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 SHARPNESS OF SOME GRAPH CONDITIONED THEOREMS ON

 BOREL 1 SELECTORS

 The purpose of the present note is to provide a negative answer to

 questions 2, 5 and 10 posed by J. Ceder and S. Levi in [3], Indeed, this note

 can be viewed as a continuation of [13] where questions 4, 6 and 7 were

 answered .

 First we give some preliminaries. A multifunction F:X - Y between

 topological spaces X and Y is a map from X into the nonempty subsets of

 X. We say that F is in lower (resp. upper) class a, if F~(U) = {x <£ X :

 F(x) n U ¿ 4>} is a Borei set of additive (resp. multiplicative) class a in

 X for every open (resp. closed) set in Y. For information concerning the

 above-mentioned classification see [9] and [6]. A goal of Borei 1 selector

 theory is to find weak hypotheses of F guaranteeing the existence of a Borei

 1 selector f for F, i.e. an ordinary Borei 1 function f from X to Y

 satisfying f(x) e F(x) for all x.

 In order to obtain a Borei 1 selector for F there are three sorts of

 hypotheses we might impose:

 1) We might require each value F(x) c y of F to be a set of some

 special kind: closed, s igma- compact , Gg, relatively nonmeager, etc.

 2) We might require the graph of F.

 Gr F = {(x,y ) : y 6 F(x)} c x x Y

 to be a set of some special kind.

 3) We might require F to belong to some lower or upper class.

 Throughout this paper we will be imposing conditions on the topological

 nature of Gr F. We begin with the following general result.

 Theorem 1 (Debs [4]). Let F:X - Y where X is perfectly normal and Y

 is Polish. Suppose that:
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 a) F is in lower class a ^ 1, and

 b) there exist a countable family of open sets C unK ; * = 1,2,...;

 n = -1,2...} and a countable family of ambiguous class a (i.e.

 simultaneously of additive class a and multiplicative class a) sets {Anfc;

 k = 1,2, ... ; n = 1,2, . . . } such that

 00 00

 Gr F = u u (A x U ) .
 . nk nk

 k=i n=jL

 Then F has a Borei a selector.

 Observe that values of F in Theorem 1 are Gg sets and that each

 multifunction F with metrizable domain X and with a Gg graph ful If ils

 Debs condition b) automatically. On the other hand if the values of F are

 closed in Y, then assumption b) in Theorem 1 can be omitted by virtue of the

 famous Fundamental Selection Theorem of K. Kuratowski and Cz. Ryll -Nardzewski .

 Note that though no graph hypothesis is made in the Fundamental Selection

 Theorem, it follows almost trivially from the other hypotheses that in our

 case Gr F is in fact of multiplicative class a in X x Y. Thus the

 following question, posed in [3], arises:

 Question 2 (original numeration). Let F : X - Y where X is metric

 and Y is Polish. If F is in lower class 1 and Gr F is an Fa5 (or a

 GS(J) set, does F have a Borei 1 selector?

 A metrizable space X is called Souslin if it is a continuous image of

 some Polish (i.e. a second countable completely metrizable) space. If X is

 a Polish space, then A c x is called cosouslin if X - A is a Souslin set.

 We refer the reader unfamiliar with the theory of Souslin sets to K.

 Kuratowski, Topology I, Academic Press 1966 for facts useful in the proof of

 Example 2 mentioned below (e.g. continuous 1-1 images of Borei sets are Borei,

 graphs of Borei functions are Borei sets, etc.). Also Y. Moschovakis,

 Descriptive set theory, Amsterdam 1980, is an appropriate reference. Note

 that a negative answer to Question 2 in the G6cr case is implied by some

 results of Z. Grande [7]:
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 Example 1. Let R denote the real line. There exists a multifunction

 F:R - R in lower class 0 with Gr F e G$a(Rz) and with open values which
 admits no Borei 1 selector.

 Proof. Let g : R - R be a Borei 2 function such that Gr g intersects

 the graph of each Borei 1 functions F existing in compliance with [7]. Put

 F(x) = R - {g(x)} and observe that F has the desired properties.

 Without requiring that each value of F be relatively nonmeager one can

 find an example of a multifunction having no Borei measurable selector but

 satisfying all assumptions of Question 2. This counterexample also gives a

 negative answer to the following.

 Question 10 [3]. Let F:X - Y where Y is Polish. Does there exist a

 Borei 2 selector when Gr F is an Fœq set?

 Example 2. There exist Polish spaces X and Y and a lower

 semicontinuous (i.e. in lower class 0) multifunction F:X - Y * having Fa

 graph and Fa values but no Borei selector.

 Proof. We adopt some constructions from [8], [10] and [2]. Let X - Y =

 Nn denote the set of all sequences of positive integers. Endowed with the

 product of discrete topologies on N, NN becomes a homeomorph of the space of
 irrationals. Observe that

 k L if x^ / y^ and x^ = y^ whenever i < k
 d(x,y) =

 0 if X. = y. for all i
 i i

 defines a complete metric on Y and that {y e Y : yn = zn for all but

 finitely many indices n} serves as a countable dense subset of Y whenever

 Z 6 Y.

 In the first step by using an argument due to P. Novikov we construct a

 multifunction G:X - Y having closed graph but no Borei selection (cf. [2]).

 Let and C2 be a pair of disjoint cosouslin subsets of X which are not

 Borei separable. (See [10].) Let Aj = X - Cj : j = 1,2. Observe that AL
 and A2 are souslin sets whose union is X. Let Fj be a closed subset of
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 X X Y which projects exactly onto Aj : j = 1,2. Define G(x) = {y e Y :

 (x,y) € Fl u Fz) and suppose that g is some Borei selector for G. Put

 T = {x e X : (x,g(x)) e F2 - FŁ}. .Obviously T is a Borei subset of X as a

 continuous and bijective (on Gr g) image of Gr g - FŁ. It is easily

 verified that CA c t and T n C2 = <t> which contradicts the faci that Cx

 and C2 are not Borei separable. Thus G has no Borei selector.

 Let S = N° u N1 u Nz u N3 u ... u u ... the monoid of all finite

 sequences of positive integers with concatenation * as a composition law and

 with the empty sequence e e N° as a neutral element. This monoid acts

 transitively on Y according to the formula:

 F(x) = u [s*G(x)] where
 SfiS

 s*G(x) = {s*y : y e G(x)}. Since Gr[s*G] as well as Gr G is closed in

 X x y, Gr F « Fct(X x Y). The values of F are dense Fa sets. In fact if

 y e F(x), then {s*y : seS}CF(x)CY. Thus it is easy to check that F

 is lower semicontinuous. Now assume by way of contradiction that there is a

 Borei selector f for the above defined multifunction" F.

 Define:

 Ae = (x € X : f(x) e G(x)}, and for each s € S by reccurence
 A = {x X : f(x) e s*G(x)} - u A

 p<s P

 The sign < means here the usual lexicographic order on s. Observe that

 {As : s e S} is a countable family of pairwise disjoint Borei subsels of X

 and that us<sS Ag = X.

 Define:

 f(*) = (fi(x),f2(x), . . . ,fnF(x). . . ) if x s Ag

 g(x) =

 ( Y i. >y z ' ' • ' »Yn » • • • ) = ( x )» ^k+z( *)»••• »

 fk+n(*)> • • • ) if x € As where s = ( sŁ ,s2 , . . . , sk) .
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 Observe that g(x) e G(x) for all x e X. Since all restrictions g|As are
 Borei measurable, g would be a Borei selector of G which contradicts the

 fact stated in the first step that G has no Borei selector.

 In Example 9 in [3] an open-valued multifunction in upper class 1 with

 Gq graph but without Borei 1 selector is constructed. Our next example shows

 that assumption a) in Theorem 1 cannot be weakened even if F is

 compact -valued .

 Example 3. There exists a compact -valued multifunction F:R - R

 belonging to upper class 1 which has a Gg graph but no Borei 1 selector.

 Proof. Fix two disjoint countable dense subsets DL,D2 c r and define

 +1 if x € Dl

 F(x) = -1 if x e Dz

 f-1,+1} if x € R - (Dl u D2).

 Observe that Gr F = (R-D¿) x {-1} u (R-D2) x {1} 6 G6(RZ) and thab F~(K) 6

 {<J>, R-D±> R-Dz, R} c Gq(R) whenever K is closed. Let f be any selector
 for F. Observe that f must be totally discontinuous and therefore not a

 Borei 1 function.

 The multifunction G from Example 2 shows that the existence of Borei 1

 selectors is not implied by closed Gr G. For multifunctions with values in

 sigma-compact spaces the situation is quite different.

 Theorem 2 ([3]; Th. 4-). Let F:X - Y where X and Y are metric

 spaces. If Y is sigma compact and Gr F e Fa(XxY), then F is in lower

 class 1 and F has a Borei 1 selector.

 Remark.. The proof of Theorem 2 remains valid if X is assumed to be

 perfectly normal only and Y is a countable union of metrizable compact sets

 or equivalently Y is a continuous image of some closed subset of R. In

 particular Y may be any separable, metrizable, locally compact space as well
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 as the weak dual of some separable, metr izable, ' locally convex, linear space.

 Theorem 2 is stated in [3] together with the following question:

 Question 5. Let F:X - Y where X and Y are metric spaces. If each

 F( X ) is sigma compact and Gr F is an Fa, does there exist a Borei 1

 selector for F?

 The answer is negative even in the case where Gr F is closed and

 values F( X ) are compact:

 Example 4. There exist metric spaces X and Y and a multifunction F

 from X to Y with closed graph and compact values having no L-measurable

 selector.

 Proof. Let X denote the real line with the Euclidean topology Tx and

 Y the real line with the discrete topology Ty. Both Tx and Ty are

 metrizable. Put F(x) = {x} and observe that Gr F is Tx % Tx - closed and

 thus it is also Tx & Ty - closed since Tx Z Tx c Tx 2Ty. Let Z c x be a

 nonmeasurable subset. Obviously Z is Ty - open and f"1(Z) = Z is

 nonmeasurable where f(x) = x is the sole selector for F.

 It should be noted that if X is a Souslin space (i.e., a continuous

 image of from Example 2) and if Y is a Polish space, then the

 multifunction in Question 5 admits a Borei a selector for an unspecified a.

 Indeed we have the following deep theorem.

 Theorem 3 ([12]). Let X be a Souslin space and Y a Polish space.

 If F:X - Y has a Borei graph Gr F and if F(x) is sigma compact for every

 x e X, then F has a Borei measurable selector. Moreover there exists a

 sequence BlfB2,... of Borei sets in X x y such that

 oo

 Gr F = U Bn
 n=jL

 and Bn( x ) = {y e Y : (x,y) 6 Bn} is compact for áll n e N and x X.

 (See also [14] f Th. 2.3.)
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 Note that the complexity of a selector f in the framework of Theorem 3

 cannot be estimated by and a < n as the following example shows.

 Example 5. Let a < n be an arbitrary ordinal number. Then there exist

 Polish spaces X and Y and a compact -valued multifunction F:X - Y with

 closed graph but having no Borei a selector.

 The- following theorem is to be invoked for a + 1 in the proof of our

 Example 5.

 Theorem L ([11], Th. 2.3. See also [1] for simple proof.) Let X be a

 Polish space, B = {UL,CJZ,...} a countable basis for X, A = {AlfA2,...} a

 countable family of ambiguous a sets closed under complementation a ^ 1.

 Then there is a countable family C - {C^C^...} of ambiguous ß sets, /3 <

 a, such that the topology Ta generated by B u A u C on X is Polish.

 Proof of Example 5. Let X = Y = N** be the Baire space from Example 2.

 Fix some subset Z c x of Borei additive class a not belonging to the

 multiplicative class a. Such a set exists by virtue of [5]. Then put A -

 {Z, X-Z}. By Theorem 4 we get the new Polish topology Tq^ = Ty such that

 Ty is finer than the original topology Tx and every Ty - open set is an

 additive class a + 1 set with respect to the original topology Tx- Define

 F:X - Y by the formula F(x) = {x} = {f(x)J and observe that Gr F is

 TX Ty - closed and that f-1(Z) is not in the multiplicative Tx - class a

 while Z is Ty - closed. Since fsx - x is the sole selector for F, F

 has the desired properties.

 The author is very indebted to the referee for finding sui error in the

 first draft of this paper.
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