Vasile ane, Instituts of matnemetics, stre scadeuiei 14, 70109 Bucharest, Ronania

On Foran's Property (i) ana its relation to Insin's Property (N)

In [1], J.Foran bas constructed a continuous function F on $[0,1]$ satisfying on $[0,1]$ the Foran property (N), Dut which does not satisfy Lisin's property (N). In Thsoren 3 we shall show that sucb a function nay be obtained by usins a result due by S.hazunkiewic\% more than fifty years ago [2]. Our strategy will be the followinf. "ie shall construct a continuous function F havias on $[0,1]$ Lusin's property (N) sucl that for any linear nonconstant function 5 , the function $F+\mathbb{C}$ has tioe Foran property (in), but does not bave Lusin's property (N). Our idea is inspired by the Sonazurkiewicz result [2] asserting the existence of a continous function F havine on $[0,1]$ Lusin's property (iv) sucin that $T+8$ has the property (iv) Ior no linear nonconstant function \mathbb{S}_{0} As will becone appanent, SNazurkiswicu' paper [2] anticipates implicitly the Foran property (iri). In rbeorem 2 of our paper we indicate a now, shorter way to obtain the abovemantioned Razurkiewicz libeorem.
 satery property (m) provians is ic on any aet a on wich it is TB ([I]).

Qamank 1。 Lusin's condition (in) implies gromenty (i), but the converse is noty true. This was ahown by Foran in [I]. In the oresent paper we give an example which is ancther proof of Foran's recult.

Theorem 1. If is a continupus tunction satisfying $A C G$ on $[a, b]$, and if G is a continuous funotion satigeying (w) on $[\mathrm{a}, \mathrm{b}]$, then gyery linear corbiraticn Of F and G, also satisfies (N) on $[\mathrm{a}, \mathrm{b}]$ 。

Proge. Lat $E(x)=F(x)+C(x), x \in[a, b]$. Supose that $\mathrm{X}(\mathrm{x})$ is VB on a sat $\mathbb{A C}[\mathrm{a}, \mathrm{b}]$ (E mag bo surposed closed). Since F is sc on $[a, b]$, there is a sequence of sets \mathbb{E}_{n} such that $E=U E_{n}$ ard F is $A C$ on E_{n}. Now it is clear that $G(x)$ is $V B$ on each E_{n}. Since C
 Hence H is ACG on E. By the Banact-Zarecki Theorem ([3], $[$, 227), H is $A C$ on E.

He shall now give a new, simplified proof of the abovementioned S.Mazntiewicz Tharem.

Theorer 2. (3.magurkiewicz) There exista a
continupus function paving gasin's property (if) on $[0,1]$ such that $\mathrm{F}+\mathrm{a}$ has property (N) fon no linear nonnorstant function e.

Eroci. We shall first construct a function and we whall show that it bas the proparties required
by Theorem 2. Let $n_{1} \geqslant 2$ and let
$n_{k}=2^{k-1}\left(4 n_{1}+5\right) \ldots\left(4 n_{k}+5\right) \quad, k \geqslant 2$
$m_{k}=2\left(n_{k}+1\right)\left(2 n_{k}+1\right)+n_{k} \quad, k \geqslant 1$
$a_{k}=2 /\left(\left(2 n_{I}+1\right) \ldots\left(2 \eta_{k}+1\right)\right) \quad, k \geqslant 1$
$b_{k}=2 /\left(\left(2 n_{l}+1\right) \ldots\left(2 n_{k}+1\right)\right) \quad, k \geqslant 1$.
Let $P=\left\{x: x=\sum a_{i} p_{j}, p_{i}=0, \ldots, m_{i}\right\}$ and
$Q=\left\{y: y=\sum b_{i} q_{i}, q_{i}=0, \ldots, n_{i}\right\}$.
Clearly $|P|=|0|=0$. We denote by $r(x ; y)$ the $r e-$ minder of the quotient x / y. Let F be a function defined on $[0,1]$ as follows. For each $x \in P$,
$F(x)=P\left(\sum a_{i} p_{j}(x)\right)=\sum b_{i} r\left(p_{j}(x) ; n_{i}+1\right)$. Then T is continuous on P and, by extending F linearly on each interval contiguous to P, one hes F defined ana continuous on $[0,1]$. Clearly $F(P)=Q$. Hence $|P(P)|=$
$=|Q|=0$ and Fulfils (iN). For any real t $\neq 0$
Let $G_{t}(x)=F(x)+t x, x \in[0,1]$. Let
$I_{i_{1}}, \ldots, \dot{i}_{k}=\left[c_{\dot{i}_{1}}, \ldots, \dot{i}_{i}, \dot{d}_{i_{1}}, \ldots, \dot{i}_{k}\right]$, vihere
$c_{i_{1}}, \ldots, i_{k}=\sum_{p=1}^{k} i_{p} a_{p}$ ana $d_{i_{1}}, \ldots, i_{k}=c_{i_{1}, \ldots, i_{k}}+$
$+\sum_{p \nmid} M_{n+1}^{m_{p}}, i_{j}=0, \ldots, m_{j} ; j=1, \ldots, k$.
Let $t>0$. Then there is a natural number k such that $t \in\left[1 / 2^{k}, 2^{k}\right]$. Since $2^{k}\left(2 n_{k}+1\right)<b_{k} / a_{k}<$ $<\left(1 / 2^{k}\right)\left(m_{k}-n_{k}-1\right)$, we have
$G_{t}\left(I_{i_{1}}, \ldots, i_{k-1},\left(n_{k}+1\right) j+i\right) \cap$

Let $t<0$. Then there is a natural number k, such that $-t \in\left[1 / 2^{k}, 2^{k}\right]$. Since $2^{k}\left(2 n_{k}+3\right)<b_{k} / a_{k}<$ $<\left(1 / 2^{k}\right)\left(m_{k}-n_{k}+1\right)$, we have
$\epsilon_{t}\left(I_{i_{1}}, \ldots, i_{k-l},\left(n_{k+1}\right) j+i\right) n$

$$
\cap G_{t}\left(I_{i_{1}}, \ldots, \dot{i}_{k-1},\left(n_{k}+1\right)(j+1)+i\right) \neq \varnothing,
$$

$$
i=0, \ldots, n_{k}, j=0, \ldots, 4 n_{k}+1 \text {, and }
$$

$$
G_{t}\left(c_{i_{1}}, \ldots, i_{k-1}, i\right)>G_{t}\left(c_{i_{1}}, \ldots, i_{k-1}, m_{k-n_{k}+i+1}\right),
$$

$$
i=0, \ldots, n_{k}-1 . \text { Now } G_{t}\left(I_{i_{1}}, \ldots, i_{k-1} \cap P\right)=
$$

$$
=G_{t}\left(I_{i_{I}}, \ldots, i_{i_{k-1}}\right) \text {. Hence } G_{t} \text { does not satisfy (ii). }
$$

The aim of the next theorem is to get another proof for the existence of a function considered in the For an example.

Theorem 3. The function G_{t} considered in the proof of Theorem 2 has the Form property (ii), but does not have Iasin's property (N).

$$
\begin{aligned}
& \cap G_{t}\left(I_{i_{1}}, \ldots, i_{k-1},\left(n_{k}+1\right)(j+I)+\dot{1}\right) \neq \varnothing, i=0, \ldots, n_{i}, \\
& j=0, \ldots, 4 \mathrm{n}_{\mathrm{kz}}+\text { ? and } \\
& G_{t}\left(c_{i_{1}}, \ldots, i_{k-1}, i+1\right)<G_{i}\left(c_{i_{1}}, \ldots, i_{k-1}, m_{k}-n_{k}+i^{\prime}\right), \\
& i=0, \ldots, n_{k}-1 \text { now } G_{t}\left(I_{i_{1}}, \ldots, i_{k-1} \cap P\right)= \\
& =G_{t}\left(I_{i_{1}}, \ldots, i_{k-1}\right) \text {. Since }\left|G_{t}\left(I_{i_{1}}, \ldots, i_{k-1}\right)\right|>0 \text {, } \\
& G_{t} \text { does not satisfy (N). }
\end{aligned}
$$

Proof. Since condition (N) implies the Foran property (ili), by Theorem l, it foll cus that G_{t} fulfils (M). Clearly, by Theorem 2, G_{t} does not satisfy condition (N).

Remark 2. As can be seen from the proofs of trbeorems 2 and 3, we get an uncountable class of functions of the type envisaged by Foran.

We are indebted to Professor Solomon Marcus for the help given in preparing this article and to the anonymous reviexer, for many remarks allowing to improve the final version of the text.

References

[1] J.Foran : A Generalization of Absolute Contimuity. Real Analysis Exchange, 5, 22-91 (1979-80).
[2] S.Hazurkievicz : Sur les fonctions qui sationont a la condition (iv). Fundam. Math., 16, 348-352(930).
[3] S.Saks : Thecry of the Intergal. 2nd.rev.ed. Monocrafie hatematyczne vol.VII,PWN, manaw (1937).

Received October 17, 1983.

