Dan Rinne, Department of Mathematics
California State College, San Bernardino, California, 92407

On Typical Bounded Functions in the Zahorski Classes

Each of Zahorski's M_{i} classes [5] is closed under uniform convergence. Thus each class of bounded M_{i} functions on the interval $[0,1]$ is a complete metric space under the sup norm. We can then investigate the behavior of a typical function, that is, belonging to a residual subset. We let $I=[0,1]$.

Ceder and Pearson [3] show that the typical bounded Darboux Baire 1 function (that is, bounded M_{1} function):

1 has an infinite derived number on both sides at every point
2 has both $+\infty$ and $-\infty$ as derived numbers at each point. We will show that:

3 the typical bounded Darboux Baire 1 function has every real number as a derived number at every point

4 the three results above have direct analogues in each of the other Zahorski classes.

All functions will be real valued with domain contained in $[0,1]$. We use juxtaposition to indicate the intersection of two or more sets of functions. Thus, the bounded (b) Baire 1 functions are denoted by bB_{1} and the bounded Darboux Baire 1 functions by bDB $_{1} . C^{-}(f, x)$ and $C^{+}(f, x)$ are the left and right cluster sets of f at x. For f in $D B_{1}$, the left and right cluster sets are intervals with $f(x)$ in $C^{-}(f, x) \cap C^{+}(f, x)$ for all x. The associated
sets of f are sets of the form $E_{a}(f)=\{x: f(x)>a\}$ and $E^{a}(f)=$ $\{x: f(x)<a\}$ for a real. A function f is Baire 1 if each associated set is an F_{σ} set (or f is a pointrise limit of continuous functions. The Lebesgue measure of A is denoted by $\lambda(A)$. Zahorski's M_{i} classes ($i=0,1, \ldots, 5$) are defined as follows. A set E is in class M_{i} if E is an F_{σ} set and:
$\mathrm{i}=0$ every x in E is a bilateral accumulation point of E
$\mathrm{i}=1$ every x in E is a bilateral condensation point of E
$i=2$ for x in E and $\delta>0, \lambda((x-\delta, x) \cap E)>0$ and $\lambda((x, x+\delta) \cap E)>0$
$i=3$ for x in E and any sequence $\left\{I_{n}\right\}$ of incervals converging to x with $\lambda\left(I_{n} \cap E\right)=0$ for all $n, \lim _{n \rightarrow \infty} \lambda\left(I_{n}\right) / \operatorname{dist}\left(x, I_{n}\right)=0$
$i=4$ if there exist sets K_{n} and positive numbers r_{n} such that $E=U K_{n}$ and for every x in K_{n} and $c>0$ there is an $\varepsilon(x, c)>0$ such that $\lambda\left(E_{n}(x+h, x+h+k)\right) /|k|>r_{n}$ for all h and k satisfying $h k>0, h / k<c$, and $|h+k|<\varepsilon(x, c)$
$i=5$ every x in E is a point of density of $E(d(E, x)=1)$.
A function f is in $M_{i}(i=0,1, \ldots, 5)$ if each associated set is in class M_{i}. It has been shown that $M_{0}=M_{1}=D B_{1}$ and $M_{5}=A$ the approximately continuous functions. (Zahorski [5] or see Bruckner [2])

In the rest of this paper, the five classes will thus mean M_{1} through M_{5}. We will make use of the fact that $M_{1} \mathrm{DN}_{2} \supset \ldots>M_{5}$. For x in $E,\{x\} c_{i} E(i \neq 4)$ will mean E satisfies the ith Zahorski condition at x. That is, when considering $M_{1},\{x\} C_{1} E$ means x is a bilateral condensation point of E. The context will make clear which classes are under consideration. For sets A and $E, A c_{i} E$ will mean $\{x\} C_{i} E$ for all x in A. Thus if f is in class $H_{5}, E_{0}(f)$ $c_{5} E_{0}(f)$ simply states that $d\left(E_{0}(f), x\right)=1$ for all x in $E_{0}(f)$.

Lemma 1 For each $i, b M_{i}$ is a complete metric space under the sup norm.

Proof: Consider i fixed. Suppose $f_{n} \rightarrow f$ where f_{n} is in $b M_{i}$ for all n. Then f is in bDB_{1} and it suffices to show that each associated set is in M_{i}. Let $E=E_{a}(f)$ and $E_{k}=E_{(a+1 / k)}$ (f). For each k, pick n_{k} so that $\left\|f_{n_{k}}-f\right\|<l / 2 k$. Then $E_{k} \subset E(a+1 / 2 k)\left(f_{n_{k}}\right) \subset E$. Thus $E=U E_{k}=U E(a+1 / 2 k)\left(f_{n_{k}}\right)$ is in $M_{i} . E^{a}(f)$ is similar.

The next lemma will be used in the proofs of later theorem.
Lemma 2 For each i, the set A_{i} of all f in $b M_{i}$ such that f is continuous on some subinterval is a first category F_{σ} set in $b M_{i}$.

Proof: Consider i fixed. Let $\left\{q_{1}, q_{2}, \ldots \ldots\right\}$ be an enumeration of the rationals in I. For $q_{n}<q_{m}$ define $F_{n, m}$ to be the set of all f in $b M_{i}$ such that f restricted to $\left[q_{n}, q_{m}\right]$ is continuous. Then A_{i} is the countable union of all such sets $F_{n, m}$. It remains to show that each $F_{n, m}$ is closed and nowhere dense in $b M_{i}$.
Clearly each $F_{n, m}$ is closed. Fix n and m. Suppose $f \in F_{n, m}$ and $\varepsilon>0$. We can pick an h in $b M_{5}=b A$ so that

1) $0 \leq \mathrm{h} \leq \varepsilon$
2) $h=0$ on $I-\left(q_{n}, q_{m}\right)$
3) h is not continuous on $\left(q_{n}, q_{m}\right)$.
(See Zahorski [5], Bruckner [2], or Agronsky [1].)
Then it is easy to see that $g=f+h$ is in $b\left\|_{i},\right\| f-g \|=\varepsilon$, and g is not in $F_{n, m}$. Thus the complement of $F_{n, m}$ is dense and we are done. We state two theorems of Ceder and Pearson mentioned in the introduction.

Theorem A The class of all functions in bDB_{1} ($b H_{1}$) having an infinite derived number on each side at every point is a residual G_{δ} set.

Theorem B The class of all functions in $b D B_{1}\left(b H_{1}\right)$ having both $+\infty$ and $-\infty$ as derived numbers at each point is a residual G_{δ} set.

The proof of Theorem 1 below is a simplification of the proof of Theorem A, making it applicable to all five classes at once. We use much of the same notation as in [3].

Theorem 1 For each i, the class of all functions in bM having an infinite derived number on each side at every point is a residual C_{δ} set in $b M_{j}$.

Proof: Throughout the proof, we consider i fixed. Let A_{R} (respectively A_{L}) be all f in $b M_{i}$ for which there is an x in $[0,1)$ (resp. (0,1$]$) such that f has no infinite derived number on the right (resp. left) at x. It suffices to show that A_{R} is a first category F_{σ} set. For n a natural number, θ and δ rational with $\delta>0$ and $0<\theta<\pi / 2$, let $A(\theta, \delta, n)$ consist of all f in bill for which there is an x in $\{0,1-1 / n\}$ such that $\tan \theta \geq|(f(z)-f(x)) /(z-x)|$ for all $x<z<x+\delta$. Then A_{R} is the countable union of all such $A(\theta, \delta, n)$. It remains to show that each $A(\theta, \delta, n)$ is a closed nowhere dense set.

Fix θ, δ, and n. It is easy to see that $A(\theta, \delta, n)$ is closed. We say that f has "property A at x " if there is a z in $(x, x+\delta)$ such that $\tan \theta<\mid f(z)-f(x)) /(z-x) \mid$. If f has property A at every x in a set E, then we say f has "property A on E ". Note, if f has property A on $[0,1)$, then f is in the complement of $A(\theta, \delta, n)$. Thus, it suffices to show that the functions with property A on $[0,1)$ form a dense set. For any point (x, y), let

$$
K(x, y)=\{(u, v): x<u<x+\delta \text { and } \tan \theta<|(v-y) /(u-x)|\}
$$

(The definitions and notation are from [3].)
Let $f \in A(\theta, \delta, n)$ and $\varepsilon>0$. By Lemma 2 we can pick h in $b M_{i}$ so that h has a dense set of discontinuities and $\|f-h\|<\varepsilon$.

Let $Z=\{z: K(z, h(z)) \cap h=\phi\} \cup\{(1, h(1))\}$. It is easy to see that Z is closed and that $h \mid Z$ is continuous. By our choice of h, int $(Z)=\phi$. We then cover Z with finitely many intervals on which the oscillation of h is small and insert a steep saw-tooth Function over each interval to obtain a g in $b M_{i}$ such that $\|\mathrm{h}-\mathrm{g}\|<\varepsilon$ and g has property A on $[0,1$). See the proof of Lema 4 in [3] for the insertion. Then $\|f-g\|<2 \varepsilon$ and we are done.

The simplification of the pronf is in our choice of the function h, making $\operatorname{int}(Z)=\phi$.

Theorem A js then a special case of our Theorem 1. This is not the case for our next result. Our proof of the analogue of Theorem B for $b M_{i}$ where $i \geq 2$ does not give Theorem B as a special case. Although we again borrow notation and follow the outline of the proof of Theorem B in [3], our proof will not work for $b M_{1}$.

Theorem 2 For each $i \geq 2$, the class of all functions in $b M_{1}$ having both $+\infty$ and $-\infty$ as derived numbers at each point is a
residual G_{δ} set in $b M_{i}$.
Proof: We again consider i fixed. The proof is similar to that of Theorem 1. It suffices to show that, for $\delta>0$, and $0<\theta \leqslant \pi / 2$, the set of all f in $b M_{i}$ for which there is an x in I such that $\tan \theta \geq(f(z)-f(x)) /(z-x)$ for all $0<|z-x|<\delta$ is a closed nowhere dense set. Let this set be $A^{\prime}(\theta, \delta)$. We say f has property A^{\prime} on I if $K^{\prime}(x, f(x)) \cap f \neq \phi$ for all x where

$$
K^{\prime}(x, y)=\{(u, v): 0<|x-u|<\delta \text { and } \tan \theta<(v-y) /(u-x)\}
$$

If f has property A^{\prime} on r, then f is in the complement of $A^{\prime}(\theta, \delta)$. It is easy to see that each $A^{\prime}(\theta, \delta)$ is closed. We must show that the complement is dense. As before, fix θ and δ, let $f \in A^{\prime}(\theta, \delta)$, and let $\varepsilon>0$. Pick h in $b M_{i}$ so that $\|h-f\|<\varepsilon$ and h has a dense set of discontinuities. Let $Z=\left\{z: K^{\prime}(z, h(z))(i h=\phi\}\right.$. It is easy to see that Z is closed and that $h \mid Z$ is continuous so $\operatorname{int}(Z)=\phi$. Thus Z is nowhere dense. To avoid an easy added step, assume 1 is not isolated in Z. Let $I-Z=U\left(a_{j}, b_{j}\right)$ where each $\left(a_{j}, b_{j}\right)$ is a component of $I-Z$. Since $h \mid Z$ is continuous, we may cover Z with finitely many intervals $\left[x_{k}, y_{k}\right], 1 \leq k \leq n$, so that:
(1) $x_{1}<y_{1}<x_{2}<y_{2}<\ldots<x_{n}<y_{n}$
(2) $y_{k}-x_{k}<\delta_{1}=\min (\delta / 2, \varepsilon / 8 \tan \theta)$ for each k
(3) if x and y are in $\left[x_{k}, y_{k}\right] \cap z$, then $h(x)-h(y) \mid<\varepsilon / 4$
(4) $x_{k} \in Z$ for each $k, y_{k} \in Z$ if ($\left.x_{k}, y_{k}\right) \cap Z \neq \phi$, and $y_{k} \in Z$ otherwise. Observe that if x is a right limit (left limit) of Z, then h is right (left) continuous at x. In fact, if x and y are in $\left[x_{k}, y_{k}\right] \cap z$ for some k, then $|h(r)-h(s)| \leq \varepsilon / 4+2 \delta_{1} \tan \theta<\varepsilon / 4+\varepsilon / 4=\varepsilon / 2$ for all r and s between x and y. This results from the fact that the graph of $h \mid[x, y]$ is contained in the parallelogram $P(x, y)$ formed by the vertical lines through $(x, 0)$ and $(y, 0)$ and the lines with slope $\tan \theta$ through ($x, h(x)$) and ($y, h(y)$).

For each k, at least one of the following occurs:
C1 $\left[x_{k}, y_{k}\right] \cap Z=\left\{x_{k}\right\}$
C2 there is an isolated point, z_{k}, of z in (x_{k}, y_{k})
C3 there is a component, $\left(a_{j_{k}}, b_{j_{k}}\right)$, of I-Z in $\left(x_{k}, y_{k}\right)$. Note that C2 and C3 are not mutually exclusive. If C2 occurs, then there is a $\gamma_{k}>0$ such that $\left(z_{k}-\gamma_{k}, z_{k}+\gamma_{k}\right) n Z=\left\{z_{k}\right\}$.

For $l \leq k \leq n$, we define A_{k} in one of three possible ways. Let A_{k} be $E_{h\left(x_{k}\right)-\varepsilon / 2}(h) \cap\left(x_{k}, y_{k}\right)$ if Cl occurs, $\left(z_{k}, z_{k}+\gamma_{k}\right)$ if C2 occurs, and $\left(a_{j_{k}}, m_{k}\right)$ where $m_{k}=\left(a_{j_{k}}+b_{j}\right) / 2$ if $C 3$ occurs but C2 does not. Let $A_{0}=U A_{k}$. Then $A_{0} \in M_{i}$. Since h is approximately continuous almost everywhere (Thm 5.2[2]), we can pick $A \subset A_{0}$ so that $\lambda(A)=\lambda\left(A_{0}\right)$, h is approximately continuous at every x in A, and $A C_{5} A$.

Let T be a countable dense subset of h. By repeated application the Luzin-Menchoff Theorem (Thm 6.4[2]), we can construct an F_{σ} set $W_{A}=u W_{m} \subset A-\operatorname{dom}(T)$ so that $W_{A} C_{5} W_{A}$ and $W_{1} n\left(x_{k}, y_{k}\right) \neq \phi$ for each k. Then, by Zahorski [5] (or see Bruckner [2] or a special case of a construction of Agronsky [1]), we can construct an h_{1} in $b M_{5}$ such that $h_{1}=0$ on $I-W_{A}, h_{1} \geq 0, h_{1}$ is usc (h_{1} is continuous at every x in $\left.I-W_{\Lambda}\right),\left\|h_{1}\right\|=\varepsilon$, and $h_{1} \mid W_{1}=\varepsilon$.

For $1 \leq k \leq n$, let B_{k} be the empty set if C1 occurs, $\left(z_{k}-\gamma_{k}, z_{k}\right)$ if $C 2$ occurs, and ($m_{k}, b_{j_{k}}$) if C3 occurs and C2 does not. Let $B_{0}=U B_{k}$. As above, we can pick a set $B \subset B_{0}$ with the same properties as $A \subset A_{0}$, and an F_{σ} set $W_{B}=u W_{m}^{\prime} \subset B-\operatorname{dom}(T)$ so that $W_{B} c_{S} W_{B}$ and $W_{1} \cap\left(x_{k}, y_{k}\right) \neq \phi$ if $B_{k} \neq \phi$. We then construct h_{2} in $b M_{5}$ such that $h_{2}=0$ on $I-W_{B}, h_{2} \leq 0$, h_{2} is 1 sc (h_{2} is continuous at every x in $I-N_{B}$), $\left\|h_{2}\right\|=\varepsilon$, and $h_{2} \mid W_{1}^{\prime}=-\varepsilon$. Observe that $W_{A} \cap W_{B}=\phi$.

Let $g=h+h_{1}+h_{2}$. Then $\|f-g\|<2 \varepsilon$, and $g \in b B_{1}$. Our next lemma will show that $g \in b M_{i}$. Let C_{f} (resp. A_{f}) be the set of continuity (resp. approximate continuity) points of a function f.

Lemma 3 Let $F \in b M_{i}$. If $G \in b A, G$ is usc (resp. 1sc), $G \geq 0$ (resp. $G \leq 0$), $C_{G}=\{x \mid G(x)=0\}$, and $I-A_{F} \subset C_{G}$, then $F+G \in b M_{i}$.

Proof: Fix i. We prove the result for G usc. Let $E=E_{a}(F+G)$. Then $E=E_{a}(F) \cup\left(E \cap E_{0}(G)\right)$. It is easy to see that $E \cap E_{0}(G)$ is an M_{5}
set since $E_{0}(G) \subset A_{F}$. Thus E is the union of two M_{i} sets and $E \in M_{i}$. Now let $E=E^{a}(F+G)$. For $x \in E$, we can pick a rational r so that $F(x)<r<a$ and $r-F(x)<a-(F+G)(x)$. We use the upper semi-continuity of G to pick an interval J with rational endpoints so that $x \in J$ and $E^{r}(F) \cap J C E$. Since E is the countable union of such sets, $E \in M_{i}$. The case of G lsc is similar. This completes the proof of the lema.

We now show that g has property A^{\prime} on I by four cases.
1 If $x \in I-u\left[x_{k}, y_{k}\right]$, then $g(x)=h(x)$. Since $K^{\prime}(x, h(x)) \cap h \neq \varnothing$ and T is dense in $h, K^{\prime}(x, g(x)) n g \neq \varnothing$ ($g=h$ on $\left.\operatorname{dom}(T)\right)$.

2 Suppose $x \in\left[x_{k}, y_{k}\right]$ for some k and $C 1$ occurs. If $x=x_{k}$, then by our construction $g(x)=h(x)$ and $K^{\prime}(x, g(x)) n g \frac{f}{\tau} \phi$. If $x \in\left(x_{k}, y_{k}\right] \cap W_{A}$, then $g(x)>h(x)$. Since T is dense in $h, h(x)$ is a left cluster value of T. Thus $K^{\prime}(x, g(x)) n g \neq \varnothing$. If $x \in\left(x_{k}, y_{k}\right]-W_{A}$, then $g(x)=h(x)$ and the argument of 1 above applies.

3 Suppose $x \in\left[x_{k}, y_{k}\right]$ and $C 2$. occurs. If $x \in Z \cap\left[x_{k}, z_{k}\right]$, then g is above $P\left(x_{k}, y_{k}\right)$ on a subset of $\left(z_{k}, z_{k}+\gamma_{k}\right)$, so $K^{\prime}(x, g(x)) n_{g} \neq \phi$. If $x \in Z \cap\left[z_{k}, y_{k}\right]$, then g is below $P\left(x_{k}, y_{k}\right)$ on a subset of $\left(z_{k}-\gamma_{k}, z_{k}\right)$, so $K^{\prime}(x, g(x)) n g \neq \varnothing$. If $x \in W_{A} \cap\left(x_{k}, y_{k}\right)$, then, as in 2 above, $K^{\prime}(x, g(x)) n g \neq \varnothing$. A similar argument applies to $x \in W_{B} \cap\left(x_{k}, y_{k}\right)$. If $x \in\left[x_{k}, y_{k}\right]-\left(W_{A} \cup W_{B} \cup Z\right)$, then the argument in 1 above applies.

4 If $x \in\left[x_{k}, y_{k}\right]$ and C3 occurs but C2 does not, then an argument similar to that in 3 above applies.

Thus g has property A^{\prime} on I and this finishes the proof of the theorem.

Note that the case of $b M_{1}$ does not follow from the proof of Theorem 2 since it is possible that $f \in b M_{1}, E_{a}(f) \neq \varnothing$, but $\lambda\left(E_{a}(f)\right)=0$.

We prove Theorem 3 for the case $b M_{1}$ and then indicate how
simple modifications in the proof yield the analogues for $b M_{i}$ where $i \geq 2$.

Theorem 3 The class of all functions in bDB_{1} having every real number as a derived number at every point is a residual set.

Proof: Let X be the class of all functions in bDB_{1} having both $+\infty$ and $-\infty$ as derived numbers at every point, a residual G_{δ} set by Theorem B. Let N be the class of all functions in X having every real number as a derived number at every point. The proof will show that $\mathrm{X}-\mathrm{N}$ is first category in X .

We need some terminology to use later in the proof. For any point (x, y) let $o(x, y)$ be the open half-ray $\{(x, v): v<y\}$ and let $0(x, y)$ be the open half-ray $\{(x, v): v>y\}$. For θ, β, and δ positive rationals with θ and β angle measures less than π such that $\theta+\beta>\pi$, let $r(\theta, \beta, \delta, x, y)$ be the open set of all (u,v) such that:

1) (u, v) is in $o(x, y)$ or
2) $x<u<x+\delta$ and the angle between the line segment joining (x, y) to (u, v) and $o(x, y)$ is less than θ or
3) $x-\delta<u<x$ and the angle between the line segment joining (x, y) to (u, v) and $o(x, y)$ is less than β.
$R(\theta, B, \delta, x, y)$ is similarly defined using $O(x, y)$ instead of $o(x, y)$.
Let $y(\theta, \beta, \delta)$ be the set of all f in X with $r(\theta, \beta, \delta, x, f(x)) n f=\phi$ for some x in I, and $Y(\theta, \beta, \delta)$ the set of all f in X with $R(\theta, B, \delta, x, f(x)) \cap f=\phi$ for some x in I. Then $X-N$ is the countable union of all such $y(\theta, \beta, \delta)$ and $Y(\theta, \beta, \delta)$.

We define $b_{f}(x)=\inf \left(C^{-}(f, x) \cup C^{+}(f, x)\right)$. Let $z(\theta, \beta, \delta)$ be the set of all f in X with $\mathrm{r}\left(\theta, \beta, \delta, x, \mathrm{~b}_{\mathrm{f}}(\mathrm{x})\right) \mathrm{nf}=\phi$ for some x in I . We call such an x a z-value of f. $Z(\theta, \beta, \delta)$ is similarly defined using
$t_{f}(x)=\sup \left(C^{-}(f, x) \cup C^{+}(f, x)\right)$ and $R\left(\theta, \varepsilon, \delta, x, t_{f}(x)\right)$. In the rest of the proof θ, β, and δ are fixed. It is easy to see that $y(\theta, \beta, \delta)$ is a subset of $z(\theta, B, \delta)$. It remains to show that $z(\theta, \beta, \delta)$ is a closed nowhere dense subset of X. A similar argument will apply to $Y(\theta, \beta, \delta) \subset Z(\theta, \beta, \delta)$.

Lemma $4 z(\theta, \beta, \delta)$ is closed in X.
Proof: Suppose $f_{n} \rightarrow f$ uniformly and $f_{n} \epsilon z(\theta, \beta, \delta)$ for all n. Let x_{n} be a z-value for f_{n}. Since we can pick a convergent subsequence, let us assume that $x_{n}+x$ in I. It is easy to see that $b_{f}\left(x_{n}\right) \rightarrow b_{f}(x)$. The fact that each x_{n} is a z-value of f_{n} forces x to be a z-value of f. Thus $f \in Z(\theta, \beta, \delta)$ and the set is closed.

Lemma 5 The complement of $z(\theta, \beta, \delta)$ is dense in X.
Before proving the lema we make an observation. If f is in $z(\theta, \beta, \delta)$ and x and y are z-values of f, then $|x-y| \geq \delta$. Thus the set of z-values of f is a finite set.

Proof of Lemria 5: Suppose $f \in Z(\theta, \beta, \delta), \varepsilon>0$, and x is a z-value of f. We will construct a g in X such that $\|f-g\| \leq \varepsilon$, x is not a z-value of g, and the set of z-values of g is contained in the set of z-values of f. Essentially, the construction of g eliminates one z-value of f.

Since $b_{f}(x)$ is in $C^{-}(f, x) \cup C^{+}(f, x)$, we may assume that $b_{f}(x)$ is in $C^{-}(f, x)$. Let T be a countable dense subset of f. We can then pick a c-dense in itself F_{σ} subset of f, say E, so that:

1 EกT= ϕ
$2 x \in \operatorname{cl}(\operatorname{dom}(E))-\operatorname{dom}(E)$
$3 \mathrm{cl}(\operatorname{dom}(E)) \subset(x-\delta, x]$
$4 \mathrm{f}\left(\mathrm{X}_{\mathrm{n}}\right) \rightarrow \mathrm{b}_{\mathrm{f}}(\mathrm{x})$ if $\mathrm{x}_{\mathrm{n}} \in \operatorname{dom}(\mathrm{E})$ and $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$.

By Theorem 1 of [3] there is an h in $b D B_{1}$ so that $h=f$ on I-dom (E) and $f: h \geq f-\varepsilon$ on $\operatorname{dom}(E)$. By using the construction in the proof of that theorem we can easily pick h so that $r\left(\theta, \beta, \delta, x, b_{f}(x)\right) n h \neq \phi$ and if $y \& d o m(E)$ and $x_{n} \rightarrow y$ with $x_{n} \in \operatorname{dom}(E)$, then $f\left(x_{n}\right)-h\left(x_{n}\right) \rightarrow 0$. Observe that $b_{h}(x)=b_{f}(x)$. Let l be the line through $\left(x, b_{h}(x)\right)$ such that the angle between l and $o\left(x, b_{h}(x)\right)$ is $(\beta+\pi-\theta) / 2$. We define
$g(z)= \begin{cases}f(z)(=h(z)) & \text { on } I-(x-\delta, x) \\ \max (h(z), \ell(z)) & \text { on }(x-\delta, x) .\end{cases}$
Observe that $g=f$ on I-dom (E). It is easy to see that g is in $b D B_{1}$, $b_{g}(x)=b_{f}(x)$, and $r\left(\theta, \beta, \delta, x, b_{g}(x)\right) \cap g \neq \phi$. Claim $1 \quad g \in X$.

Proof: If $z \in \operatorname{dom}(E)$, then $g(z)<f(z)$. Since E misses T and T is dense in $f,+\infty$ is a derived number on the right at z and $-\infty$ on the left. If $z \ell d o m(E)$, then $g(z)=f(z)$ and g has the same derived numbers as f since $g=f$ on dom (T) and T is dense in f. Thus $g \in X$.

Claim 2 The z-values of g are also z-values of f and x is not a z-value of g.

Proof: By our construction, x is not a z-value of g. Suppose y is not a z-value of f. We consider two cases.

1 If $y \in I-c I(\operatorname{dom}(E))$, then $b_{g}(y)=b_{f}(y)$ and $r\left(\theta, \beta, \delta, y, b_{f}(y)\right) \cap f \neq \phi$. Since $g \leq f, r\left(\theta, \beta, \delta, y, b_{g}(y)\right) n g \neq \phi$. Thus y is not a z-value of g.
2 If $y \in \operatorname{cl}(\operatorname{dom}(E))$, then by our construction $y \in(x-\delta, x)$ and

$$
\begin{aligned}
& b_{g}(y) \geq \ell(y) \text { so that }\left(x, b_{g}(x)\right) \text { is in } r\left(\theta, \beta, \delta, y, b_{g}(y)\right) \text {. Thus } \\
& r\left(\theta, \beta, \delta, y, b_{g}(y)\right) \cap g \neq \phi \text { and } y \text { is not a } z \text {-value of } g \text {. }
\end{aligned}
$$

This verifies the claim.
By making this modification near each z-value of f, we can construct $g \in X-z(\theta, \beta, \delta)$ so that $\|f-g\| \leq \varepsilon$. This completes the proof
of Lemma 5 and the theorem.
Theorem 4 For each $i \geq 2$, the class of all functions in $b M_{i}$ having every real number as a derived number at every point is a residual set in $b l_{i}$.

Proof: The proof is very similar to that of Theorem 3. The analogue of the set E in the proof of lemma 5 should be chosen as we picked W_{A} in Theorem 2, with $E \subset E E^{f(x)+\varepsilon / 2}(f) n(x-\delta, x)$. We then proceed to construct the function h as we did h_{1} or h_{2} in Theorem 2 . The rest of the proof remains unaltered.

An open question is whether or not the set of typical functions of Theorem 3 or 4 is a G_{δ} set. Other properties found to be typical of bDB_{1} functions could be candidates for the $b M_{i}$ case. See Ceder and Pearson [4] for a survey of such properties and interesting candidates not decided at this time.

BIBLIOGRAPHY

['1] Agronsky, S.J., Ph.D. Thesis, University of California, Santa Barbara, 1975.
[2] Bruckner, A.M., Differentiation of Real Functions, SpringerVerlag (No. 659), Berlin/New York, 1978.
[3] Ceder, J.G. and Pearson, T.L., On Typical Bounded Darboux Baire 1 Functions, Acta Math. Sci. Hungar., 37(4), (1981), 339-348.
\qquad , A Survey of Darboux Baire 1 Functions, Real Analysis Exchange, 9, (1983-84), 179-194.
[5] Zahorski, Z., Sur la première dérivée, Trans. Amer. Math. Soc., 69, (1950), 1-54.

Received September 14, 1983.

