x - fáp(x) is of Baire
 class 1.

 Let us begin the proof with lemmas:

 Lemma 2. If a function f:X - Y is approximately differentiable at every

 point x é X and f£p is not Baire class 1, then there there exist a perfect
 set P c x (P * 4>), an operator A e L(R*,Y) and two numbers s > r > 0

 such that f|p is continuous, the set Q = {x e P:||f4p(x) - a||l < r} is of
 category 2 on every set U n P, where U is an open set and U n P * <t> and

 the set S = (x e P:||fàp(x) - a||l £ s} is dense in P.

 Proof. I f fápiX - LCR*, Y) is not Baire class 1, then there exist a
 perfect set PŁ c x (PŁ * <t>) such that flPj. is discontinuous at every point

 x e Pj.. Since the space L(Rk,Y) is separable, there exists a set A =
 {Ał , A2 , . . . } of operator A¿ € L(R^,Y) dense in L(Rk,Y). For each point
 x e Px there exist an operator A(x) € A and two rational numbers s(x) >
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 r(x) > 0 such that ||fáp(x) * a(*)IIl < r(*> and x <s Cfi {te PL:||fáp(t) -
 A(x)||l ï s(x)}. Let s and t be positive, rational numbers and n be a
 positive integer such that the set P2 = {x e PŁ:A(x) = An = A, r(x) = r,

 s(x) = s} is of category 2 in PŁ. The set P3 = {x e Ci P2:P2 is of

 category 2 (relative to PŁ) at point x} is perfect. Since f is

 approximately differentiable, by Theorem 1 f is [CG] and there exists an

 open set U c X with P3 n U * 0 such that flp3 is continuous on P3 n U.

 Let V be an open set such that Ci V c u and V n P3 * <j>. The set P = Cfi

 v n P3 is perfect, flp is continuous, the set Q = {x e P:||fáp(x) - a||l < r}
 is of category 2 on every set w n P where W is an open set and W n P * <i>

 and the set S = {x e P:||f¿p(x) - a||x, > s} is dense in P. This completes
 the proof.

 Lemma 3. If ||fáp(x)||i, * s f°r every x e S ¿ 4> and if sŁ is a number
 such that 0 < sŁ < s, then there exists a positive number q such that

 d_ ( {h e Rk:h * 0, ||f4p(x)h/|h| || > SjJ.O) » q for all x e S.

 Proof. Let x be a point of S and let s2 be such that sŁ < s2 < s.

 Since l|fáp(x)llL * s> there exists h0 « Rk such that ||h0|| = 1 and
 l|fáp(*)holl > l|fáp(x)llL - ( s2 - sA)/2. If h e Rk, ||h|| = 1 and ||h - h0|| <
 1 - s2/s, then flf4p(x)h|| > ||fàp(x)h0|| - || fàp( x )h - fâp(x)h0|| > || fâp(x)h0|| -
 llfáp(*)llL lh - hol > flfáp(*)lL (1 - Ih - h0|) + - (s2 - sŁ )/2 > s s2/s -
 (s2 - sŁ )/2 > Sj..

 Let q = d_ ( {h « R^sh * 0 and |h/|h| - hoi < 1 - Sz/Sj.o). Then q > 0
 and d_ ({h « Rk:h * 0, ||fâp(x)h/ |h| J > s} ,0) > d_ ( {h « Rk:h * 0 and
 |h/|h| - hoi < 1 - s^/s } , 0 ) > q. This completes the proof.

 T<pnna ü. Let f:X - Y be a function and A c x be a set such that f|^

 is continuous at a point s e A. If

 (lx) M( (u e I: (J ( f < u ) - f(x))/|u-x| - a| < e}/p.(I) > 6

 where a e Y, I e F, x e I and 6,6 are some positive constants, then there

 exists a nonempty open set U c x such that x <= U and the condition (lz) is
 satisfied for each z e U n A.
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 Proof. For every point t e E = {u e I:||(f(u) - f(x))/|u-x| - a|| > «=}
 there exists a rational number r( t ) > 0 such that

 ||(f(t) - f(z))/|t-z| - a|| > « for all z e A n I with |z-x| < r(t).

 Since p(E ) > Sji(I), we obtain ¡x( {t € E:r(t) > r} ) > 6ji(I) for any r > 0.

 Then condition (lz) is satisfied for each z « I n A such that 6x(z,x) < r.

 Proof of Theorem 2. If f£p is not Baire class 1, then by Lemma 2 there
 exist a perfect set PCX(P/4>) and an operator A e L(R^,Y) and numbers

 s > r > 0 such that f|p is continuous, the set Q = {x e P:||fàp(x) - a||l <
 r} is of category 2 on every open set U n F with U n P / $ and the set

 S = {x e P:||fáp(x) - a||l > s } is dense in P. We can assume that A = 0,
 since in other case we consider the function f - A. By Lemma 3 there exists

 a positive number q such that d_ ( {h € R^:h ? 0, || f£p( x )h/ 1 h I 1| > (s+r)/2},0)
 > q for every x e S. Now for each x e Q there is a positive rational

 number S(x) such that ¡i( {t e I : ļļ f ( t ) - f(x)||/|t-x| < r})//i(I) > 1 - q/2
 for every I e F with x « I and d(I) < 6(x). Since the set Q is of

 category 2 in P, there exists a number S > 0 such that the set T =

 {x e QsS(x) = 6} is of category 2 in P. Consequently there exists an open

 set V such that V n P -A <J> and T n V is dense in V n P. Let x e S n V

 be a point and I e F be a set such that x e I , d( I ) < 6 and

 ß( (t e I : ļļ ( f ( t ) - f(x))/|t-x| ļļ < r})/M(I) > q/2. By Lemma U there exists an
 open set w c v such that x e w and the condition ( lz ) ( or a = 0, <s =

 ( s+r )/2 and 6 = q/2 ) is satisfied for each z e W n P . But T is dense in

 V n P, so there exists a point y e T n I n W and {t e I:||f(t) -

 f(y)||/lt-yl < r})//i(I) > 1 - q/2, in contradiction with (ly). This completes
 the proof.

 Remark. If X = Y = R, then Theorem 2 is proved in [4.] by Tolstoff.

 Definition U. A function f:X - Y is preponderantly differentiable at a

 point x e X if there exists a set E(x) e M, a number 5 = S(x) > 0 and a

 linear operator A: R^ - Y such that m(E(x) I) > M( I )/2 for all sets
 I e F containing x with d( I ) < 6 and

 lim ( f( x+h ) - f ( x ) - Ah)/|h| = 0.
 h-0 , x+heE( x )
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 Then the operator A is called the preponderant derivative fpr(x) of the
 function f at the point x.

 Theorem 3. If k = 1 and if the function f :X - Y is preponderantly

 differentiable at every point x e X, the preponderant derivative fpr is of
 the first class of Baire.

 The proof of this theorem is similar to the proof of the Tolstoff Theorem

 1 in [4].

 Problem 1. Let X c rH (k > 1) be an open nonempty set and f:X - Y be

 preponderantly differentiable at every point x e X. Must fPr be Baire 1?

 Problem 2. If X c r^ (k ^ 1) is an open nonempty set and if is a

 measure for which all bounded open nonempty sets have positive finite measure

 and if f:X - R is ordinarily approximately differentiable at every point

 x <= X, must the ordinary approximate derivative fáp be of Baire 1 class?

 III. Let f:[0,l] x [0,1] - R be a function such that all sections

 fy(t) = f(t,y) are increasing.

 Theorem C. ([5]) If all sections fx(fc) = a**e almost everywhere

 continuous (a.e. differentiable) [pointwise discontinuous], then the function

 f is a.e. continuous (a.e. differentiable in Frechet sense) [pointwise

 discontinuous] .

 Theorem 5. ([5]) If all sections fx and f^ are increasing, then the

 set D(f) of all discontinuity points of f is such that the sets D^f) =

 {x:(D(f))x is not enumerable) and D2(f) = {y: (D(f))y is not enumerable)
 are at most enumerable.

 Some characterizations of the sets D(f) are known if all fx and f^

 are increasing ([6]).
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 Problem 3. If all sections fx are a. e. continuous (a. e. differentiable )

 [pointwise discontinuous] and if all sections f^ are monotone (increasing or

 decreasing), must the function f be a.e. continuous (a.e. differentiable in

 Frechet sense) [pointwise discontinuous]?

 Problem 4.. Moreover, if all sections fx and f^ are monotone, must the

 sets Dx(f) and Dz(f) be at most enumerable?

 Problem 5. What is a necessary and sufficient condition for an Fa and

 first category set to be the set D(f) of all discontinuity points of a

 function f such that all sections fx and f^ are monotone?

 Problem 6. What is a necessary and sufficient condition for a set

 E c [o , l]z to be the set of all differentiability points of a function

 f: [0 , 1 ] 2 - R such that all sections fx and f^ are increasing (monotone)?

 IV. The functions f(x) = x and g(x) = -x are differentiable, but the

 function h = max(f,g) is not differentiable at 0. Thus the family of all

 differentiable functions is not a lattice of functions.

 Theorem 6. If functions f,g:R - R are differentiable on an open

 interval and if h = max( f ,g )(min( f ,g ) ) is not differentiable at a point

 x e U, then there exists a number r > 0 such that (x-r,x+r) c CJ and the

 function h is differentiable at every point u e (x-r,x) u (x,x+r).

 Proof. Obviously if the function h is not differentiable at a point

 u e U, then f(u) = g(u) = h(u). If for every r > 0 there exists a point

 xr € (x-r jX) u (x,x+r) where h is not differentiable, then

 limr-o (h(xr) - h(x))/(xr - x) = limr_o f(xr) - f(x))/(xr - x) = f'(x) = g*(x)

 = limr_o (g(*r) " g(*))/(*r " x )• This gives that limu_x (h(u) - h(x))/(u -

 x) = f'(x) = g'(x) = h'(x), contrary to the choice of x. The contradiction

 completes the proof.
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 Corollary. If h = max(f,g) (h = (min(f,g)) where the functions f and

 g are differentiable, then the set of all points where h is not
 differentiable is discrete.

 Theorem 7. Let E c r be a discrete set. Then there are differentiable

 functions f ,g :R - R such that function h = max(f,g) is differentiable at

 every point x f E and is not differentiable at every point x € E.

 Proof. Let E = {a1(a2,...), where a^ * aj if i * j. For every n =
 1,2,..., there is an interval ( an - rn , an + rn ) such that

 [an - rn, an + rn] n [am - rm, am + rm] = <t> if n * m. For any n let

 hn:R - [0,2"n] be a function such that

 1) hn(x) = 0 for x € ( -oo, an - rn] u [an + rn, oo);

 2) hn is differentiable at every point x * an and Ih^l < 2~n ;

 3 ) hn is not differentiable at an ;

 4) hn = max(fn,gn), where the functions fn and gn are differentible

 and such that fn(x) = Sn(x) = 0 for x f Can ' rn» an + rn3 and 'fn' * 2"n
 and |gn| ^ 2"n and max( lfńl,lgńl) ^ 2"n. Then the functions f = En ^n»

 g = £n gn and h = max(f,g) satisfy the desired properties.

 Problem 7, What is the smallest lattice of functions containing all

 differentiable functions? Is it the family of all continuous functions

 differentiable at every point except perhaps at the points of a set which is a

 finite union of discrete sets?

 Problem 8. What is the smallest lattice of functions containing all

 derivatives (approximately derivatives) [preponderant derivatives] {Baire 1,

 Darboux functions} {monotone functions) {Riemann integrable derivatives}?

 Problem 9. What is the smallest algebra of functions containing all

 almost everywhere continuous derivatives? Is it the family of all a.e.

 continuous Baire 1 functions?
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