WHITNEY SETS AND SETS OF CONSTANCY
 ON A PROBLEM OF WHITNEY

M. LACZKOVICH and G. PETRUSKA
Department of Analysis
Eötvös University, Budapest

1. Let H be a connected subset of \mathbb{R}^{n}. H is said to be a Whitney set (W-set) if there exists a non-constant function $f: H \rightarrow R$ such that

$$
\begin{equation*}
\lim _{\substack{x \rightarrow x_{0} \\ x \in H^{\circ}}} \frac{\left|f(x)-f\left(x_{0}\right)\right|}{\left|x-x_{0}\right|}=0 \tag{1}
\end{equation*}
$$

holds for every $x_{o} \in H$.
On the other hand, H is said to be a set of constancy (or a C-set) if it is connected and not a w-set.

It is easy to see that any rectifiable continuous curve is a C-set. However, there are simple arcs which are W-sets as was first shown by Whitney [5]. Later, several other examples where found for W -arcs ([1], [3]). In his paper [5] Whitney raised the following problem: how far need a simple arc be from rectifiability in order to be a W-set.

As it turns out, rectifiability is not the proper approach to find a characterization of W -sets. It was proved by Choquet [3] that, the graph of any continuous function
$f:[a, b] \rightarrow \mathbb{R}$ is a C-set. According to a result of Besicovitch and Schoenberg [1], the Hausdorff dimension of a graph can be 2, showing that even this very strong non-rectifiability does not imply the W-property.

In this paper we construct a simple example of a w-arc γ, where the non-constant function with identically zero derivative is the inverse of the parametrization of γ. We also provide a sufficient condition for the W-property to hold and then, generalizing Choquet's result, a sufficient condition for the C-property to hold. The exact characterization of W -sets or C -sets remains open.
2. Theorem 1. There exists a continuous one-to-one mapping $\varphi:[0,1] \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow t_{0}} \frac{\left|\varphi(t)-\varphi\left(t_{0}\right)\right|}{\left|t-t_{0}\right|}=\infty \tag{2}
\end{equation*}
$$

holds (uniformly) for every $t_{o} \in[0,1]$.

Remark. This theorem automatically proves that $\varphi([0,1])=\gamma$ is a W-arc, since $f=\varphi^{-1}$ is a non-constant function on γ with (1).

Proof. For any given square Q, the shaded areas on fig. l. are called configurations A and B applied in Q, respectively.

figure 1.

We are going to define a sequence of chains

$$
C_{n}=\left\{Q_{0}^{n}, \ldots, Q_{7^{n}-1}^{n}\right\}
$$

of non-overlapping squares Q_{j}^{n} such that $Q_{i-1}^{n} \cap Q_{i}^{n}$ is either a common vertex or a common side of Q_{i-1}^{n} and Q_{i}^{n} $\left(i=1,2, \ldots, 7^{n}-1\right)$. We start with the unit square Q_{0}^{0} and put

$$
C_{0}=\left\{Q_{o}^{O}\right\}
$$

Suppose that the $n^{\text {th }}$ chain C_{n} has been defined. We select two different vertices a_{i} and b_{i} of each Q_{i}^{n} $\left(i=0, \ldots, 7^{n}-1\right)$ such that $b_{i}=a_{i+1}$ for every $i=0,1, \ldots, 7^{n}-2$. (A possible selection for C_{1} is shown on figure 1.) In each of the squares Q_{i}^{n} we connect the vertices a_{i} and b_{i} by configuration A or B applied in Q_{i}^{n} and denote the squares of this configuration in the natural order $Q_{7 i+j}^{n+1} \quad(j=0, \ldots, 6)$. We put

$$
c_{n+1}=\left\{Q_{i}^{n+1} ; i=0, \ldots, 7^{n+1}-1\right\}
$$

In this way we define Q_{i}^{n} for every $n \in \mathbb{N}$ and $0 \leq i<7^{n}$. It is easy to check that, for every n,
(i) $Q_{i}^{n} \cap Q_{i+1}^{n} \neq \varnothing$
$\left(i=0, \ldots, 7^{n}-2\right)$,
and
(ii) dist $\left(Q_{i}^{n}, Q_{j}^{n}\right) \geq 5^{-n} \quad\left(0 \leq i, j \leq 7^{n}-1,|i-j| \geq 3\right)$.
(As for (ii), $|i-j| \geq 3$ implies $Q_{i}^{n} \cap Q_{j}^{n}=\varnothing$ and hence these squares are separated by a strip of width 5^{-n}.)

Now we define the map φ as follows. For every $t \in[0,1]$ and $n \in \mathbb{N}$ we choose $i_{n}=i_{n}(t) \in \mathbb{N}$ such that

$$
\frac{i_{n}}{7^{n}} \leq t \leq \frac{i_{n}+l}{7^{n}}
$$

and define $\varphi(t)=\bigcap_{n=0}^{\infty} Q_{i_{n}}^{n}$. It is obvious that φ is welldefined, one-to-one and continuous on $[0,1]$. Let $0 \leq t_{1}<$ $\mathrm{t}_{2} \leq 1$ be fixed. There is $\mathrm{n} \geq 1$ such that

$$
\frac{3}{7^{n}}<t_{2}-t_{1} \leq \frac{3}{7^{n-1}} .
$$

Consider the squares Q_{i}^{n} and Q_{j}^{n} of the $n^{\text {th }}$ chain C_{n} covering the points $\varphi\left(t_{1}\right)$ and $\varphi\left(t_{2}\right)$, respectively. Now, $\frac{3}{7^{n}}<t_{2}-t_{1}$ implies $|i-j| \geq 3$ and hence by (ii) we have $\left|\varphi\left(t_{1}\right)-\varphi\left(t_{2}\right)\right| \geq 5^{-n}$. Thus

$$
\frac{\left|\varphi\left(t_{1}\right)-\varphi\left(t_{2}\right)\right|}{\left|t_{2}-t_{1}\right|} \geq \frac{5^{-n}}{3 \cdot 7^{-n+1}}=\frac{1}{21} \cdot\left(\frac{7}{5}\right)^{n}
$$

and the proof is complete.

Our next result generalizes Theorem l. Let $\varphi:[0,1] \rightarrow \mathbf{R}^{\mathrm{n}}$ be an arbitrary mapping and put

$$
H_{\varphi}=\left\{t \in[0,1]: \lim _{s \rightarrow t} \frac{|\varphi(s)-\varphi(t)|}{|s-t|}=\infty\right\}
$$

In Theorem 1 we had $H_{\varphi}=[0,1]$.

Theorem 2. Let φ be the parametrization of a simple arc $\gamma \subset \mathbb{R}^{\mathrm{n}}$ and suppose $\lambda\left(\mathrm{H}_{\varphi}\right)>0$. Then γ is a W-set.

Proof. H_{φ} is obviously a measurable set, since φ is continuous. Let P denote a nowhere dense perfect set such that $P \subset H_{\varphi}$ and $\lambda(P)>0$. If G is a density point of P then by a well known lemma of Zahorski([6] or [2],p.28) there exists an approximately continuous function g such that $0 \leq g \leq 1, g(q)=1$, and $g(x)=0 \quad(x \notin P)$. Let $G=\int g$, then G is differentiable and constant on the intervals contiguous to P, but not identically constant, since $G^{\prime}(q)=1 \neq 0$. Now we define

$$
f(z)=G\left(\varphi^{-1}(z)\right) \quad(z \in \gamma) .
$$

Let $z_{0} \in \gamma$ be fixed and denote $z=\varphi(t), z_{0}=\varphi\left(t_{0}\right)$. Then

$$
\frac{\left|f(z)-f\left(z_{0}\right)\right|}{\left|z-z_{0}\right|}=\left|\frac{G(t)-G\left(t_{0}\right)}{t-t_{0}}\right| \cdot \frac{\left|t-t_{0}\right|}{\left|\varphi(t)-\varphi\left(t_{0}\right)\right|} .
$$

If $t_{0} \in P$ then $t_{0} \in H_{\varphi}$ and hence

$$
\frac{\left|t-t_{0}\right|}{\left|\varphi(t)-\varphi\left(t_{0}\right)\right|} \rightarrow 0 \quad\left(t \rightarrow t_{0}\right)
$$

thus $\lim _{z \rightarrow z_{0}} \frac{\left|f(z)-f\left(z_{0}\right)\right|}{z-z_{0}}=0$.
If $t_{0} \notin P$ then G is constant in a neighbourhood of t_{0}, thius $f(z)-f\left(z_{0}\right)=0$ in a neighbourhood of z_{\circ} and again

$$
\lim _{z \rightarrow z_{0}} \frac{\left|f(z)-f\left(z_{0}\right)\right|}{\left|z-z_{0}\right|}=0 .
$$

Finally, f is not constant, since G is not constant.
3. In this section we give a sufficient condition for the C-property. This generalizes a theorem of Choquet [3] stating that the graph of any continuous function is a c-curve.

Theorem 3. Let $\varphi:[a, b] \rightarrow \mathbb{R}^{n}$ be continuous and let

$$
E=\left\{\varphi(x) ; x \in[a, b], \lim _{y \rightarrow x+0} \frac{|\varphi(y)-\varphi(x)|}{|y-x|}=\infty\right\} .
$$

If E has σ-finite linear measure then $\varphi([a, b])$ is a set of constancy.

The proof of this theorem is based upon the following lemma, and its corollaries.

Lemma 1. Let f be continuous on $[a, b]$ and put $L=\left\{x \in[a, b) ; f_{+}^{\prime}(x)>0\right\}$. Then $\lambda(f(L)) \geq f(b)-f(a)$.
(Here $f_{+}^{\prime}(x)$ denotes the lower right hand side Dini derivative of f.)

The following simple proof was suggested by Togo Nishiura.

Proof. We can suppose $f(a)<f(b)$. For $y \in[f(a), f(b)]$ we denote

$$
\varphi(y)=\max \{x \in[a, b] ; f(x)=y\}
$$

It easily follows from the continuity of f that φ is strictly increasing on $[f(a), f(b)]$. We prove that if φ is differentiable at $y_{0}<f(b)$ then $y_{o} \in f(L)$. Let $x_{0}=\varphi\left(y_{0}\right)$, then $y_{0}=f\left(x_{0}\right)$, and for $x>x_{0}$ we have $f(x)>f\left(x_{0}\right)$ and $\varphi(f(x)) \geq x$. This implies

$$
\begin{aligned}
f_{+}^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}^{+}} \inf ^{f(x)-f\left(x_{0}\right)} \\
x-x_{0} & \lim _{x \rightarrow x_{0}^{+}} \inf \frac{f(x)-f\left(x_{0}\right)}{\varphi(f(x))-\varphi\left(f\left(x_{0}\right)\right)}= \\
& =\frac{1}{\varphi^{\prime}\left(y_{0}\right)}>0 .
\end{aligned}
$$

Thus $x_{0} \in L$ and $y_{0}=f\left(x_{0}\right) \in f(L)$. Since φ is differentiable at a.e. point of $[f(a), f(b)]$, we have $\lambda(f(L)) \geq$ $f(b)-f(a)$.

Corollary 1. If $\lambda(f(L))=0$ then f is decreasing on $[a, b]$.

Proof. Applying Lemma l to an arbitrary subinterval $[c, d] \subset[a, b]$ we get $0 \geq(f(d)-f(c))$ and $f(d) \leq f(c)$.

Corollary 2. Let f be continuous and $N=\{x \in(a, b)$; 0 is not a right hand side derived number of f at $x\}$. If $\lambda(f(N))=0$, then f is constant on $[a, b]$.

Proof. $N=\left\{x \in(a, b) ; f_{+}^{\prime}(x)>0\right.$ or $\left.f^{\prime+}(x)<0\right\}$ and, applying Corollary 1 , both f and $-f$ are decreasing on [$a, b]$.

Our next Lemma is an immediate corollary of a theorem of Choquet ([3], p.49.).

Lemma 2. If $A \subset \mathbb{R}^{n}$ has σ-finite linear measure and $f: A \rightarrow \mathbb{R}$ is such that

$$
\lim _{\substack{y \rightarrow x \\ y \in A}} \frac{|f(y)-f(x)|}{|y-x|}=0
$$

for every $x \in A$ then $\lambda(f(A))=0$.
Now we turn to the proof of Theorem 3. Denote $H=\varphi([a, b])$ and let $f: H \rightarrow \mathbb{R}$ satisfying (l) for every $x_{0} \in H$.

We consider now the function g defined by

$$
g(x)=f(\varphi(x)) \quad(x \in[a, b])
$$

and the set

$$
\begin{gathered}
N=\{x \in(a, b) ;
\end{gathered} \begin{gathered}
0 \text { is not a righthand side derived } \\
\text { number of } g \text { at } x\} .
\end{gathered}
$$

We prove $\varphi(N) \subset E$. Indeed, let $x \in(a, b)$ be such that $\varphi(\mathrm{x}) \notin \mathrm{E}$. Then there is a sequence $\mathrm{y}_{\mathrm{n}}>\mathrm{x}, \mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{x}$
such that

$$
\left|\frac{\varphi\left(y_{n}\right)-\varphi(x)}{y_{n}-x}\right|
$$

is bounded. Then

$$
\begin{aligned}
& \left|\frac{g\left(y_{n}\right)-g(x)}{y_{n}-x}\right|=\left|\frac{f\left(\varphi\left(y_{n}\right)\right)-f(\varphi(x))}{y_{n}-x}\right|= \\
& =\left\{\begin{array}{l}
0, \text { if } \varphi\left(y_{n}\right)=\varphi(x) \\
\frac{\left|f\left(\varphi\left(y_{n}\right)\right)-f(\varphi(x))\right|}{\left|\varphi\left(y_{n}\right)-\varphi(x)\right|} \cdot \frac{\left|\varphi\left(y_{n}\right)-\varphi(x)\right|}{\left|y_{n}-x\right|}, \text { if } \varphi\left(y_{n}\right) \neq \varphi(x)
\end{array}\right.
\end{aligned}
$$

Now, by (1), $\frac{g\left(y_{n}\right)-g(x)}{y_{n}-x} \rightarrow 0$ and $x \notin N$.
Hence $\varphi(N) \subset E$ and thus

$$
\lambda(g(N))=\lambda(f(\varphi(N))) \leq \lambda(f(E))=0
$$

by Lemma 2. Therefore, by Corollary $2, \mathrm{~g}$ is constant on $[\mathrm{a}, \mathrm{b}]$ that is, f is constant on $\varphi([\mathrm{a}, \mathrm{b}])$.

As we mentioned before, Theorem 3 implies Choquet's theorem stating that the graph of any continuous function is a C-curve. Indeed, let f be continuous on $[a, b]$ and let

$$
A=\left\{x \in[a, b] ; \lim _{y \rightarrow x+0}\left|\frac{f(y)-f(x)}{y-x}\right|=\infty\right\}
$$

By a well-known theorem on the contingency of planar sets ([4], p.264.), $E=f(A)$ has σ-finite linear measure. Hence, by Theorem 3, the result follows.
4. Finally we remark that the limit in the definition of H_{φ} in Theorem 2 cannot be replaced by a one-sided limit. Let $\gamma=\varphi([0,1])$ be the curve given in Theorem 1 and let $P \subset[0,1]$ be a nowhere dense perfect set of positive measure with contiguous intervals $\left(a_{j}, b_{j}\right)(j=1,2, \ldots)$. Let $b_{n_{j}}=\max \left\{b_{k} ; k<j, b_{k}<b_{j}\right\} \quad(j=1,2, \ldots)$. We can replace each of the subarcs $\varphi\left(\left[a_{j}, b_{j}\right]\right)$ by smooth arcs $\gamma_{j}^{\prime}=\varphi_{j}\left(\left[a_{j}, b_{j}\right]\right)$ running in a small neighbourhood of the $\operatorname{arc} \varphi\left(\left[b_{n_{j}}, b_{j}\right]\right)$.

We can define the maps φ_{j} in such a way that the curve

$$
\psi(t)= \begin{cases}\varphi(t) & (t \in Q) \\ \varphi_{j}(t) & \left(t \in\left[a_{j}, b_{j}\right]\right)\end{cases}
$$

has the following properties:

$$
\lim _{t \rightarrow t_{0}^{-0}}\left|\frac{\psi(t)-\psi\left(t_{0}\right)}{t-t_{0}}\right|=\infty
$$

for every $t_{0} \in P$ and

$$
\lim _{t \rightarrow t_{0}+0}\left|\frac{\psi(t)-\psi\left(t_{0}\right)}{t-t_{0}}\right|<\infty
$$

for every $t_{0} \in[0,1)$. By Theorem 3, the latter condition implies that $\gamma=\psi([0,1])$ is a C-curve.

References

[1] A.S. Besicovitch and I.J. Schoenberg, On Jordan arcs and Lipschitz classes of functions defined on them, Acta Math. 106 (1961), 113-136.
[2] A.M. Bruckner, Differentiation of real functions, Lecture Notes is Mathematics No. 659.
[3] G. Choquet, L'isometrie des ensembles dans ses rapports avec la théorie du contact et la théorie de la mesure, Mathematica 20 (1944), 29-64.
[4] S. Saks, Theory of the integral, Dover Publ., 1964.
[5] H. Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514-517.
[6] Z. Zahorski, Sur la première dérivée, TAMS 69 (1950), 1-54.

