Real Analysis Exchange Vol. 9 (1983-84)

Dan Rinne, Department of Mathematics

California State College, San Bernardino, California, 92407

On Typical Bounded Functions in the Zahorski Classes

Each of Zahorski's M_i classes [5] is closed under uniform convergence. Thus each class of bounded M_i functions on the interval [0,1] is a complete metric space under the sup norm. We can then investigate the behavior of a typical function, that is, belonging to a residual subset. We let I=[0,1].

Ceder and Pearson [3] show that the typical bounded Darboux Baire 1 function (that is, bounded M_1 function):

1 has an infinite derived number on both sides at every point

2 has both $+\infty$ and $-\infty$ as derived numbers at each point.

We will show that:

- 3 the typical bounded Darboux Baire 1 function has every real number as a derived number at every point
- 4 the three results above have direct analogues in each of the other Zahorski classes.

All functions will be real valued with domain contained in [0,1]. We use juxtaposition to indicate the intersection of two or more sets of functions. Thus, the bounded (b) Baire 1 functions are denoted by bB_1 and the bounded Darboux Baire 1 functions by bDB_1 . $C^-(f,x)$ and $C^+(f,x)$ are the left and right cluster sets of f at x. For f in DB_1 , the left and right cluster sets are intervals with f(x) in $C^-(f,x) \cap C^+(f,x)$ for all x. The associated

sets of f are sets of the form $E_a(f)=\{x:f(x)>a\}$ and $E^a(f)=\{x:f(x)<a\}$ for a real. A function f is Baire 1 if each associated set is an F_σ set (or f is a pointwise limit of continuous functions. The Lebesgue measure of A is denoted by $\lambda(A)$. Zahorski's M_i classes (i=0,1,..,5) are defined as follows. A set E is in class M_i if E is an F_σ set and:

i=0 every x in E is a bilateral accumulation point of E i=1 every x in E is a bilateral condensation point of E i=2 for x in E and $\delta > 0$, $\lambda((x-\delta,x)\cap E) > 0$ and $\lambda((x,x+\delta)\cap E) > 0$ i=3 for x in E and any sequence $\{I_n\}$ of intervals converging to x with $\lambda(I_n \cap E) = 0$ for all n, $\lim_{n \to \infty} \lambda(I_n) / \operatorname{dist}(x, I_n) = 0$ $n \to \infty$

i=4 if there exist sets K_n and positive numbers r_n such that $E=UK_n$ and for every x in K_n and c>0 there is an $\varepsilon(x,c)>0$ such that $\lambda(En(x+h,x+h+k))/|k|>r_n$ for all h and k satisfying hk>0, h/k<c, and $|h+k|<\varepsilon(x,c)$

i=5 every x in E is a point of density of E (d(E,x)=1). A function f is in M_i (i=0,1,...,5) if each associated set is in class M_i . It has been shown that $M_0=M_1=DB_1$ and $M_5=A$ the approximately continuous functions. (Zahorski [5] or see Bruckner [2])

In the rest of this paper, the five classes will thus mean M_1 through M_5 . We will make use of the fact that $M_1 \supset M_2 \supset \ldots \supset M_5$. For x in E, $\{x\}c_i \in (i \neq 4)$ will mean E satisfies the ith Zahorski condition at x. That is, when considering M_1 , $\{x\}c_i \in$ means x is a bilateral condensation point of E. The context will make clear which classes are under consideration. For sets A and E, $Ac_i \in$ will mean $\{x\}c_i \in$ for all x in A. Thus if f is in class M_5 , $E_0(f)$ $c_5 E_0(f)$ simply states that $d(E_0(f), x)=1$ for all x in $E_0(f)$.

<u>Lemma 1</u> For each i, bM_i is a complete metric space under the sup norm.

Proof: Consider i fixed. Suppose $f_n \rightarrow f$ where f_n is in bM_i for all n. Then f is in bDB_1 and it suffices to show that each associated set is in M_i . Let $E=E_a(f)$ and $E_k=E_{(a+1/k)}(f)$. For each k, pick n_k so that $\|f_{n_k}-f\| < 1/2k$. Then $E_k \subset E_{(a+1/2k)}(f_{n_k}) \subset E$. Thus $E=UE_k=UE_{(a+1/2k)}(f_{n_k})$ is in M_i . $E^a(f)$ is similar.

The next lemma will be used in the proofs of later theorem.

<u>Lemma 2</u> For each i, the set A_i of all f in bM_i such that f is continuous on some subinterval is a first category F_{cr} set in bM_i .

Proof: Consider i fixed. Let $\{q_1, q_2, \ldots\}$ be an enumeration of the rationals in I. For $q_n < q_m$ define $F_{n,m}$ to be the set of all f in bM_i such that f restricted to $[q_n, q_m]$ is continuous. Then A_i is the countable union of all such sets $F_{n,m}$. It remains to show that each $F_{n,m}$ is closed and nowhere dense in bM_i . Clearly each $F_{n,m}$ is closed. Fix n and m. Suppose $f \in F_{n,m}$ and $\varepsilon > 0$. We can pick an h in $bM_5 = bA$ so that

- 1) 0≤h≤ε
- 2) $h=0 \text{ on } I-(q_n, q_m)$
- 3) h is not continuous on (q_n, q_m) .

(See Zahorski [5], Bruckner [2], or Agronsky [1].) Then it is easy to see that g=f+h is in bM_i , $||f-g||=\varepsilon$, and g is not in $F_{n,m}$. Thus the complement of $F_{n,m}$ is dense and we are done.

We state two theorems of Ceder and Pearson mentioned in the introduction.

<u>Theorem A</u> The class of all functions in bDB_1 (bM_1) having an infinite derived number on each side at every point is a residual G_{δ} set.

<u>Theorem B</u> The class of all functions in bDB_1 (bM_1) having both $+\infty$ and $-\infty$ as derived numbers at each point is a residual G_{δ} set.

The proof of Theorem 1 below is a simplification of the proof of Theorem A, making it applicable to all five classes at once. We use much of the same notation as in [3].

<u>Theorem 1</u> For each i, the class of all functions in bM_i having an infinite derived number on each side at every point is a residual G_{δ} set in bM_i .

Proof: Throughout the proof, we consider i fixed. Let A_R (respectively A_L) be all f in bM_i for which there is an x in [0,1) (resp. (0,1]) such that f has no infinite derived number on the right (resp. left) at x. It suffices to show that A_R is a first category F_σ set. For n a natural number, θ and δ rational with $\delta > 0$ and $0 < \theta < \pi/2$, let $A(\theta, \delta, n)$ consist of all f in bM_i for which there is an x in [0,1-1/n] such that $\tan \theta \ge |(f(z)-f(x))/(z-x)|$ for all $x < z < x + \delta$. Then A_R is the countable union of all such $A(\theta, \delta, n)$. It remains to show that each $A(\theta, \delta, n)$ is a closed nowhere dense set.

Fix θ , δ , and n. It is easy to see that $A(\theta, \delta, n)$ is closed. We say that f has "property A at x" if there is a z in $(x,x+\delta)$ such that $\tan \theta < | (\xi(z)-f(x))/(z-x) |$. If f has property A at every x in a set E, then we say f has "property A on E". Note, if f has property A on [0,1), then f is in the complement of $A(\theta, \delta, n)$. Thus, it suffices to show that the functions with property A on [0,1) form a dense set. For any point (x,y), let

$$K(x,y) = \{(u,v): x < u < x + \delta \text{ and } tan \theta < |(v-y)/(u-x)|\}$$

486

(The definitions and notation are from [3].)

Let $f \in A(\theta, \delta, n)$ and $\varepsilon > 0$. By Lemma 2 we can pick h in bM_i so that h has a dense set of discontinuities and $|| f-h || < \varepsilon$.

Let $Z=\{z:K(z,h(z))\cap h=\phi\}\cup\{(1,h(1))\}$. It is easy to see that Z is closed and that h|Z is continuous. By our choice of h, int(2)= ϕ . We then cover Z with finitely many intervals on which the oscillation of h is small and insert a steep saw-tooth function over each interval to obtain a g in bM_i such that $||h-g|| < \epsilon$ and g has property A on [0,1). See the proof of Lemma 4 in [3] for the insertion. Then $||f-g|| < 2\epsilon$ and we are done.

The simplification of the proof is in our choice of the function h, making $int(Z)=\phi$.

Theorem A is then a special case of our Theorem 1. This is not the case for our next result. Our proof of the analogue of Theorem B for bM_i where $i \ge 2$ does not give Theorem B as a special case. Although we again borrow notation and follow the outline of the proof of Theorem B in [3], our proof will not work for bM_1 .

<u>Theorem 2</u> For each $i \ge 2$, the class of all functions in bM_1 having both $+\infty$ and $-\infty$ as derived numbers at each point is a residual G_{δ} set in bM_1 .

Proof: We again consider i fixed. The proof is similar to that of Theorem 1. It suffices to show that, for $\delta > 0$, and $0 < \theta < \pi/2$, the set of all f in bM_i for which there is an x in I such that $\tan\theta \ge (f(z)-f(x))/(z-x)$ for all $0 < |z-x| < \delta$ is a closed nowhere dense set. Let this set be A'(θ, δ). We say f has property A' on I if K'(x,f(x)) $\cap f \neq \phi$ for all x where

K'(x,y)={(u,v):0< $|x-u|<\delta$ and tan $\theta<(v-y)/(u-x)$ }. 487 If f has property A' on I, then f is in the complement of A'(θ, δ). It is easy to see that each A'(θ, δ) is closed. We must show that the complement is dense. As before, fix θ and δ , let f ϵ A'(θ, δ), and let ϵ >0. Pick h in bM_i so that $|| h-f|| < \epsilon$ and h has a dense set of discontinuities. Let Z={z:K'(z,h(z)) h= ϕ }. It is easy to see that Z is closed and that h|Z is continuous so int(Z)= ϕ . Thus Z is nowhere dense. To avoid an easy added step, assume 1 is not isolated in Z. Let I-Z=U(a_j,b_j) where each (a_j,b_j) is a component of I-Z. Since h|Z is continuous, we may cover Z with finitely many intervals [x_k, y_k], 1≤k≤n, so that:

- (1) $x_1 < y_1 < x_2 < y_2 < \dots < x_n < y_n$
- (2) $y_k x_k < \delta_1 = \min(\delta/2, \epsilon/8 \tan \theta)$ for each k
- (3) if x and y are in $[x_k, y_k] \cap Z$, then h(x) h(y) | < c/4

(4) $x_k \in \mathbb{Z}$ for each k, $y_k \in \mathbb{Z}$ if $(x_k, y_k) \cap \mathbb{Z} \neq \phi$, and $y_k \notin \mathbb{Z}$ otherwise. Observe that if x is a right limit (left limit) of Z, then h is right (left) continuous at x. In fact, if x and y are in $[x_k, y_k] \cap \mathbb{Z}$ for some k, then $|h(r)-h(g)| \leq \varepsilon/4+2\delta_1 \tan \theta < \varepsilon/4+\varepsilon/4=\varepsilon/2$ for all r and s between x and y. This results from the fact that the graph of h|[x,y] is contained in the parallelogram P(x,y) formed by the vertical lines through (x,0) and (y,0) and the lines with slope tan θ through (x,h(x)) and (y,h(y)).

For each k, at least one of the following occurs:

C1 $[x_k, y_k] \cap \mathbb{Z} = \{x_k\}$

C2 there is an isolated point, z_k , of Z in (x_k, y_k)

C3 there is a component, (a_{j_k}, b_{j_k}) , of I-Z in (x_k, y_k) . Note that C2 and C3 are not mutually exclusive. If C2 occurs, then there is a $\gamma_k > 0$ such that $(z_k - \gamma_k, z_k + \gamma_k) \cap Z = \{z_k\}$. For $1 \le k \le n$, we define A_k in one of three possible ways. Let A_k be $E_h(x_k) - \epsilon/2^{(h) \cap (x_k, y_k)}$ if Cl occurs, $(z_k, z_k + \gamma_k)$ if C2 occurs, and (a_{j_k}, m_k) where $m_k = (a_{j_k} + b_{j_k})/2$ if C3 occurs but C2 does not. Let $A_0 = \cup A_k$. Then $A_0 \in M_i$. Since h is approximately continuous almost everywhere (Thm 5.2[2]), we can pick $A \subseteq A_0$ so that $\lambda(A) = \lambda(A_0)$, h is approximately continuous at every x in A, and $A \subseteq A_0$.

Let T be a countable dense subset of h. By repeated application the Luzin-Menchoff Theorem (Thm 6.4[2]), we can construct an F_{σ} set $W_{\Lambda}^{=} \cup W_{m}^{c} \Delta - \operatorname{dom}(T)$ so that $W_{\Lambda}^{c} _{5} W_{\Lambda}$ and $W_{1}^{n}(x_{k}, y_{k}) \neq \phi$ for each k. Then, by Zahorski [5] (or see Bruckner [2] or a special case of a construction of Agronsky [1]), we can construct an h_{1} in bM_{5} such that $h_{1}^{=}0$ on $I - W_{\Lambda}$, $h_{1}^{\geq}0$, h_{1} is usc (h_{1} is continuous at every x in $I - W_{\Lambda}$), $||h_{1}|| = \varepsilon$, and $h_{1}|W_{1} = \varepsilon$.

For $1 \le k \le n$, let B_k be the empty set if Cl occurs, $(z_k - \gamma_k, z_k)$ if C2 occurs, and (m_k, b_j) if C3 occurs and C2 does not. Let $B_0 = \cup B_k$. As above, we can pick a set $B \subseteq B_0$ with the same properties as $A \subseteq A_0$, and an F_σ set $W_B = \cup W_B' \subseteq B$ -dom(T) so that $W_B \subseteq S_B W_B$ and $W_1' \cap (x_k, y_k) \neq \phi$ if $B_k \neq \phi$. We then construct h_2 in bM_5 such that $h_2 = 0$ on $I - W_B$, $h_2 \le 0$, h_2 is lsc $(h_2$ is continuous at every x in $I - W_B$, $||h_2|| = \varepsilon$, and $h_2|W_1' = -\varepsilon$. Observe that $W_A \cap W_B = \phi$.

Let $g=h+h_1+h_2$. Then $||f-g|| < 2\varepsilon$, and $g \in bB_1$. Our next lemma will show that $g \in bM_i$. Let C_f (resp. A_f) be the set of continuity (resp. approximate continuity) points of a function f.

<u>Lemma 3</u> Let $F \in bM_i$. If $G \in bA$, G is usc (resp. lsc), $G \ge 0$ (resp. $G \le 0$), $C_G = \{x | G(x) = 0\}$, and $I - A_F \subset C_G$, then $F + G \in bM_i$.

Proof: Fix i. We prove the result for G usc. Let $E=E_a(F+G)$. Then $E=E_a(F)\cup(E\cap E_0(G))$. It is easy to see that $E\cap E_0(G)$ is an M_5 489 set since $E_{\Omega}(G) \subset A_{F}$. Thus E is the union of two M_{i} sets and $E \in M_{i}$.

Now let $E=E^{a}(F+G)$. For xcE, we can pick a rational r so that F(x) < r < a and r-F(x) < a-(F+G)(x). We use the upper semi-continuity of G to pick an interval J with rational endpoints so that xcJ and $E^{r}(F) \cap J \subset E$. Since E is the countable union of such sets, $E \in M_{i}$. The case of G lsc is similar. This completes the proof of the lemma.

We now show that g has property A' on I by four cases.

1 If $x \in I - \bigcup [x_k, y_k]$, then g(x) = h(x). Since $K'(x, h(x)) \cap h \neq \emptyset$ and T is dense in h, $K'(x, g(x)) \cap g \neq \emptyset$ (g=h on dom(T)).

2 Suppose $x \in [x_k, y_k]$ for some k and Cl occurs. If $x = x_k$, then by our construction g(x) = h(x) and $K'(x,g(x)) \cap g \neq \emptyset$. If $x \in (x_k, y_k] \cap W_A$, then g(x) > h(x). Since T is dense in h, h(x) is a left cluster value of T. Thus $K'(x,g(x)) \cap g \neq \emptyset$. If $x \in (x_k, y_k] - W_A$, then g(x) = h(x) and the argument of l above applies.

3 Suppose $x \in [x_k, y_k]$ and C2 occurs. If $x \in Z \cap [x_k, z_k]$, then g is above $P(x_k, y_k)$ on a subset of $(z_k, z_k + \gamma_k)$, so $K'(x, g(x)) \cap g \neq \emptyset$. If $x \in Z \cap [z_k, y_k]$, then g is below $P(x_k, y_k)$ on a subset of $(z_k - \gamma_k, z_k)$, so $K'(x, g(x)) \cap g \neq \emptyset$. If $x \in W_A \cap (x_k, y_k)$, then, as in 2 above, $K'(x, g(x)) \cap g \neq \emptyset$. A similar argument applies to $x \in W_B \cap (x_k, y_k)$. If $x \in [x_k, y_k] - (W_A \cup W_B \cup Z)$, then the argument in 1 above applies.

4 If $x \in [x_k, y_k]$ and C3 occurs but C2 does not, then an argument similar to that in 3 above applies.

Thus g has property A' on I and this finishes the proof of the theorem.

Note that the case of bM_1 does not follow from the proof of Theorem 2 since it is possible that $f \in bM_1$, $E_a(f) \neq \emptyset$, but $\lambda(E_a(f)) = 0$.

We prove Theorem 3 for the case bM_1 and then indicate how 490

simple modifications in the proof yield the analogues for bM_{i} where $i \ge 2$.

<u>Theorem 3</u> The class of all functions in bDB₁ having every real number as a derived number at every point is a residual set.

Proof: Let X be the class of all functions in bDB_1 having both + ∞ and - ∞ as derived numbers at every point, a residual G_{δ} set by Theorem B. Let N be the class of all functions in X having every real number as a derived number at every point. The proof will show that X-N is first category in X.

We need some terminology to use later in the proof. For any point (x,y) let o(x,y) be the open half-ray $\{(x,v):v < y\}$ and let O(x,y) be the open half-ray $\{(x,v):v > y\}$. For θ , β , and δ positive rationals with θ and β angle measures less than π such that $\theta + \beta > \pi$, let $r(\theta,\beta,\delta,x,y)$ be the open set of all (u,v) such that:

- 1) (u,v) is in o(x,y) or
- x<u<x+δ and the angle between the line segment joining (x,y)
 to (u,v) and o(x,y) is less than θ or
- 3) x- $\delta < u < x$ and the angle between the line segment joining (x,y) to (u,v) and o(x,y) is less than β .

 $R(\theta,\beta,\delta,x,y)$ is similarly defined using O(x,y) instead of O(x,y).

Let $y(\theta,\beta,\delta)$ be the set of all f in X with $r(\theta,\beta,\delta,x,f(x)) \cap f = \phi$ for some x in I, and $Y(\theta,\beta,\delta)$ the set of all f in X with $R(\theta,\beta,\delta,x,f(x)) \cap f = \phi$ for some x in I. Then X-N is the countable union of all such $y(\theta,\beta,\delta)$ and $Y(\theta,\beta,\delta)$.

We define $b_f(x) = \inf(C^{-}(f,x) \cup C^{+}(f,x))$. Let $z(\theta,\beta,\delta)$ be the set of all f in X with $r(\theta,\beta,\delta,x,b_f(x)) \cap f = \phi$ for some x in I. We call such an x a z-value of f. $Z(\theta,\beta,\delta)$ is similarly defined using 491 $t_f(x) = \sup(C^{-}(f,x)\cup C^{+}(f,x))$ and $R(\theta,\beta,\delta,x,t_f(x))$. In the rest of the proof θ , β , and δ are fixed. It is easy to see that $y(\theta,\beta,\delta)$ is a subset of $z(\theta,\beta,\delta)$. It remains to show that $z(\theta,\beta,\delta)$ is a closed nowhere dense subset of X. A similar argument will apply to $Y(\theta,\beta,\delta) = Z(\theta,\beta,\delta)$.

Lemma 4 $z(\theta,\beta,\delta)$ is closed in X.

Proof: Suppose $f_n \rightarrow f$ uniformly and $f_n \in z(\theta, \beta, \delta)$ for all n. Let x_n be a z-value for f_n . Since we can pick a convergent subsequence, let us assume that $x_n \rightarrow x$ in I. It is easy to see that $b_{f_n}(x_n) \rightarrow b_f(x)$. The fact that each x_n is a z-value of f_n forces x to be a z-value of f. Thus $f \in z(\theta, \beta, \delta)$ and the set is closed.

Lemma 5 The complement of $z(\theta,\beta,\delta)$ is dense in X.

Before proving the lemma we make an observation. If f is in $z(\theta,\beta,\delta)$ and x and y are z-values of f, then $|x-y| \ge \delta$. Thus the set of z-values of f is a finite set.

Proof of Lemma 5: Suppose $f \in z(\theta, \beta, \delta)$, $\varepsilon > 0$, and x is a z-value of f. We will construct a g in X such that $||f-g|| \le \varepsilon$, x is not a z-value of g, and the set of z-values of g is contained in the set of z-values of f. Essentially, the construction of g eliminates one z-value of f.

Since $b_f(x)$ is in $C^{-}(f,x) \cup C^{+}(f,x)$, we may assume that $b_f(x)$ is in $C^{-}(f,x)$. Let T be a countable dense subset of f. We can then pick a c-dense in itself F_{cr} subset of f, say E, so that:

1 E∩T=φ

- 2 $x \in cl(dom(E)) dom(E)$
- 3 $cl(dom(E)) \subset (x-\delta,x]$
- 4 $f(x_n) \rightarrow b_f(x)$ if $x_n \in dom(E)$ and $x_n \rightarrow x$. 492

By Theorem 1 of [3] there is an h in bDB_1 so that h=f on I-dom(E) and f>h≥f- ϵ on dom(E). By using the construction in the proof of that theorem we can easily pick h so that $r(\theta, \beta, \delta, x, b_f(x)) \cap h \neq \phi$ and if y \equiv dom(E) and $x \rightarrow y$ with $x_n \epsilon dom(E)$, then $f(x_n) - h(x_n) \rightarrow 0$. Observe that $b_h(x) = b_f(x)$. Let ℓ be the line through $(x, b_h(x))$ such that the angle between ℓ and $o(x, b_h(x))$ is $(\beta + \pi - \theta)/2$. We define

$$g(z) = \begin{cases} f(z) (=h(z)) & \text{on } I-(x-\delta,x) \\ \max(h(z), \ell(z)) & \text{on } (x-\delta,x). \end{cases}$$

Observe that g=f on I-dom(E). It is easy to see that g is in bDB₁, b_g(x)=b_f(x), and r($\theta, \beta, \delta, x, b_g(x)$) $\cap g \neq \phi$.

<u>Claim 1</u> $g \in X$.

Proof: If $z \in dom(E)$, then g(z) < f(z). Since E misses T and T is dense in f, $+\infty$ is a derived number on the right at z and $-\infty$ on the left. If $z \notin dom(E)$, then g(z)=f(z) and g has the same derived numbers as f since g=f on dom(T) and T is dense in f. Thus $g \in X$.

<u>Claim 2</u> The z-values of g are also z-values of f and x is not a z-value of g.

Proof: By our construction, x is not a z-value of g. Suppose y is not a z-value of f. We consider two cases.

- 1 If $y \in I-cl(dom(E))$, then $b_g(y) = b_f(y)$ and $r(\theta, \beta, \delta, y, b_f(y)) \cap f \neq \phi$. Since $g \leq f$, $r(\theta, \beta, \delta, y, b_g(y)) \cap g \neq \phi$. Thus y is not a z-value of g.
- 2 If $y \in cl(dom(E))$, then by our construction $y \in (x-\delta,x)$ and

 $b_{g}(y) \ge l(y)$ so that $(x, b_{g}(x))$ is in $r(\theta, \beta, \delta, y, b_{g}(y))$. Thus $r(\theta, \beta, \delta, y, b_{g}(y)) \cap g \neq \phi$ and y is not a z-value of g.

This verifies the claim.

By making this modification near each z-value of f, we can construct $g \in X-z(\theta,\beta,\delta)$ so that $|| f-g || \leq \varepsilon$. This completes the proof of Lemma 5 and the theorem.

<u>Theorem 4</u> For each $i \ge 2$, the class of all functions in bM_i having every real number as a derived number at every point is a residual set in bM_i .

Proof: The proof is very similar to that of Theorem 3. The analogue of the set E in the proof of Lemma 5 should be chosen as we picked W_A in Theorem 2, with $E \in E^{f(x)+\epsilon/2}(f) \cap (x-\delta,x)$. We then proceed to construct the function h as we did h_1 or h_2 in Theorem 2. The rest of the proof remains unaltered.

An open question is whether or not the set of typical functions of Theorem 3 or 4 is a G_{δ} set. Other properties found to be typical of bDB₁ functions could be candidates for the bM₁ case. See Ceder and Pearson [4] for a survey of such properties and interesting candidates not decided at this time.

BIBLIOGRAPHY

- [1] Agronsky, S.J., Ph.D. Thesis, University of California, Santa Barbara, 1975.
- [2] Bruckner, A.M., Differentiation of Real Functions, Springer-Verlag (No. 659), Berlin/New York, 1978.
- [3] Ceder, J.G. and Pearson, T.L., On Typical Bounded Darboux Baire 1 Functions, Acta Math. Sci. Hungar., 37(4), (1981), 339-348.
- [4] _____, A Survey of Darboux Baire 1 Functions, Real Analysis Exchange, 9, (1983-84), 179-194.
- [5] Zahorski, Z., Sur la première dérivée, Trans. Amer. Math. Soc.,69, (1950), 1-54.

Received September 14, 1983.