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 On. For aa* s Property (M) and its .relation to

 las in* s Fr od er ty (M)

 In M, J. For an has constructed a continuous

 function F on [0,iļ satisfying on [otļ the For an.

 property (M), but which does not satisfy Lusin's

 property (H). In Theorem 3 we shall show that such

 a function may "be obtained by using a result due by

 S. M a Jurkiewicz Bore than fifty years ago [2ļ • Our

 strategy will be the following. ',7e shall construct

 a continuous function F having on [p,]Q Lusin's pro-

 perty (N) such that for any linear nonconstrint func-

 tion g, the function F+g has the For an property (ivi),

 but does not have Lusin's property (N). Our idea is

 inspired by the S.Mazurkiewica result £21 asserting
 the existence of a continuous function F having on

 [0,1] Lusin's property (ri) such that F+g has the
 property (IT) for no linear nonconstant function g.

 As will be con e app ar ent , S .Ka zur kiswica ' paper

 [2} anticipates implicitly the For an property (M),

 In Theorem 2 of our paper we indicate a new,

 shorter way to obtain the above-mentioned

 îvi a zur kiewicz Theorem.
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 Definiti o a» A continuous function F is saia bo

 aft i l, -fy property (L) providing i? is àO on any set S

 on which it is VB ([i]).
 legarle 1« Lusin's condition (ï T) implies property

 (M), but the converse is not trus. This was sno/.n by

 Foran in [l] • In the present paper we give an

 example which is another proof of For an1 s recuit.

 'i he or em 1. If ? is a continuous function satis-

 fy jog AGG on fa,b3 , and if G ia a continuous function

 satisfying (M) on [a,bļ , then every "linear combinat ion

 of F and G, also satisfies (K) on [a,b] .

 Proof. Lat R(x) - F(x) + G(x) , xB [a,b] • Supposa
 that rl(x) is VB on a set SC. [a,b} (S may be ¡supposed

 closed). Since F is AOQ on [a,bļ , there is a sequence

 of oats En such that S = U 3^ arid F is AC on 3^ . Now

 it is clear that G(x) is 73 on each Bn . Since G
 satisfies (K) on .[/*¿,13 , it follows that G is ¿CG on 3.

 Hence H "is AGG on E» By the Banach-Zarecki Theorem. .

 ([3], PP. 227)» H is AO on ïï.

 .Ve shall now reive a new, simplified proof of the

 above-mentioned S.Mazur kiewicK The orsa .

 Theorem 2» (3. Ma sur kiewica) . There ezists a

 continuous function F having ¿us in' s proper ty (ù) on

 [O , l] such that F+y: has prop fir ty (N) f or no linear

 no neons tant function g .

 Proof. We shall first construct a function ?

 and v . 1* sball shov; that it has the properties required
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 "by Theorem 2. Let ^ 2 and let

 nk = 2lc~1 ( '! nx+ 5 ) • ♦ • C ^nk . i + 5 ) , k >2

 nļc = 2(nk+l)(2nk+l) + nk , k è* 1

 ak = 2/( (2raļ+l) . . .(2aik+l) ) , k ^l

 bk = 2/((2nrhl)...(2nk+l)) , k^l .

 Let P = {x : X » 2 » Pj_ = 0 , . . . } and

 Q = {y : y = Sb^ , q± = 0,...,^} .
 Clearly |pj = | q! =0, We denote by r(x?y) the re-
 mainder of tbe quotient x/y. Let F be a function

 defined on [0,1] as follows. For each x6P ,

 F(x) = P(2aiPi(x)) ~ 2 bjrCpļte^nļ+l) • Shen F is
 continuous on P and, by extending F linearly on each

 interval contiguous to P, one bas F defined and con-

 tinuous on [o,l] . Olear ly F(P) = Q • Hence ļF(P)ļ =
 = |q| " 0 and F fulfils (IT) . For any real t ■£ 0

 let Gļj(x) = F(x) + tx , x6 [o,l] . Let
 I. . = fc- . , d- . ļ , where

 k

 ci • i = S ia PP and d± • . = c± * * * + Ł]_ 1 • • • » i p=l PP -Ll» • • • » xJj; xX * * * * * k

 + 2 %% p P » 3-i J = d ; 3 = l,...,k . p>n+l p P » J d
 Let t>0 . Then there is a natural number k such

 that t e [l/2k , 2k]. Since 2k(2nk+l) < bk/ak <

 < (l/2^)(mk~nk-l) , we have

 ,ik<-;L,(nk+l)Ď+i^ n
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 nGt(Ii1,...,ik^;Lf(nk+l)Cô+l)+i) ^ 0 ' i=0,...,n,;,

 j = 0 , . . . , ¿¡-nk+ 1 and

 c 2, * • • * > k*-l > 0 k k

 i = 0,... ,11,-1 & . How G+(I, t; . HP) = & t; 1'***» k:-»l

 = GtC.It . ) . Since 1 G^CX^ , )| > O ,

 G^. does not satisfy (N) •
 Let t<0. Than there is a natural number k, such

 that ~t 6 |jL/2" , 2 ] . oince 2" ^Ct^/a^ <c

 < ( 1/ 2ÎC) (ra^n^f-l ) , we have

 """t^iļ, »». ,i^T| , (n^.f-1) ¡j+i^ ^

 n ^t^iļ, . .. »i^jCc^+DC j+U+i-5 ^ ^ »

 i = 0,.».,nk , j = O,... ,4x^+1 , and

 t^i-^ļ , »* 'Iļt • • • » 13 ļr'1* ^-+ 1 ^ '
 i « 0....,n--l K . How Gx.(Iļ ļ O?) = K u 1» " • * » ļ k-1

 = G+.(I.> • ) . Hence G+. v does not satisfy ( i-T ) • ■Łl»« •• »xk-l v

 The aim of the next theorem is to get another

 proof for the existence of a function considered in

 the F or an example»

 'S h ë or em 5» .The function G.j_ r.op.q? d ^ j_n the

 pr oof of Theorem 2 has the For an prop arty (M ) , but

 does not have Łasin' s property (W).
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 P.r oof . Since condition (N) implies the F or an

 prop exty (M), by Theorem 1, it follows that G+.

 fulfils (M). Clearly, by Theorem 2, G^. does not
 satisfy condition (N) •

 Remark 2. As can be seen from the proofs of

 Theorems 2 and 3> we get an uncountable class of

 functions of the type envisaged by Por an.

 We are indebted to Professor Solomon Marcus

 for the help given in preparing this article and

 to the anonymous reviewer, for many remarks allowing

 to improve the final version of the text.
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