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 PERRON-STIELTJES INTEGRABILITY WITH RESPECT TO GAP FUNCTIONS

 The advantage of Perron integration over Lebesgue integration is that

 derivatives are always integrable. However, its disadvantage is that one

 has little feeling for what it means for a function to be Perron integrable.

 Using the generalized Riemann approach we investigate conditions under

 which a function is Lebesgue-Stiel tjes and/or Perron-Stiel tjes integrable

 with respect to a measure consisting of countably many point masses. As

 often happens, the Lebesgue case is simple and essentially corresponds to

 absolute convergence of a series, while the Perron case involves not only

 conditional convergence of a series but also the topology of the set of

 points at which masses are placed.

 One can and often does think of integrabil ity questions in terms of

 more-or-less discrete "chunks," which correspond to the contributions from

 the point masses. In this way we hope the results here shed some light

 on the question of Perron integrabil i ty in general.

 The specific problems in this paper and in fact the entire gener-

 alized Riemann approach to integration was brought to the author's attention

 in a seminar at the University of Petroleum and Minerals conducted by W.

 Pfeffer, to whom the author is grateful for several enlightening conversa-

 tions. The author also thanks the referee for suggesting many improvements

 in the presentation.
 279



 We give below a very brief outline of the generalized Riemann approach

 to the Perron-Stiel tjes and Lebesgue-Stiel tjes integrals. We follow the

 terminology and notation of [3] with some modifications for our special

 purposes. The reader should consult [3] for more details.

 By an interval J we will always mean a nondegenerate closed bounded

 interval of real numbers. All functions we deal with will be real valued.

 In this paper a will always denote a nondecreasing function whose domain

 is the real number line. For such an a we set a([a, b]) = a(b) - a(a).

 The support of o is defined to be {x|a([a, b]) > 0 whenever a < x < b).

 Our primary concern will be with Perron integration, so our definition

 of "partition" will be slightly nonstandard. By a partition P of an inter-

 val J we mean a collection { I x , I2, ..., In; Xj, x2, ..., xn>, where

 Ij, I2, ..., In are nonoverlapping (their interiors are pairwise disjoint)

 intervals whose union is J and xk is a point of the interval Ik for

 each k = 1, 2, ..., n. We say that the x^'s are points of P and that

 Xķ is the point of P corresponding to 1^. If we require only that each
 point of P belongs to J and not necessarily to its corresponding inter-

 val, then we say that P is a Lebesgue partition.

 If 6 is a positive function on the interval J then we say that

 a partition, Lebesgue or not, is 6-fine if Ik is contained in (xk - <5(xk) ,

 xk + ^or eac^ k* *n ^act' we use term "S-fine" to refer

 to any (finite or infinite) collection { ; xk> of intervals Jk and

 corresponding points xk for which Jk c (xk - 6(xk) , xk + 6(xk)) . We

 should note that for any positive function 6 there are 6-fine partitions,

 even such that each point is in the interior of its corresponding interval.
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 See [3, p. 4].

 Let f be any function on an interval J and let P be a Lebesgue

 partition of J, say P = {Ii» I2» •••» In'» xi • x2> •••> xn^ • ^e denote

 the sum £jj=ļ f(xk) a(Ik) by o(f, P, a) or just o(f, P) when no con-
 fusion results. If there is a number A such that for each positive e

 there is a positive function 6 on J for which |o(f, P) - A| < e when-

 ever P is a 6-fine Lebesgue partition of J then we say that f is

 Lebesgue-Stiel tjes integrable (or just L-integrable) with respect to a on

 J. If we require only that a(f, P) is near A for P a 6-fine parti-

 tion of J, then we say that f is Perron-Stieltjes integrable (or just

 P-integrable) with respect to a on J. We denote A by L /j fda in

 the Lebesgue case and by P / fda in the Perron case. This definition of

 Lebesgue-Stiel tjes integral does not agree exactly with that in [4] but

 does agree with [3].

 We need to make clear our conventions regarding sequences and countable

 sets. A countable set will be a set which is finite or countably infinite

 but not empty. Consistent with this, a sequence is a function whose domain

 is either il, 2, ..., n} for some positive integer n or the entire set

 of positive integers. We use the usual notation {s^} for a sequence

 whose value at k is s^. An indexing of a set Q is a one-to-one
 sequence whose image is exactly Q. Sums will be over relevant indices.

 Now we can define a gap function. Let Q be a countable set of

 points in the interior of an interval I. Let a' be a function from Q

 into the nonnegative real numbers such that IU'(y)|y e Q} converges. A

 gap function determined by Q and ď is then any function whose value at
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 a point X not in Q is given by o(x) = £{ct'(y) I y < x and y e Q}

 and whose value at a point x belonging to Q is between I{a'(y)|y < x

 and y e Q} and I(a'(y)|y^x and y € Q} inclusive.

 BASIC RESULTS AND DEFINITIONS. In this section we present some basic though

 elementary results concerning integration with respect to gap functions and

 define some properties which are motivated by these results. The first

 result comes from [3], to which the reader is referred for a proof.

 Theorem 1. Let a be a gap function determined by Q and a',

 where Q lies in the interior of the interval I. Suppose that (s^) is
 any indexing of the points of Q. Let f be any function on I. Then f

 1s L-integrable with respect to a if and only if £ ^sk^a ' is

 absolutely convergent and in this case L/jfda = I f(s^)o' (s^) .

 Let a be a gap function determined by Q and a', where Q is

 contained in the interior of the interval I. Suppose that f and g

 are functions on I which agree on Q. Then f-g is zero on Q and so by

 Theorem 1 f-g is L-integrable and hence P-integrable with respect to a

 on I. Consequently f is L-integrable (P-integrable) with respect to a

 on I if and only if g is L-integrable (P-integrable) with respect to a

 on I. Thus we can and do assume throughout that functions have values 0

 off the set Q in question.

 The proof of the next theorem uses techniques of [3] and is not diffi-

 cult, so we omit it and only state the result. We say that a sequence

 {sn> is monotone if either sp > sn+ļ for all relevant n or sn < sn+^
 for all relevant n.
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 Theorem 2. Let a be a gap function determined by Q and a'.

 Suppose that the monotone sequence {sn> is an indexing of Q and that Q
 lies in the interior of the interval I. A function f is P-integrable

 with respect to a on I if and only if £ f(sn)ď(sn) converges and

 in this case P/jfda = Ef(s )o'(s ).

 If the set Q used in the definition of a gap function a has just

 finitely many limit points, then Q can be decomposed into finitely many

 monotone sequences, so Theorem 2 furnishes a way of determining integrabi-

 1 i ty of a function with respect to such an a. We would like to relax the

 condition imposed on the set Q and obtain characterizations of integrabi-

 li ty for the resulting gap functions. Theorem 2 motivates the following

 definition.

 Let o be a gap function determined by Q and a'. We say that a

 function f defined on Q has Property S with respect to a if each

 monotone sequence in Q is a subsequence of a monotone sequence ixn} in
 Q for which i f(x .)<*' (x .) converges.

 J J

 Theorem 3. Let a be a gap function determined by Q and a'.

 Suppose the set Q has just finitely many limit points and is contained in

 the interior of the interval I. Then a function f is P-integrable with

 respect to a on I if and only if f has Property S with respect to
 a.

 Proof. That Property S implies P-integrabil ity when Q has just

 finitely many limit points follows quickly from Theorem 2 and the subsequent

 remarks. The necessity of Property S follows from Theorems 4 and 5 in
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 the next section, which depend on the development of another idea and a bit

 of general machinery.

 It would be very satisfying if Theorem 3 remained true when the con-

 ditions on the set Q are relaxed, but an example to follow destroys hope

 of this. We must develop some machinery before we can easily present this

 example so first we define another property modelled on Property S but

 incorporating a type of 6-fine partition as well.

 We extend the meaning of "monotone" by saying that a sequence {In}

 of nonoverlapping intervals is monotone if the sequence of left endpoints of

 the intervals is monotone. Now suppose the function a (not necessarily a

 gap function, but nondecreasing) is given. Then we say that a function f

 on the interval I has Property e with respect to a on I if whenever

 6 is a positive function and {In} is a monotone sequence of subintervals

 of I, then there is another monotone sequence of subintervals {Jn} and

 a sequence of points {xn> such that xn e Jn, {Jn ; xn> is 6-fine, each

 In is a union of a subcollection of {J^} and E f(xn)a(Jn) converges.

 PROPERTY S AND PROPERTY E, GENERALITIES. We now begin a study of

 these properties and how they are related to the integrabil ity of a function.

 Except where explicitly stated otherwise, a need only be nondecreasing and

 need not be a gap function.

 Lemma 1. Let f be P-integrable with respect to a on the interval

 I and let b be any point of I. Then for each positive e there is a

 positive function 6 on I such that whenever P is a 6-fine partition

 of a subinterval of I lying in (b - 6(b), b + 6(b)) - {b } , then
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 'o(f, P)| < e.

 Proof. Let b be a point of the interval I = [a, c] and let e be

 positive. We deal with (b - «5(b), b), the other side of b then being

 treated similarly. Since f is P-integrable with respect to a there is a

 positive function 6 on I such that if P and P' are 6-fine partitions

 of I then |o(f, P) - o(f, P')| < e/2. We may assume that 6(b) is so

 small that |f(b)|o([b - <5(b) , s]) < e/2 whenever s e (b - 6(b), b).

 Let P be a 6-fine partition of an interval of [r, s] in [b-6(b),b).

 Use the interval [s, b] with corresponding point b, a 6-fine partition

 of [a, r] and a 6-fine partition of [b, c] together with P to get a

 6-fine partition Q of I.

 Use the same partitions of [a, r] and [b, c] and the interval

 [r, b] with corresponding point b to get a 6-fine partition Q' of I.

 Now |o(f, Q) - o(f, Q ' ) I < e/2 and |o(f, Q) - o(f, Q')| =

 |o(f, P) + f(b)a([s, b]) - f(b)a([r, b])| = |a(f, P) - f(b)a([r, s])|.

 Since |f(b)a([r, s])| < e/2, we obtain ļ a( f , P)| < e.

 Theorem 4. If the function f is P-integrable on the interval I

 with respect to a, then f has Property £ with respect to a on I.

 Proof. Let (In> be a monotone sequence of subintervals of I. We

 will consider the case in which the left endpoints of the I n' s increase

 to limit b, the decreasing case being exactly similar. Without loss of

 generality we suppose that the union of the Ip ■ s is [r, b) for some

 r, since otherwise we can add the omitted intervals in their proper places

 in the sequence.
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 Lemma 1 implies that for each positive integer n there is a positive

 function 6„ such that if P is a ó -fine partition of an interval n n

 in I n [b - 6n (b) , b), then |o(f, P, a)| < 1/n. We may suppose that

 <Si > <s2 > ••• ar,d that { 6n (b) > converges to 0.

 Consider the interval I.. If n is the smallest integer for which
 J

 I. misses [b - 6(b), b), then let P. be a 0 -fine partition for I..
 U '• U J

 If we list the intervals of Pj, P2, ... in increasing order then we have a

 monotone sequence {Jn} and we can take the points {xn> to be those cor-

 responding to their intervals in the partitions P..
 J

 Let e be positive. There is a positive integer n such that

 1/n < e, then there is an integer q such that for j > q, I.= [b-6 (b),b)
 J ' '

 and finally there is an integer z such that for k > z we have <= 1^

 for some j > q. If now ř > s > z, then J$+ļ , J$+2» •••» an£l

 xs+l ' xr ^orm a ön"^ine Partition P of an interval in (b-6n(b),b),

 so that |£j=s+ļf(xjMJj)| = k(f> P. a) ļ < 1/n < e. By the Cauchy Crite-

 rion the series z^_-| f (xn)a(Jn) converges.

 Theorem 5. If the function f has Property z with respect to the

 gap function a then f has Property S with respect to a.

 Proof. Let the gap function a be determined by a' and Q and

 suppose the function f has Property z with respect to a. Let { xn>

 be a monotone sequence in Q which we suppose to be increasing. Let K be

 the set of all xn's together with the supremum of this set. Finally, let

 {sk> be an indexing of Q. There is a positive function 6 on I with
 the following properties.
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 (1) ö(x) is less than the distance from x to K - {x} for each

 X not the limit of {xnK

 (2) |f(sk)|o( [sk - 6(sk), sk + 6(sk)]) < |f(sk)|o'(sk) + l/2k for

 each sk in Q.

 For each n let I be an interval with midpoint xn and satify.ing

 I c (x - <5(xn)» xn + fi(xn)). By Property l there is a monotone sequence

 of intervals (Jk) and points {yk} such that yk c Jk> { ; yk) is

 (5-fine, each I is a union of some Jk's and Ek=ļf (yk)a(Jk) converges.

 By property 1 of 6 each xn is in the set {y . Since we will now be
 concerned only with convergence of certain series, we may as well assume that

 each yk belongs to Q, since f has value 0 off Q.

 Let e be positive. There is a positive integer T such that

 e"_j1/21 < e/2 and | E?_^f (y^ )a(J^ ) ļ < e/2 whenever T < R < S. For such R

 and S we have | z*=Rf (y^ď (y.) | <. Zj=R| f (y^) | (o(Jj ) - a' (y^) ) +

 + lEj=Rf (yj)o(Jj) I < Ej_y 1/2J + e/2 < e. By the Cauchy criterion the series

 sļ-ļf J (y J ,•)<*' (y .) converges so that f has Property S. J J J

 Theorem 6. If the function f has Property £ with respect to a on

 the interval [a, b] and f is P-integrable with respect to a on [a, x]

 whenever a < x < b, then f is P-integrable with respect to a on [a, b].

 Proof. If a is not continuous at b, then set
 a(x) if x < b

 <*(*) ~ ' and a(x) = a(x) - 5(x).
 lima(t) if x = b

 1 t-b"

 Then a = ã + â and certainly f satisfies the hypotheses of the
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 theorem with respect to ä. Since f is integrable with respect to a, we

 will be done if it is integrable with respect to ā, which is continuous at

 b.

 We may thus suppose that a is continuous at b. For such an a

 there are no improper Perron integrals ([3, p. 37]), so we need only show

 that lim P/^fda a exists. To do this we need only show that for each posi- ti" a

 tive e there is a positive r such that |P/^fda| < e whenever
 b-r<s<t<b.

 Suppose this last statement is false. Then there is a positive e for

 which no positive r works. From this we get nonoverlapping intervals I

 which increase to b and have |P/j fda| ^ e. On the interval I n there is n n

 a positive function <5n such that |o(f, P) - P/j fda| < e/3 whenever P
 n

 is a 6n-fine partition of 1^. Extend the 6^ ■ s any way to a positive func-

 tion 6. By Property E there is a monotone sequence of intervals (Jk>

 with points Xķ « Jķ such that each In is a union of ÍJ^ ; x^} is
 00

 6-fine and lķ_ļf (x^Ja^) converges. Then there are integers m, n and

 q so that (Jm, Jn; xm, ..., xn> is a partition P of 1^ with

 l°(f» P. °) I K e/3. Since P is a 6^-fine partition of 1^ we have
 l°(f» P» °) - P/t fdal < e/3 so that |P/r fdaļ < e, a contradiction which

 q q

 establishes the theorem.

 Since Property E is a "two-sided" property there is clearly a theorem

 analogous to Theorem 6 for integrabil ity at the left endpoint of an interval.

 Combining these two results yields the following.
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 Corollary 1. If the function f has Property E with respect to a

 on the interval I, then {x|f is not P-integrable with respect to a on

 any neighborhood of x} has no isolated points.

 Theorem 7. Let a be the gap function determined by Q and a',

 where Q lies in the interior of the interval I and has countable closure.

 A function f on I is P-integrable with respect to a on I if and only

 if f has Property E with respect to a on I .

 Proof. The necessity of Property E follows from Theorem 4. To veri-

 fy sufficiency, note that the set K of points which have no neighborhood

 on which f is P-integrabłe must be a subset of the closure of Q and so

 must be countable. Further, K must be closed and by Corollary 1 K cannot

 have an isolated point. But the only compact countable set with no isolated

 point is empty. The result follows.

 We note that if a is any nondecreasing function whose support is

 countable, then there is a set Q and a function a' for which a is the

 gap function determined by Q and a' and further that the closure of Q

 must be countable, so Theorem 7 applies to such functions <*.

 SOME COUNTEREXAMPLES. We first give the example we promised earlier

 which shows that Property S does not imply P-integrabil i ty if the set Q

 has infinitely many limit points.

 Let qn>i = (1/n) + (l/(n(n-l)+ i)) for n, i =1,2, ... . Let Q.
 be the set of all q n .'s. i Let a'(qn n i) i = 1 /2^ 1 . Let A = E°° , (-1 )rH"1/n n , i n , i n- i
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 and f(q .) = ((-1 )1+1 2n+1 )/(niA) while f(x)=0 for other x's. Using
 n 9 1

 Theorem 2 it is easy to see that P/-ļ^nfda = z ^ 1 / k . Further, Lemma 1

 easily implies that f is not P-integrable on I = [0, 3] because of its

 behavior at 0.

 Alas, f has Property S. Increasing sequences in Q must be finite

 and so cause no trouble. If a sequence decreases to limit a with a t 0,

 then the sequence lies in the interval [a, 1] on which f is P-integrable

 and again there is no trouble by Theorems 4 and 5.

 So suppose a sequence {xn} decreases with limit 0. First, take the

 largest i for which qļ ^ appears among the xn's. Fill in the sequence
 with all q, . for j < i, where by "fill in" we will mean "insert in the

 ■ >J

 sequence so as to obtain another decreasing sequence". Then, if the resulting

 sum through f(q, .)a'(q, .) differs from 0 by more than 1, fill in with
 1,1 1,1

 enough q, .'s with f(q, .) of the proper sign so that the resultant sum
 • >J ' » J

 is within 1 of 0.

 Now take the last -¡ appearing among the xn's. Proceed as above
 so that we end with a partial sum within 1/2 of 0. Continue in this way

 inductively through {q^ iq^ j >, ... . The resulting decreasing sequence

 {y^} is easily shown to satisfy z^=1f (yk)a' (y^) = 0 so that f has Pro-
 perty S.

 We now present an example to show that Property E is not equivalent

 to P-integrabil ity. Let Q = {t. } be the dyadic rationals in (0, 1) in-
 ķ

 dexed in any order. When p is an odd integer between 0 and 2 we de-

 fine a'(p/2k) = l/22k_1 and f(p/2k) = (-2)k/k. As usual we let the values
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 of ď and f be 0 at points not in Q. It is not hard to see that

 f (t.j ) a' (t;. ) •* 0 as i -*■ » and that neither f+ = (f + |f | ) /2 nor

 f" = (f . ļ f I ) /2 are integrable with respect to a on any subinterval of

 I = [0, 1].

 From [5] we know that a P-integrable function must be L-integrable on a

 neighborhood of each point of some dense set in I. But then both f+ and

 f~ must be integrable on this neighborhood by properties of the Lebesgue

 integral. Consequently, the particular f of this example cannot be

 P-integrable.

 Finally, we show that f has Property z with respect to a. Let

 {y be a monotone sequence of intervals and 6 a positive function on I.

 We may assume that for each i ó(t-) is so small that |f(tļ)|(<x(Ct^ - ô(t-),

 tļ + ó(t.)]) - a'(t.)) < 1 /2 1 .

 We may suppose that there are points a0 < aļ < ... for which

 1^ = For each k there is a 6-fine partition P^ of 1^ such

 that the point corresponding to the interval containing a^ -ļ or a^ is

 ak i or ak respectively and the point corresponding to any other interval

 lies in the interior of the interval. From these partitions we get a monotone

 sequence of intervals = [b - _-j , b^] with points x^ such that {J^, x^}

 is 6-fine and each 1^ is a union of 's.

 Suppose that f(xļ) < 0. The set F+ = { x ļ f (x ) >^0} has a countable

 complement in I and so is an absolute G^-set. Thus using the Baire
 Category Theorem we can find a positive integer n and a small interval

 K= [i"i» s'] in Jļ of length less than 1/n so that xj < rp x2-ô(x2)<r1
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 arid D = ix e F+|6(x) > 1/n) n K is dense in K.

 Since f(t_.)a' (t.j) -»■ O as i -»■ °», the set E = it.. |f(t.. )cť (t.. ) 1 }

 is finite» Since f+ is not integrable on K the sum r{f+( t^ )a' (t.. ) |t. eK-E}

 does not converge, so there is a finite set A c Q n K - E for which

 z{f (t^ )a* (t.) It.. e A) + f(xi)o([bo» r i] ) > 0. Each point t of A is

 contained in the interior of a small interval such that the J t ' s

 are pairwise disjoint and f(t)a(Jt) < 1 for each t e A.

 Now D - E is dense in K so each complementary interval of

 U{Jt|t e A} in K contains a point of D - E. These complementary inter-

 vals with corresponding points in D - E together with each with cor-

 responding point t form a 6-fine partition P' of K such that each term

 of a(f, P') is nonnegative but less than 1 and o(f, P' ) +f(x1)a(Cb0»r'13)

 > 0.

 Beginning from r^ take as many intervals of P' as necessary to get

 a 6-fine Perron partition P" of an interval [rj, Sļ] so that |a(f, P")

 + f ( X ļ )a( [b0 , rx J ) ļ < 1. Let = [Sj, b2] and let Pļ be P" together

 with [b0, rx] with point Xļ. If f(Xļ) > 0 then we can carry out exactly

 the same process using F" and f" in place of F+ and f+.

 Suppose that b2 f alt The same technique delivers a small interval

 [r2, s2] in J2 with a 6-fine partition P' such that x2 < r2,

 x3 - 6 ( x 3 ) < r2, each term of o(f, P') has absolute value less than 1/2

 and sign opposite that of o(f, Pļ) + f(x2)a([Sļ, r2]) and if P2 is composed

 of P^ P' and [Sļ, r2] with point x2 then |o(f, P2)| < 1/2.

 Suppose bz = aj. We can continue as above until we obtain a ô-fine
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 partition ?z ^ of an interval [a0, sz_]]- Let pz be composed of Pz_-|

 and the interval [szļ , b2] with point xz = bz = aj. Now continue as

 before, treating the interval Jz+ļ as we treated Jļ to obtain a <5-fine

 partition Pz+ļ of an interval [a0, sz+ļ] having properties analogous to

 those of Pļ, P2, .... Pz_i » for example, |o(f, Pz+1)l < l/(z + 1).

 Continuing in this way we obtain a monotone sequence of intervals (KJ

 and points {y^} such that (K^; y^} is ¿-fine, f(y^)a(K^) -*■ 0 as i °°,

 each Iq is a union of K^'s and there is an increasing sequence of integers

 (kj) such that | £*=ļ f(yi )a(K.¡ ) | < l/(j - 1) whenever z is an integer with

 k._, < z < k. and j = 2, 3, . . . . J J

 oo

 It is not difficult to use these facts to show that E ^ f (y^ )a(K^ ) = 0.

 Hence f has Property E with respect to o on I.
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