WHITNEY SETS AND SETS OF CONSTANCY

ON A PROBLEM OF WHITNEY

M. LACZKOVICH and G. PETRUSKA Department of Analysis Eötvös University, Budapest

1. Let H be a connected subset of \mathbb{R}^n . H is said to be a Whitney set (W-set) if there exists a non-constant function f:H $\rightarrow \mathbb{R}$ such that

(1)
$$\lim_{\substack{x \to x \\ x \in H^{\circ}}} \frac{|f(x) - f(x_{\circ})|}{|x - x_{\circ}|} = 0$$

holds for every $x \in H$.

On the other hand, H is said to be a set of constancy (or a C-set) if it is connected and not a W-set.

It is easy to see that any rectifiable continuous curve is a C-set. However, there are simple arcs which are W-sets as was first shown by Whitney [5]. Later, several other examples where found for W-arcs ([1], [3]). In his paper [5] Whitney raised the following problem: how far need a simple arc be from rectifiability in order to be a W-set.

As it turns out, rectifiability is not the proper approach to find a characterization of W-sets. It was proved by Choquet [3] that, the graph of any continuous function

 $f:[a,b] \rightarrow \mathbb{R}$ is a C-set. According to a result of Besicovitch and Schoenberg [1], the Hausdorff dimension of a graph can be 2, showing that even this very strong non-rectifiability does not imply the W-property.

In this paper we construct a simple example of a W-arc γ , where the non-constant function with identically zero derivative is the inverse of the parametrization of γ . We also provide a sufficient condition for the W-property to hold and then, generalizing Choquet's result, a sufficient condition for the C-property to hold. The exact characterization of W-sets or C-sets remains open.

2. <u>Theorem 1.</u> There exists a continuous one-to-one mapping $\varphi:[0,1] \rightarrow \mathbb{R}^2$ such that

(2)
$$\lim_{t \to t_{O}} \frac{|\varphi(t) - \varphi(t_{O})|}{|t - t_{O}|} = \infty$$

holds (uniformly) for every $t_0 \in [0,1]$.

<u>Remark.</u> This theorem automatically proves that $\varphi([0,1]) = \gamma$ is a W-arc, since $f = \varphi^{-1}$ is a non-constant function on γ with (1).

<u>Proof</u>. For any given square Q , the shaded areas on fig. 1. are called configurations A and B applied in Q, respectively.

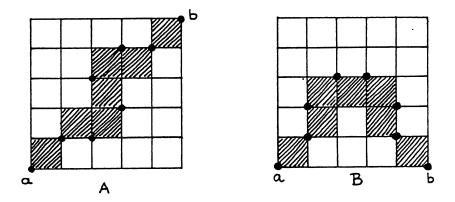


figure 1.

We are going to define a sequence of chains

$$C_n = \{Q_0^n, \dots, Q_{7^{n-1}}^n\}$$

of non-overlapping squares Q_j^n such that $Q_{i-1}^n \cap Q_i^n$ is either a common vertex or a common side of Q_{i-1}^n and Q_i^n $(i=1,2,\ldots,7^n-1)$. We start with the unit square Q_0^0 and put

$$C_{0} = \{Q_{0}^{0}\}.$$

Suppose that the nth chain C_n has been defined. We select two different vertices a_i and b_i of each Q_i^n (i=0,...,7ⁿ-1) such that $b_i = a_{i+1}$ for every i=0,1,...,7ⁿ-2. (A possible selection for C_1 is shown on figure 1.) In each of the squares Q_i^n we connect the vertices a_i and b_i by configuration A or B applied in Q_i^n and denote the squares of this configuration in the natural order Q_{7i+1}^{n+1} (j=0,...,6). We put

$$C_{n+1} = \{Q_{i}^{n+1}; i=0, \ldots, 7^{n+1}-1\}.$$

In this way we define Q_{i}^{n} for every $n \in \mathbb{N}$ and $0 \le i < 7^{n}$. It is easy to check that, for every n,

(i)
$$Q_{i}^{n} \cap Q_{i+1}^{n} \neq \emptyset$$
 (i=0,...,7ⁿ-2),

and

(ii) dist
$$(Q_{i}^{n}, Q_{j}^{n}) \ge 5^{-n}$$
 (0 \le i,j $\le 7^{n}$ -1, |i-j| \ge 3).

(As for (ii), $|i-j| \ge 3$ implies $Q_i^n \cap Q_j^n = \emptyset$ and hence these squares are separated by a strip of width 5^{-n} .)

Now we define the map φ as follows. For every $t \in [0,1]$ and $n \in \mathbb{N}$ we choose $i_n = i_n(t) \in \mathbb{N}$ such that

$$\frac{i_n}{7^n} \le t \le \frac{i_n + 1}{7^n}$$

and define $\varphi(t) = \bigcap_{n=0}^{\infty} Q_{i}^{n}$. It is obvious that φ is welldefined, one-to-one and continuous on [0,1]. Let $0 \le t_1 < t_2 \le 1$ be fixed. There is $n \ge 1$ such that

$$\frac{3}{7^n} < t_2 - t_1 \le \frac{3}{7^{n-1}} .$$

Consider the squares Q_1^n and Q_j^n of the nth chain C_n covering the points $\varphi(t_1)$ and $\varphi(t_2)$, respectively. Now, $\frac{3}{7^n} < t_2 - t_1$ implies $|i-j| \ge 3$ and hence by (ii) we have $|\varphi(t_1) - \varphi(t_2)| \ge 5^{-n}$. Thus

$$\frac{|\varphi(t_1)-\varphi(t_2)|}{|t_2-t_1|} \geq \frac{5^{-n}}{3\cdot 7^{-n+1}} = \frac{1}{21} \cdot (\frac{7}{5})^n,$$

and the proof is complete.

Our next result generalizes Theorem 1. Let $\varphi:[0,1] \rightarrow \mathbb{R}^n$ be an arbitrary mapping and put

$$H_{\varphi} = \{t \in [0,1]: \lim_{s \to t} \frac{|\varphi(s) - \varphi(t)|}{|s - t|} = \infty\}$$

In Theorem 1 we had $H_{o} = [0,1]$.

<u>Theorem 2.</u> Let φ be the parametrization of a simple arc $\gamma \subset \mathbb{R}^n$ and suppose $\lambda(H_{\varphi}) > 0$. Then γ is a W-set.

<u>Proof.</u> H_{ϕ} is obviously a measurable set, since ϕ is continuous. Let P denote a nowhere dense perfect set such that $P \subset H_{\phi}$ and $\lambda(P) > 0$. If q is a density point of P then by a well known lemma of Zahorski([6] or [2],p.28) there exists an approximately continuous function g such that $0 \le g \le 1$, g(q) = 1, and g(x) = 0 ($x \notin P$). Let $G = \int g$, then G is differentiable and constant on the intervals contiguous to P, but not identically constant, since G'(q) = $1 \ne 0$. Now we define

$$f(z) = G(\varphi^{-1}(z))$$
 (z $\in \gamma$).

Let $z_0 \in \gamma$ be fixed and denote $z = \varphi(t)$, $z_0 = \varphi(t_0)$. Then

$$\frac{|\mathbf{f}(z)-\mathbf{f}(z_{o})|}{|z-z_{o}|} = \left|\frac{\mathbf{G}(t)-\mathbf{G}(t_{o})}{t-t_{o}}\right| \cdot \frac{|t-t_{o}|}{|\varphi(t)-\varphi(t_{o})|} \cdot \frac{|\mathbf{f}(z_{o})|}{|\varphi(z_{o})|}$$

If $t_{O} \in P$ then $t_{O} \in H_{\varphi}$ and hence 317

$$\frac{|t-t_0|}{|\phi(t)-\phi(t_0)|} \neq 0 \qquad (t \neq t_0),$$

thus $\lim_{z \to z_0} \frac{|f(z) - f(z_0)|}{z - z_0} = 0$.

If $t_0 \notin P$ then G is constant in a neighbourhood of t_0 , thus $f(z)-f(z_0) = 0$ in a neighbourhood of z_0 and again

$$\lim_{z \to z_0} \frac{|f(z) - f(z_0)|}{|z - z_0|} = 0.$$

Finally, f is not constant, since G is not constant.

3. In this section we give a sufficient condition for the C-property. This generalizes a theorem of Choquet [3] stating that the graph of any continuous function is a C-curve.

Theorem 3. Let $\varphi:[a,b] \rightarrow \mathbb{R}^n$ be continuous and let

$$E = \{\varphi(\mathbf{x}); \mathbf{x} \in [a,b], \lim_{\substack{\mathbf{y} \to \mathbf{x} + \mathbf{o}}} \frac{|\varphi(\mathbf{y}) - \varphi(\mathbf{x})|}{|\mathbf{y} - \mathbf{x}|} = \infty \}.$$

If E has σ -finite linear measure then $\varphi([a,b])$ is a set of constancy.

The proof of this theorem is based upon the following lemma, and its corollaries.

Lemma 1. Let f be continuous on [a,b] and put

$$L = \{x \in [a,b); f'_+(x) > 0\}. \text{ Then } \lambda(f(L)) \ge f(b)-f(a).$$
318

(Here $f'_+(x)$ denotes the lower right hand side Dini derivative of f.)

The following simple proof was suggested by Togo Nishiura.

<u>Proof</u>. We can suppose f(a) < f(b). For $y \in [f(a), f(b)]$ we denote

$$\varphi(y) = \max\{x \in [a,b]; f(x) = y\}$$

It easily follows from the continuity of f that φ is strictly increasing on [f(a),f(b)]. We prove that if φ is differentiable at $y_0 < f(b)$ then $y_0 \in f(L)$. Let $x_0 = \varphi(y_0)$, then $y_0 = f(x_0)$, and for $x > x_0$ we have $f(x) > f(x_0)$ and $\varphi(f(x)) \ge x$. This implies

$$f'_{+}(x_{o}) = \liminf_{x \to x_{o}^{+}} \frac{f(x) - f(x_{o})}{x - x_{o}} \ge \liminf_{x \to x_{o}^{+}} \frac{f(x) - f(x_{o})}{\varphi(f(x)) - \varphi(f(x_{o}))} =$$
$$= \frac{1}{\varphi'(y_{o})} > 0 .$$

Thus $x_0 \in L$ and $y_0 = f(x_0) \in f(L)$. Since φ is differentiable at a.e. point of [f(a), f(b)], we have $\lambda(f(L)) \ge f(b)-f(a)$.

<u>Corollary 1.</u> If $\lambda(f(L)) = 0$ then f is decreasing on [a,b].

<u>Proof</u>. Applying Lemma 1 to an arbitrary subinterval $[c,d] \subset [a,b]$ we get $0 \ge (f(d)-f(c))$ and $f(d) \le f(c)$.

<u>Corollary 2.</u> Let f be continuous and N = { $x \in (a,b)$; O is not a right hand side derived number of f at x}. If $\lambda(f(N)) = 0$, then f is constant on [a,b].

<u>Proof</u>. N = { $x \in (a,b)$; $f_{+}^{\dagger}(x) > 0$ or $f_{-}^{\dagger}(x) < 0$ } and, applying Corollary 1, both f and -f are decreasing on [a,b].

Our next Lemma is an immediate corollary of a theorem of Choquet ([3], p.49.).

Lemma 2. If $A \subset \mathbb{R}^n$ has σ -finite linear measure and f:A $\rightarrow \mathbb{R}$ is such that

$$\lim_{\substack{y \to x \\ y \in A}} \frac{|f(y) - f(x)|}{|y - x|} = 0$$

for every $x \in A$ then $\lambda(f(A)) = 0$.

Now we turn to the proof of Theorem 3. Denote $H = \varphi([a,b])$ and let $f:H \rightarrow \mathbb{R}$ satisfying (1) for every $x_0 \in H$.

We consider now the function g defined by

 $g(x) = f(\varphi(x))$ (x $\in [a,b]$)

and the set

 $N = \{x \in (a,b); 0 \text{ is not a righthand side derived}$ number of g at x}.

We prove $\varphi(N) \subset E$. Indeed, let $x \in (a,b)$ be such that $\varphi(x) \notin E$. Then there is a sequence $y_n > x$, $y_n \rightarrow x$ such that

$$\left|\frac{\varphi(y_n) - \varphi(x)}{y_n - x}\right|$$

is bounded. Then

$$\left| \frac{g(y_n) - g(x)}{y_n - x} \right| = \left| \frac{f(\varphi(y_n)) - f(\varphi(x))}{y_n - x} \right| =$$

$$= \begin{cases} 0, \text{ if } \varphi(y_n) = \varphi(x) \\ \frac{|f(\varphi(y_n)) - f(\varphi(x))|}{|\varphi(y_n) - \varphi(x)|} \cdot \frac{|\varphi(y_n) - \varphi(x)|}{|y_n - x|} , \text{ if } \varphi(y_n) \neq \varphi(x) . \end{cases}$$

Now, by (1), $\frac{g(y_n)-g(x)}{y_n-x} \rightarrow 0$ and $x \notin \mathbb{N}$. Hence $\varphi(\mathbb{N}) \subset \mathbb{E}$ and thus

$$\lambda(g(N)) = \lambda(f(\phi(N))) \leq \lambda(f(E)) = O$$

by Lemma 2. Therefore, by Corollary 2, g is constant on [a,b] that is, f is constant on $\varphi([a,b])$.

As we mentioned before, Theorem 3 implies Choquet's theorem stating that the graph of any continuous function is a C-curve. Indeed, let f be continuous on [a,b] and let

$$A = \{x \in [a,b]; \lim_{y \to x+0} \left| \frac{f(y)-f(x)}{y-x} \right| = \infty \}.$$

By a well-known theorem on the contingency of planar sets ([4], p.264.), E = f(A) has σ -finite linear measure. Hence, by Theorem 3, the result follows. 4. Finally we remark that the limit in the definition of H_{φ} in Theorem 2 cannot be replaced by a one-sided limit. Let $\gamma = \varphi([0,1])$ be the curve given in Theorem 1 and let $P \subseteq [0,1]$ be a nowhere dense perfect set of positive measure with contiguous intervals (a_j,b_j) (j=1,2,...). Let $b_{n_j} = \max\{b_k; k < j, b_k < b_j\}$ (j=1,2,...). We can replace each of the subarcs $\varphi([a_j,b_j])$ by smooth arcs $\gamma_j! = \varphi_j([a_j,b_j])$ running in a small neighbourhood of the arc $\varphi([b_{n_j},b_j])$.

We can define the maps φ_j in such a way that the curve

$$\psi(t) = \begin{cases} \varphi(t) & (t \in Q) \\ \\ \varphi_{j}(t) & (t \in [a_{j}, b_{j}]) \end{cases}$$

has the following properties:

$$\lim_{t \to t_0 \to 0} \left| \frac{\psi(t) - \psi(t_0)}{t - t_0} \right| = \infty$$

for every $t_{o} \in P$ and

$$\lim_{t \to t_0} \inf \left| \frac{\psi(t) - \psi(t_0)}{t - t_0} \right| < \infty$$

for every $t_0 \in [0,1)$. By Theorem 3, the latter condition implies that $\gamma = \psi([0,1])$ is a C-curve.

References

- [1] A.S. Besicovitch and I.J. Schoenberg, On Jordan arcs and Lipschitz classes of functions defined on them, Acta Math. 106 (1961), 113-136.
- [2] A.M. Bruckner, Differentiation of real functions, Lecture Notes is Mathematics No. 659.
- [3] G. Choquet, L'isometrie des ensembles dans ses rapports avec la théorie du contact et la théorie de la mesure, Mathematica 20 (1944), 29-64.
- [4] S. Saks, Theory of the integral, Dover Publ., 1964.
- [5] H. Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514-517.
- [6] Z. Zahorski, Sur la première dérivée, TAMS 69 (1950), 1-54.

Received February 10, 1985