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On Foran's Property (¥) and its relation to

Lusin's Property (W)

In [l], J.Foran has constructed a countinuous
function F on [0,1] satisfying on [0,1] the Foran
property (i), but vwhich does not satisfy Iusin's
property (N). In Theorem 3 we shall show that such
a function way be obtained by usinzg a result due by
S.Marmurkiewicz wmore than fifty years ago [é}. Oour
strategy will be the following. e shall construct
a conbinuous function F haviag on [O,i] Iusin's pro-

perty (W) sucb that for any linear nonconstant fun

.o

Q

tion g, the function F+g has the Foran property (i),
but does not have Lusin's property (). Our idea is
inspired by the S.iazurkiewicz result [2] asserting
the existeonce of a conbimuous function F having on
[O 1] ILusin's property (N) such that F+g has the
property (¥) for no linear nonconsbtant function g.

4s will becone apparent,S.iazurkiswicz' paper
[2] aaticipates implicitly the Foran property (i).

In Theorem 2 of our paper we indicate a now,
sbhorter way to obtain the above-asntioaned

Kazurkiewicz Theoren.
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demark 1. Iusin's condition (W) im
(i), but the converse is nof Urue. This was shoan by
ran in [l] e In the oresent paper we give an

example which is ancther

Thecrem 1. If ¥ is a contimuous function sabis-

fying ACG on a,ﬁ], and if G is a coubinugus funst:

apmcee S e

0]
V]

tiefying (¥) on [s,b], then svery lincar cembinaticn

of ¥ apd G, algo satisfies (L) om [2,Y].

Proof. Let B(x) = F(x) + G{z) , x€ [a,b] . “uppese
that H(x) is VB on a sot BC [1,b] (8 nay be suppossd

closed). Since F is iCC on [a, bl, there is a sequence

cf sets En suelh that B = L)En ard B is AU on En . Now

[uy
ct
e
o

clear that G(x) is VB on ecach B + Since C
satisfies (¥) on [=,b], it follows that G is 0% cu B
Hence H is ACG on E. By the Banach-Zarecki Theorem
([3),00.227), ¥ is AC on ¥.

ve shall now give a new, simplified procf of

cr
r=<’
[$]

above=nentionad S.Maznrkiewlicy Thnzoren

Thoorem 2, (SB.Mazurkiewlcz). There exists a

continuous functicn ¥ having luszin's preoerty (57) zn

Rhl] such that P+ has vroperty (N) for no linsar

nonngnstant function ¢

Procfe We shall fiest construct a funebtion ¥
and wr 5hall ghow thrat 1t bhus The propsrtiss rcecuired
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ct

by Thecrem 2. Let ny =2 and le

n, = ali"l(ls-111+5)...( ’+nk,___l+5) , £ =22
m = 2(y+1)(2n+1) + ny , k =1
bk = 2/((2]11‘1"1).00(2]11{'?1)) ’ k,>’l .

Let P = {x tx =3 a;P; 4 Dy = 0,...,mi} and

Q ='{y $y = 2Ab5q; 5 95 = O,...,ni} .

ClearlyAlP! - lal = 0. We dGenote by r(x;y) the re-
wairder of the quotient x/y. Let F be a2 function
define=d oun [O,l] as follows. For each x€P ,

F(x) = F(Zaipi(x)) = bir(pi(x);ni+l) . Then F is
contimwous on P and, by extending ¥ linearly on each
interval contigucus to P, one has F defined apd con-
tinuous on [0,1] . Clearly F(P) = g . Hence |F(®)| =
= ]Ql =0 and F fulfils (). For any real t £ O
let Gy (x) = F(x) + tx , x€[0,1], Iet

I . = - N 3. . he

’ll’.'.’llﬂ-’ [c'Ll""’l'i:’ ’ all?cooglk_] y where

Cs . = 9 1 a and 4. . = Cs L4
11,0-',11,; Ij;lp P -Ll,o.o,lk 11"..’11{

ILet t>0 , Then thnere is a natural nunber k such

that t€ [1/25 , 25]. since 2(2n41) < b /8, <

< (l/2k)(mk~nk-l) , WO have

Gt(I )N

i{l,.t ee ’ik—."’l’ (Ilk-l—l) j+1
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nGb(Il‘lHN’ly 1,(111{*1)(&;-1“1) A8 1::0"“’13?1’

J = O,...,l'fnk_+l and

. G .
t:(c’.Ll,...,:Lh 1,1+l’ < Gy (C.Lﬂ,...,lk l,mk"'nk-i—l) ’
i = 0,.‘. ,Ilk'-l . }.‘30‘.': Gt(J—‘-l’otbglk 1 P) =
= G, (I, o Since 1. >0
| 5 ( ll""’lk-l) oe | Gy( | ’

ll,.OO,lK_l
Gy doss mob satisfy (%) .

Let t<0. Then there is a ratural number k, such

1
that ~t€ [1/2'“, 2k] « Since Zk(2nk+3) <b}c/a}: <
< (1/2k)(mk-nk+l) , vie have

n‘ “ 3 . .
\..'b(lll) teo ’1‘1’:#1’(1)’1;;4'1){]"*'1)0

nGt(l*l’... ,,L l)(nlr‘*-l)( )+1)+1) f’é ¢ °

1 = 0,..-,nk 9 Jd = 0,...,l»f-nk+l v and

G.b(c ) > (Ib(('

)
11,o0¢ ,11, l,l ll’...’lk l,mk n;{+1+l !

i = O’ ...,nk'—l - DTO\I \)’.L..(Ill,u."lh l P) =

= Gt(I ) . 1191100 G,b d-‘l"".) D\)u bitlea’\I ‘Ll)‘

11,.‘.’—1‘"1
The aim of the next thegrem is to get another
proof for the existence of a function considered in

the Foran example,

S
B

Trhéonen 3. The functipn Gy considavad in the

proof of Theorem 2 has the Foran proparty (1), but

does not have Iusin's property (N).
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property (M), by Thecren

Proof. Since condition (N) impliss the Foran

~

<t

s 1% follcws that Gy

fulfils (). Clearly, by Theorem 2, Gy does not

satisfy condition (W) .

Remark 2., As can be seen from the prcofs of

Theorems 2 and %, we geb an uncounbable class of

functions of the type envisaged by Foran.

Yo are indebted toc Professor Solomon Harcus

for the help given in preparing this article and

to the anonymous reviewer, for many remarks allowing

to improve the final version of the text.
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