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 1. Let H be a connected subset of (Rn . K is said

 to be a Whitney set (W-set) if there exists a non-constant

 function f:H ■* R such that

 If (x)-f (X) I
 (1) lim

 x-x„
 xeH

 holds for every x £H .
 o

 On the other hand, H is said to be a set of con-

 stancy (or a C-set) if it is connected and not a W-set.

 It is easy to see that any rectifiable continuous

 curve is a C-set. However, there are simple arcs which are

 W-sets as was first shown by Whitney [5], Later, several

 other examples where found for W-arcs ([l], [3]). In his

 paper [5] Whitney raised the following problem: how far

 need a simple arc be from rectif iability in order to be a

 W-set.

 As it turns out, rectif iability is not the proper ap-

 proach to find a characterization of W-sets. It was proved

 by Choquet [3 3 that, the graph of any continuous function
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 f: [a,b] TR is a C-set. According to a result of Besico-

 vitch and Schoenberg [1] , the Hausdorff dimension of a graph

 can be 2, showing that even this very strong non-rectifi-

 ability does not imply the W-property.

 In this paper we construct a simple example of a W-arc

 Y, where the non-constant function with identically zero

 derivative is the inverse of the parametrization of y. We

 also provide a sufficient condition for the W-property to

 hold and then, generalizing Choquet's result, a sufficient

 condition for the C-property to hold. The exact characteriza-

 tion of W-sets or C-sets remains open.

 2. Theorem 1 . There exists a continuous one-to-one

 2 mapping <p:[0,l] - (R 2 such that

 I cp ( t ) - cp (t ) I

 (2) 11m ~ i i
 t- t: o

 O

 holds (uniformly) for every toé[0,l].

 Remark . This theorem automatically proves that

 *([0,1]) = y is a W-arc, since f = cp ^ is a non-constant
 function on y with (1) .

 Proof. For any given square Q , the shaded areas

 on fig. 1. are called configurations A and B applied in Q,

 respectively.
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 We are going to define a sequence of chains

 c„ - «5

 of non-overlapping squares such that

 either a common vertex or a common side of Q¿_]_ anc* Q*?
 (i=l,2, . . . ,7n-l) . We start with the unit square Q° and

 put

 Co » <Qo> '

 i.

 Suppose that the n chain C has been defined. We se-
 n

 lect two different vertices a^ and of each

 (i=0, . . . ,7n-l) such that b^ = for every
 1=0,1, ... /7n-2 . (A possible selection for is shown on

 figure 1.) In each of the squares Q? we connect the ver-

 tices a^ and b^ by configuration A or B applied in
 and denote the squares of this configuration in the

 n*ł" 1

 natural order Q7^+j (j=0,...,6). We put
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 Cn+1 = {QÏ+1; i=0'-- w7n+1-l} .

 In this way we define Q? for every n€lN and 0 < i < 7n.

 It is easy to check that, for every n ,

 (i) Qi°Qi+1 ^ 0 (i=0,...,7n-2),
 and

 (ii) dist (Q^ /Qj ) > 5~n (0 < i,j < 7n-l , li-jl > 3). -

 (As for (ii) , li-jl ^ 3 implies Q^nQj = 0 and hence
 these squares are separated by a strip of width 5 n.)

 Now we define the map cp as follows. For every

 t€[0,l] and n € IN we choose i = i (t)€IN such that
 n n

 i i +1
 -S < t <
 7n 7n

 oo n
 and define <p (t) = fl Q. . It is obvious that cp is well-

 n=o xn
 defined, one-to-one and continuous on [0,lļ. Let 0 < t^ <

 t2 ^ 1 be fixed. There is n > 1 such that

 < t2"tl 2 1 < - ~fTT * 2 1 - 7

 _ th
 Consider the squares ^ Q. and Q. of the n chain C ^ i j n

 covering the points <p (t^) and ' resPectively • Now,
 3

 - Xl < t9~t. implies li-jl >: 3 and hence by (ii) we have y Xl £» i.
 |<p (t1)-<p (t2) I > 5~n . Thus

 I cp (tļ)-cp (t2) I ^ 5-n ^ x 7
 |t2_tll ~ 3-7~n+1 21 5 '
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 and the proof is complete.

 Our next result generalizes Theorem 1. Let

 <p:[0,lļ - Rn be an arbitrary mapping and put

 H? = it è [0,1] : lim = „) . S * t

 In Theorem 1 we had = [o,lļ.

 Theorem 2. Let cp be the parametrization of a simple

 arc y c Rn and suppose > 0 • Then y is a W-set.

 Proof. is obviously a measurable set, since <p

 is continuous. Let P denote a nowhere dense perfect set

 such that PCH^ and X (P) > 0 . If q is a density point
 of P then by a well known lemma of Zahorski ( [6] or [21 ,p. 28)

 there exists an approximately continuous function g such

 that 0 < g < 1, g(q) = 1 , and g(x) = 0 (x^P). Let

 G = $g / then G is diff erentiable and constant on the in-

 tervals contiguous to P , but not identically constant,

 since G' (q) =1^0. Now we define

 f (z) = G ( <p~ 1 (z) ) (z 6 y) .

 Let zq€y be fixed and denote z = <p (t) , zq = <p (tQ) .
 Then

 I f ( z ) - f ( z o ) I ( I G (t ) -G (t o ) I t-t o I
 lz-zol

 If t GP then t ČH and hence
 o o <p
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 It-t I

 I (p ( t ) - cp (tQ) I "* 0 ^ '
 I f (z) -f (z )|

 thus lim
 z-z

 z-z0 O

 4 P then G is constant in a neighbourhood
 of t , thus f(z)-f(z ) =0 in a neighbourhood of z
 o o o

 and again

 If (z)-f (z ) I
 lim ¡ 'z-z' ¡
 z-z„ o

 o

 Finally, f is not constant, since G is not constant.

 3. In this section we give a sufficient condition

 for the C-property. This generalizes a theorem of Choquet

 [3] stating that the graph of any continuous function is

 a C-curve.

 Theorem 3 . Let (p:[a,b] - IRn be continuous and let

 E = {<p (X) ; X G [a,b] , lim 1 9 ' = °°) .
 y-x+o y

 If E has 0-finite linear measure then cp(Qa,b]) is a set

 of constancy.

 The proof of this theorem is based upon the following

 lemma, and its corollaries.

 Lemma 1 . Let f be continuous on [a,bļ and put

 L = {x€[a,b); fj(x) > 0} . Then X(f(L)) > f(b)-f(a).
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 (Here f_|_(x) denotes the lower right hand side Dini deri-
 vative of f . )

 The following simple proof was suggested by Togo

 Nishiura.

 Proof. We can suppose f(a) < f (b) . For y e[f (a) , f (b)]

 we denote

 q> (y) = max {x Č [a,b] ; f (x) = y} .

 It easily follows from the continuity of f that q> is

 strictly increasing on [f(a),f(b)]. We prove that if 9

 is dif f erentiable at y < f(b) then y £f(L) . Let
 o o

 x = cp (y ) , then y = f (x ) , and for x > x we have
 0 0 o o o

 f(x) > f(xQ) and cp ( f (x ) ) > x . This implies

 f(x)-f(xQ) f(x)-f(x )
 = liltl inf + 0 x-x + x_xo x-x + ~TTi ł(f(x))-»(f(x Tel )) TÑ"
 o o

 = , > > o .
 <p , (y0) >

 Thus xq€ L and yQ = f(xQ) €f(L) . Since cp is differen-
 tiable at a. e. point of [f(a),f(b)] , we have A ( f (L ) ) >

 f (b)-f (a) .

 Corollary 1 . If X(f(L)) = 0 then f is decreasing

 on [a,b].

 Proof. Applying Lemma 1 to an arbitrary subinterval

 [c,d]C[a/b] we get 0 > (f(d)-f(c)) and f(d) < f(c) .
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 Corollary 2. Let f be continuous and N = {x €(a,b);

 0 is not a right hand side derived number of f at x} . If

 X (f (N) ) = 0 , then f is constant on [a,b].

 Proof. N = {x € (a,b) ; f^_(x) >0 or f , + (x) < 0} and,
 applying Corollary 1, both f and -f are decreasing on

 [a,b] .

 Our next Lemma is an immediate corollary of a theorem

 of Choquet ([3], p. 49.).

 Lemma 2 . If AC!Rn has a-finite linear measure and

 f:A - R is such that

 if y-f fx> '■ = o
 lim ly-xl
 y-*x
 y€A

 for every x éA then X(f(A)) = 0 .

 Now we turn to the proof of Theorem 3. Denote

 H = cp ( [ a , b J ) and let f:H - IR satisfying (1) for every

 x é H .
 o

 We consider now the function g defined by

 g (x) = f(cp(x)) (x€[a,bļ)

 and the set

 N = {x €(a,b); 0 is not a righthand side derived

 number of g at x} .

 We prove cp(N)CE . Indeed, let x €(a,b) be such that

 cp (x) ^ E . Then there is a sequence yn > x , yn - x
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 such that

 <p (yn)-<p (x)
 v -x
 Jn

 is bounded. Then

 g(yn)-g(x) f (<p (yn))-f (<p(x) )
 y Jn -x ~ y„-x Jn y Jn Jn

 f 0 , if q> (yn) = 9 (x)

 I f (<P (y ) )-f (<P (x) ) I I <p (y )-<P (x) I

 L - Myn)-*(x)i

 g(y )-g(x)
 Now, by (1) ,

 yn
 Hence cp (N) CE and thus

 X (g (N) ) = A (f (cp (N) ) ) < X ( f (E) ) = 0

 by Lemma 2. Therefore, by Corollary 2, g is constant on

 [a,bļ that is, f is constant on cp([a,b]).

 As we mentioned before, Theorem 3 implies Choquet's

 theorem stating that the graph of any continuous function

 is a C-curve. Indeed, let f be continuous on Ca'^3 an<^

 let

 A = (x6[a,b]; lim lf'y':^'x)l ^ = »!. y-*-x+o ^

 By a well-known theorem on the contingency of planar sets

 ([4], p. 264.), E = f (A) has o-finite linear measure.

 Hence, by Theorem 3, the result follows.
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 4. Finally we remark that the limit in the definition

 of in Theorem 2 cannot be replaced by a one-sided

 limit. Let y = <P ( [0 , 1] ) be the curve given in Theorem 1

 and let PC[o,l] be a nowhere dense perfect set of posi-

 tive measure with contiguous intervals (a^b^) (j=l,2,...).
 Let b = max{b, ; k < j, b, < b.} (j=l,2,...). We can re-

 nj K K ]
 place each of the subarcs <p([aj,bj]) by smooth arcs

 Yj = <Pj([aj,bj]) running in a small neighbourhood of the

 arc ([bn /bj] ) .
 We can define the maps cp ^ in such a way that the

 curve

 fcp(t) ( t € Q)
 <!> (t) = {

 ļ^cpj(t) (teCa^/bj])

 has the following properties:

 .<1, ( t ) - 4, (t )

 liltl

 t-t0-o o

 for every t € P and

 iĻ ( t ) - 4> (t )
 lim inf - - r^r

 t~t +o o
 o

 for every tQê[0,l). By Theorem 3, the latter condition
 implies that y = 4.([0,l]) is a C-curv'e.
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