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The Powers and their Bernstein Polynomials

We wish to establish a relationship between the powers and Their Bernstein

polynomials.

We start with a brief review of Stirling numbers because of their importance

in developing the theory.

Denote Stirling numbers of the first kind by s(m,r).

s(1,1) = 1 while s(l,r) =0 for r # 1,

(L)
s(m,r-1) -~ ms(m,r) = s(mtl,r).
~ Denote Stirling numbers of the second kind by S(m,r).
S(1,1) = 1 while S(l,r) =0 for r # 1,
(2)
S(m,r-1) + rS(m,r) = S(mtl,r).
We write them in matrix form: A = (s(m,r)), S = (S(m,r))
1 0
-1 1 1 1
_ 2 -3 1 _ 1 3 1
A=l 6 11 -6 1 S=l1 7 6 (3
24 =50 35 -10 1 1 15 25 10 1
They are inverse to each other.
-1 -1
A" =S, S " =A, AS=8A=1 (4)
Some mathematicians define Stirling numbers of the second kind to be
r r r
1 k -1 k
Smyr) = = 3 DEO ™ = ER T kG " (5)
rh21 k r! k=1 k
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The Bernstein polynomials are important in approximation theory, Fourier

theory, differential equation theory, etc.

For f = [0,1] - R, define the Bernstein polynomial of f(x) to be
I k, ,n k n~k
B (x,£(x)) = ] £()() x (1-x) (6)
k=0

A common way to compute Bn(x,f(x)) for powers f£f(x) = l,x,x2 is as

follows.

n
w+wh= T Qo
<0

o -
Let u=x, v=1-x. We get 1 = z (1)(2) xk(l-x)n k.
k=0

By definition, Bn(x,l) = 1.

L N T n-1-j n-1 i+1., n
Using 1 =B__ (x,1) = jzo 7 (10 and ("5 = DG,

we get

. . n
x= 3 (liia( n xJ+1(1_x)n—(j+1) -3 (%)(E) xk(l-x)n-k.
k=0

By definition, Bn(x,x) = X.

n-1 . . .
Similarly, from x = Bn—l(x x) = 2 (_l_)(ngl) XJ(I_x)n_l_J -
j=0

n-1 .
= 2 (gl:%) Xj (I-X) n- (J+1)
3=1

n-1 . . n
X2 - I (n-Z) xJ+1(1_x)n-(3+1) - 2 (n 2

j-1 k-2

) xk(l-x)n-k.
j=1 k=2

. 1y, n-2y _ (n-1)  k(k-1) n, _ . k2 1k
Since -2, =~ n(n-l)(k) = [ -G

n
(@,
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1 2 v k2 0, Kk, n~k
— = — (Y R
) X E =) (0 % (i-x)

1
k=0 T =0

TNk

it ~13

2 1
Bn(x,x ) - Bn(x,x).
2, _x _1y L2
Thus Bn(x,x ) = - + (1 n) X .

We could proceed in a similar manner to obtain expressions for higher
degree, but this is a cumbersome procedure that may not lead us to a general

expression for ény term. To solve the general problem, we obtain the following

result.

Theorem: Suppose B(m) = Bn(x,xm) is the Bernstein polynomial of x".

m
Then B(m)(x) = ) s(m,r) n(n-1) -« (n-r+1) x, m >1,n>1, (7
o r=1 or
K= ] n(n—l)'n"(n-m-l-l) sam) B, a2m, (8)
r=1

The sets {l,x,xz,x3,~-'} and {B(O),B(l),B(z),B(3),°°'} are both

bases of the same vector space. The change of basis is

B=N1sHx, m>1,n>1, (9

X=M"ANB , n>m>1, (10)

where A and S are shown as (3) and (4), and

X
. . n-1
B= | gm}] , X=1| _m (: (n-l)(n-Z) ,

M- = Om ’ min, N O
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Proof: We first show (7) which is essential.

n n n-k

3™ = 7 OO a0 = ] GO K T I A
k=0 k=1 t=0
(m) _ e nk ksm, n t k+t, _kt+t , n, n-k, _ , n | k+t
B = L 20 @ () CDCLD) x77, since (VO = (OO,
=1 t=
Let r = k+t. Then
n r m n r
3™ =7 T E OO = ] 2 OER T e O
r=1 k=1 n" r=1 n" k=1

We thus obtain (7) by (5).

Now consider {1,x,x2,x3,°-°} as the basis of the space. Omit the simple

case B(O) = 1. Writing the result for B(m) in matrix form and using
decomposition

(1) S(1,1) 0 0

(2) _

® s 5(2,1)%, 52,22, 0

NN .

. S(3,1) 2,5(3 DAL, s5(3,38zbiin=2) 1)(2“ 2

. n? n //

- 8(3,1), 8(3,2), S(3,3)

1, O s(1,1) 0 o . 1 O
=< n-1
" S(2,1), $(2,2) o (n—l)(n—Z)
2
n

or B=N~ SMX. an

If n>m>1, then M is nonsingular.

so X=n1smy s =utans. (12)
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And we obtain expression (8) for the components of the vector X.

Thus our theorem is proved.

For m > 2, we rewrite (7) and (8) as

3™ - 2§ s@na-beea-El X (13)
m-1 £ s n n m-r °’
n r=2
m _ 1 v r~-1 _(r)
L e T TS ) rzl S(m,r) n° B . (14)
B(l) = X
(2) _x 4,2
B = + (1 n)x
2
(3 _x LK L 23
B = nz + 3(1 n)n + (1 n)(1 n)x
B(l’) =X 4 7(1_l)£2 + 6(1-—1-)(1--2-)-’53 + (1__1.) . (1_3) 4
n3 n n3 n n’n n n ¥
2 3 4
(5) _x 4% L3 Lo qn3x “Loashe
B —n4+15(1 n)n3+25(1 n)(1 n) 2+10(1 n) (1 n)n+(1 n) (1 n)x
X = B(l)
. D 4 an®,
x3 = T;:T%?E:i) ( 23(1) - 3118(2) + nzB(B))
1-{4 = (n-l)'%°(n—3) (—6B(1) + llnB(z) - 6n2B(3) + n3B(4))
5 1 ()

D hy (248 50082 + 350283 - 1003 8@ + 2453
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