Vasile äno, Institute of katheatics, stre Acideniei 14, 70109 Bucharest, Romaris

On 2ocan's conditicns (in), B(it) and (ii)

Two continuous functions F_{1} and r_{2} are constructed, satisfyinrs Lusin's condition (W) and Foran's condition $B(2)$ on $C(C=$ Cantor's ternary set), inich are $A(M)$ on no portion of 0 , and for no natural number N. Moreover, $\mathrm{F}_{1}(x)=-\mathrm{F}_{2}^{\prime}(x)$ a. θ. on $[0, I]$, but F_{1} and $-F_{2}$ do not differ by a constant. It is also shown that $G(x)=F_{2}(x)-(1 / 2) \varphi(x)(\varphi=$ cantor's termary function) fulfils Foran's ondition (is), but does not fulfil Lusin's condition (iv). Such a function was alreddy obtained by Tosan in [I], but in a more omplicated way.

We recall the definitions of $A(M)$ and $B(N)$ Siven in [I], and that of (in) siven in [2].

Definition 1. Given a natural nunber N and a sot E, a function F is said to be $E(N)$ on E if there is a number $\mathrm{N}<\infty$ such that for any sequence I_{1}, \ldots,
I_{k}, \ldots, of nonoverlapping intarvals with $I_{k} \cap s \neq \phi$, there exist intervals $J_{k n}, n=1, \ldots, N$, for wich $B\left(F ; E \cap \bigcup_{k} I_{k}\right) \subset \bigcup_{k} \bigcup_{n=1}^{N} I_{k} \times J_{k n}$ and $\sum_{k} \sum_{n=1}^{N}\left|J_{i n n}\right|<N$.
(Here $B(H ; X)$ is the graph of F on the get X).
Definition 2. Givon a natural number IT ana a set E, a function T is said to be \therefore (ir) oa if for every
$\varepsilon>0$ there is a $\delta>0$ wob that if $T_{1}, \ldots, T_{k}, \ldots$
are nonoverlapine intervan wity $E \cap i_{k} \equiv \varnothing$ and
$\sum\left|I_{k}\right|<\delta$, thon there expi intervalo $J_{k n}, n=$
$=1, \ldots$, , fon vhich
$B\left(T ; E \cap \bigcup_{k} I_{k}\right) \subset \bigcup_{k} \bigcup_{n=1}^{N} I_{k} \times J_{k n}$ and $\sum_{k} \sum_{n=1}^{N}\left|J_{k n}\right|<\varepsilon$.
Definition 3. A continaous function fulfils Foran's condition (M) if it is ajsolutely continuous on any sot \mathbb{T} on wicb it is of bounded vaniation. Let F (respectively β) be the class of all. contimuous functions F, defined on a olosed intarvis I, for which there exist a sequance of sets z_{n} and natural numbers N_{n}, such that $I=U y_{n}$, antinis $A\left(\mathrm{Nin}_{\mathrm{n}}\right)\left(r e s p e c t i v e l y \mathrm{~B}\left(\mathrm{~N}_{\mathrm{n}}\right)\right.$) on E_{n}.

Theoren 1 . Itt t be real contingos function
defing on a closed weal set D. Whe funtion \bar{y} belones to \mathcal{F} (respectively to β) on if and only if every closed subset of contains a nontion on which is $A(N)(r e s p e c t y a l y ~ 3(1))$, for some natural number N.

Proof. The proof is similat to that given in [3], pp.233-234.

Let $I=[0,7]$, and let C denote the Cantor ternary set, i.e., $c=\left\{x: z=\sum c_{i} / 3^{i}\right.$ with c_{i} takins the values 0 and 2 only $\}$. Pach point $x \in \mathbb{C}$ is uniquely represented by $\sum c_{i}(x) / 3^{i}$. Let φ ve aantor's;
ternary function, i.e., $\varphi(x)=\sum c_{k i n}(x) / 2^{k+1}$, for eacb $x \in C$. Then φ is continnons on C and, by $\in x-$ tendins φ linearly on each interval contiguous to c, one has φ dofined and continuous on I. Let
$F_{1}(x)=\sum c_{2 k-1}(x) / 4^{k}$ and $F_{2}(x)=(1 / 2) \sum c_{2 k}(x) / 4^{k}$,
for each $x \in C$. Then F_{1} and F_{2} are continuous on C and, by excending F_{1} and F_{2} linearly on eacb interval contiguous to C, one has F_{1} and F_{2} defined and contindous on I. Clearly

$$
\begin{equation*}
\varphi(x)=F_{1}(x)+F_{2}(x) \text { on } I \tag{1}
\end{equation*}
$$

and
(2)

$$
F_{I}(x)= \begin{cases}(1 / 2) F_{2}(3 x) & , x \in[0,1 / 3] \\ x-(1 / 6) & , x \in(1 / 3,2 / 3) \\ (1 / 2)+(1 / 2) F_{2}(3 x-2), x \in[2 / 3,1]\end{cases}
$$

Theorem 2. 1) F_{1} and F_{2} fulfil Iusin's contition (iv) on I .
2) F_{1} and F_{2} are $A(N)$ on no portion of C, and for no natural number N.
3) F_{1} and F_{2} are $B(2)$ on C.

Proof. 1) $P_{1}(C)$ can be covered with 2^{n} intervals each of lensth at most $(1 / 3)\left(1 / 4^{n}\right)$, and $\left|F_{1}(C)\right|=0$. $\mathrm{F}_{2}(\mathrm{C})$ can be covered witb 2^{n} intervals, each of lenctb at most $(2 / 3)\left(1 / 4^{n}\right)$ and $\left|F_{2}(C)\right|=0$. 2) We show that F_{1} and F_{2} do not belonis to \mathcal{F} on I, hence by theorem $1, F_{1}$ and F_{2} are $A(\mathbb{N})$ on no portion of C, for no natural nurber N. Suppose on the contrary that F_{2} belones to \mathcal{F}_{497} on I. By (2) it follows 497
that also P_{1} belong to \mathcal{F} on I, hence $\mathrm{F}_{1}+\mathrm{F}_{2} \in \mathcal{F}$.
This contradicts (1).
3) Let $[a, b] \subset I, a, b \in C$. Then there $j s$ a largest interval (a_{1}, b_{1}) (and only one), excluded in the
Cantor ternary process, such that $\left[a_{2}, b_{1}\right] \subset[2,0]$. Suppose that $\left(a_{1}, b_{1}\right)$ is excluded at the nth step.
Then
$a_{1}=\sum_{i=1}^{n} c_{i} / 3^{i}+\sum_{i=1}^{\infty} 2 / 3^{n+i}$, with $c_{i}=0$ or $c_{i}=2$ for
$i<n$ and $c_{n}=0$. We have $a_{1}-a \leqslant 1 / 3^{n}$ and $b-b_{1} \leqslant 1 / 3^{n}$.
If $x \in\left[a, a_{1}\right] \cap c$, then $c_{i}=c_{i}(x)$, for each $i=$
$=1, \ldots$, n. Hence

$$
\begin{equation*}
F_{2}\left(a_{1}\right)-F_{2}(x) \geqslant 0 \text { and } F_{1}\left(a_{1}\right)-F_{1}(x) \geqslant 0 \tag{3}
\end{equation*}
$$

Let $i_{2}\left(x_{0}\right)=\inf \left\{r_{2}(x): x \in\left[a, x_{1}\right] \cap c\right\}$. When
$F_{2}\left(\left[a, a_{j}\right] \cap 0\right) \subset\left[F_{2}\left(x_{0}\right), F_{2}\left(a_{2}\right)\right]=J_{1}$ and $b_{y}(3)$
one has
(4) $\left|J_{1}\right| \leqslant \varphi\left(a_{1}\right)-\varphi(a)$.

If $x \in\left[b_{1}, b\right] \cap 0$, then $c_{i}=c_{i}(x)$, for cash $i=$
$=1, \ldots, n-1$ and $c_{n}(x)=2$. Hence
(5) $\quad F_{2}(x)-F_{2}\left(b_{1}\right) \geqslant 0$ and $F_{1}(x)-y_{1}\left(b_{1}\right) \geqslant 0$.

Let $F_{2}\left(x_{1}\right)=\sup \left\{F_{2}(x): x \in\left[0_{1}, b\right] \cap 0\right\}$. Then
$F_{2}\left(\left[b_{1}, b\right] \cap c\right) \subset\left[F_{2}\left(b_{1}\right), F_{2}\left(x_{1}\right)\right]=J_{2}$ and by (5),
one has
(6) $\quad\left|J_{2}\right| \leqslant \varphi(b)-\varphi\left(D_{1}\right)$.

By (4) and (6),$F_{2}([a, b] \cap a) \subset J_{1} \cup J_{2}$ and $\left|J_{1}\right|+\left|v_{2}\right| \leqslant \varphi(b)-\varphi(a)$.

Remark 1. 1) Theorem 2 shows that the BanachZerecti theoren ([3], pp.227) is not valia wan AC and TB ane remlaced by $A(17)$ and $B(N)$ cespectively. 2) The class \mathcal{T} is strictly contrinad in $\mathcal{B} \cap(i)$. 3) F_{1} and $-F_{2}$ satiofy (i) , have equal derivatives a.e. and do not differ by a constant.

Remark 2. Iet $\left(J_{i}^{p}\right), i=1, \ldots, 2^{p-1}$ be the excluded middle thinds in Cantor's ternary process, from the pth step, numbered from left to right. We bave $3 I_{i}^{p+1}=J_{i}^{p}, i=1, \ldots, 2^{p-1}$ and

$$
\underset{i+2^{p-1}}{J^{2}+1}=(2 / 3)+J_{i}^{p}, i=1, \ldots, 2^{p-1}
$$

Mheorem 3. The functions F_{1} end F_{2} age not
primitives in the Foran sense.
From:- Suppose on the contrany that thene is a continuous function G on I, belongire; to \mathcal{F}, such that $G_{a p}^{\prime}(x)=F_{2}^{i}(x)$ a.e. on I. Thon there is a continuous function in on I, with $h(0)=0$, which is constant on each interval contiguous to C, such that

$$
\begin{equation*}
G(x)=F_{2}(x)+h(x) \tag{7}
\end{equation*}
$$

By (2) and (7), $\mathrm{F}_{1}(\mathrm{x})+(1 / 2) h(3 x)$ belongs to \mathcal{F} on $[0,1 / 3]$. By (7), it follows that

$$
\varphi(x)+(1,2) h(3 x)+b(x)=0 \text { on }[0,1 / 3]
$$

For let $H(x)=G(x)+(1 / 2) G(3 x)=\varphi(x)+(1 / 2) h(3 x)+$ $+b(x), x \in[0,1 / 3]$. Then $H_{a p}^{\prime}=0$ a.e. and $G \in \mathcal{F}$ implies $H \in \mathcal{F}$ and $H \equiv C$. Since $H(0)=0$, (Q) follows.

Since $\varphi(x)=(1 / 2) \varphi(3 x),(8)$ becomes

$$
\begin{equation*}
(\varphi(x) / 2+h(x))+(1 / 2)(\varphi(3 x) / 2+h(3 x))=0, \tag{9}
\end{equation*}
$$

for each $x \in[0,1 / 3]$, Since

$$
\begin{equation*}
F_{2}(x)=F_{2}(x+2 / 3), \quad x \in[0,1 / 3], \tag{10}
\end{equation*}
$$

we have $b(x+2 / 3)-b(x)=a$ for all $x \in[0, l / 3]$. For let $R(x)=C(x+2 / 3)-G(x)=b(x+2 / 3)-h(x)$, $x \in[0,1 / 3]$. Since $G_{a p}^{\prime}(y)=F_{2}^{\prime}(x)$ a. $\cdot, R_{a p}^{\prime}(x)=0$ abe. and $R \in \mathcal{F}$ implies R constant. But $b(1 / 3)=b(2 / 3)$ and $b(0+2 / 3)-b(0)=$ a gives $h(2 / 3)=a$. Also $h(1 / 3+2 / 3)-h(1 / 3)=a \operatorname{so} b(1)=2$ a. Thus $h(x)=$ $=-(1 / 2) \varphi(x)$ on $[1 / 3,2 / 3]$. By Resins 2, (9) and (10), $h(x)=-(1 / 2) \varphi(x)$ on the closure of each.
interval contiguous to c and, by the contimity of h, we have that $h(x)=-(1 / 2) \varphi(x)$ on I. Thus $G(x)=$ $=F_{2}(x)-(1 / 2) \varphi(x)$ on I. Moreover, $f(x)$ each $x \in C$, $\left.G(x)=1 / 6-(1 / 2)\left(\sum_{2 k-1}(x)+c_{2 k}(x) / 2+1\right) / 4^{k}\right)$.

Hence $G(C)=[-1 / 3,1 / 6]$, and so G does not satisfy Iusin's condition (V). Contradiction.

Remark 3. The above function $G(x)=F_{2}(x)-$ - ($1 / 2$) $\varphi(x)$ on I is an example of a continuous fundtion which does not satisfy Iusin's condition (iv) but satisfies Moran's condition (i).

We are indebted to Professor solomon marcus for the bali given in preparing this article and to the anonymous reviewer, for many remarks allowing to improve the final version of the text.

Referenosis
[1] J.Foran : An extension of the Denjoy integral. Proc.Amer.liath.Soc., 49, 359-355 (1975).
[2] J.Foran : A generalization of absolute Continuity. Real Analysis Exchanje, 5, 82-91 (1979-80).
[弓] S.Saks : Theory of the integral. 2na.rev.ed. Minografie Matematyczne, PRN, Warsaw (1937).

