Ewa Lazarow, Institute of Mathematics, 90-238 Łodz, Stefan Banach 22, Poland.

Selective differentiation of typical continuous functions

The notion of selective derivative was introduced by R.J. O'Malley [5] who presented some interesting theorems and problems on selective derivatives.

R.J. O'Malley has proved that for every continuous function there exists a selection S and a point x such that f has a selective derivative at x_c . His question was: If f is a continuous function, for how large a set A does there have to exist a selection S with respect to which f has a selective derivative at every point of A.

In this paper we shall show that the set A has Lebesgue measure zero and is of the first category.

To simplify the later computation we shall use [a,b] to denote the closed interval having endpoints a and b regardless of whether a > b or a < b. By a selection we mean an interval function s([a,b]) for which a < s([a,b]) < b holds for every $0 \le a < b \le 1$. We define the lower selective derivative f'(x) of the function f(x) by

$$s^{f'}(x) = \lim_{h\to 0} \inf \frac{f(s([x,x+h])) - f(x)}{s([x,x+h]) - x}$$
.

It should be clear from the above definition how we would define the upper selective derivative, f'(x), selective derivative sf'(x) and one-sided selective derivatives.

Let C[0,1] denote the class of continuous functions on [0,1] furnished with the "sup" norm $||f|| = \max_{0 < t < 1} |f(t)|$.

By "typical" continuous functions we mean those which form a residual subset in the complete metric space C[0,1]. Now we shall give several basic theorems and refer the reader to [5] and [4] as important sources.

Theorem A: (See [5], Lemma 1.)

Let $f:[0,1] \to R$ and S be a fixed selection.

Let
$$P_n = \{x : \frac{f(s([x,x+h])) - f(x)}{s([x,x+h]) - x} > 0 \text{ for all } h$$
 with $|h| < \frac{1}{n} \}$.

If x < y and both belong to P_n and if $y - x < \frac{1}{n}$, then f(x) < f(y). Hence f is of bounded variation on P_n .

Theorem B: (See [5], Lemma 2.)

Let $f:[0,1]\to R$ and let S be a fixed selection. Let P_n be defined as above and let $C\ell P_n$ be its closure. Let x< y be any two points such that

- (i) the distance between x and y is less than $\frac{1}{n}$
- (ii) there is a decreasing sequence $\{x_k^{}\}$ of points of $_n^{P}$ converging to x
- (iii) there is an increasing sequence $\{y_i\}$ of points of P_n converging to y
- (iv) Min $[sf'(x), sf'(y)] > -\infty$. Then f(x) < f(y).

Theorem C: (See [4].)

If $f:[0,1] \to R$ has a selective derivative sf'(x) for a given selection S, then the set of points of continuity of sf'(x) is everywhere dense in [0,1].

Theorem D: (See [2].)

Let f be defined on a perfect set P. Suppose f satisfies condition (i) or condition (ii) below.

- (i) f has the property of Baire on P.
- (ii) f is measurable with respect to some non-atomic measure for which Lusin's theorem holds and such that $\mu\left(P\right)>0.$

Then there exists a non-empty perfect set $Q \subset P$ such that $f|_{Q}$ is differentiable at all $x \in Q$ (infinite derivatives allowed).

Theorem E: (See [1], page 60.)

Let f be a continuous function defined on R and let $-\infty < \alpha < \infty$. If the set $\{x: D^+f(x) \geq \alpha\}$ is dense in R and if there exists an $x_0 \in R$ such that $D^+f(x_0) < \alpha$, then the set $\{x: D^+f(x) = \alpha\}$ has cardinality c, the cardinality of R.

Theorem 1.

Let $f:[0,1] \to R$ be a Lebesgue measurable function. Then there is a selection S and a set P of cardinality c such that f has a selective derivative (possibly infinite) at all $x \in P$.

Proof.

By Theorem D we have that there is a perfect set $Q \subset [0,1]$ such that $f|_Q$ is differentiable at all $x \in Q$. Let $[a,b] \subset [0,1]$.

If $(a,b) \cap Q \neq \emptyset$, then let s([a,b]) be any point $x_0 \in Q \cap (a,b)$. If $(a,b) \cap Q = \emptyset$, then let $s([a,b]) = \frac{a+b}{2}$. We denote the set of bilateral limit points of Q by P. Then $Q = P \cup C$ where C is at most countable. Let $x_0 \in P$ and $h_n \to 0^+$. Then $(x,x+h_n) \cap Q \neq \emptyset$ for every n and $x_{h_n} = s([x,x+h_n]) \in (x,x+h_n) \cap Q \subseteq Q$ and $x_{h_n} \to x_0^+$. Hence

$$\lim_{n \to \infty} \frac{f(s([x_0, x_0 + h_n])) - f(x_0)}{s([x_0, x_0 + h_n]) - x_0} = \lim_{n \to \infty} \frac{f(x_h) - f(x_0)}{x_h - x_0} = f(x_0)$$

$$= f(x_0) - f(x_0)$$

$$= \lim_{n \to \infty} \frac{f(x_0) - f(x_0)}{x_h - x_0} = \lim_{n \to \infty} \frac{f(x_h) - f(x_0)}{x_h - x_0} = \lim_{n \to$$

Analogously, if $h_n \rightarrow 0^-$, then

$$\lim_{n \to \infty} \frac{f(s([x_0 - h_n, x_0])) - f(x_0)}{s([x_0 - h_n, x_0]) - x_0} = f|_{Q}(x_0).$$

Since the sequences {h_n} were arbitrary,

$$sf'(x_0) = sf'(x_0) = f|_{0}'(x_0)$$
.

This completes the proof of Theorem 1.

The next example shows that the set P of cardinality c cannot be arbitrary even if we assume that f is an absolutely continuous function.

Example 1.

Let A be a subset of [0,1] such that for each interval $[a,b] \subset [0,1] \ \mu([a,b] \cap A) > 0 \ \text{ and } \ \mu([a,b] \cap ([0,1] \setminus A)) > 0.$ Let $f(x) = \int_{0}^{x} \chi_{A}(t) \, dt.$

Then $f'(x) = \chi_A(x)$ almost everywhere.

Let $B = \{x \in [0,1] \ f'(x) = \chi_A(x)\}$ and $P = [0,1] \setminus B$. Then $\mu(P) = 0$. Let $\alpha \in (0,1)$. Then $\{x : D^+f(x) \geq \alpha\} \supset \{x : f'(x) = 1\}$ is dense on [0,1] and there exists an $x_0 \in [0,1]$ such that $D^+f(x_0) = f'(x_0) = 0 < \alpha$. Hence $\{x : D^+f(x) = \alpha\}$ has cardinality c. Then $P \supset \{x : D^+f(x) = \alpha\}$ has cardinality c. We suppose that there exists a selection S such that f has a selective derivative at all points $x \in P$. Then the function f has a selective derivative at all points $x \in [0,1]$ and $sf'(x) = \chi_A(x)$ almost everywhere. Let $[a,b] \subset [0,1]$. Then osc sf'(x) = 1 and consequently sf'(a,b) is an everywhere discontinuous function which contradicts Theorem C.

Theorem 2.

There exists a continuous function $f:[0,1] \to \mathbb{R}$ such that for every selection S the set of points at which the selective derivative (possibly infinite) of the function f exists with respect to S is of measure zero and of first category. In fact the set of such functions is a residual subset of $\mathbb{C}[0,1]$.

Proof.

Let f be a continuous, nowhere approximately differentiable

function on [0,1] (See [3].) Let S be a fixed selection. Let P be the set of those points in which a selective derivative exists (possibly infinite) with respect to S. $P_1 = \{x \in [0,1] : f'(x) > -\infty\} \text{ and } P_2 = \{x \in [0,1] : f'(x) < \infty\}.$ Then $P \subset P_1 \cup P_2$. Let $P_1^n = \{x \in [0,1] : \frac{f(s([x,x+h])) - f(x)}{g([x,x+h]) - x} > 0$ -n for all h with $|h|<\frac{1}{n}\}$. Then $P_1\subset\bigcup\limits_nP_1^n\subset\bigcup\limits_n\mathcal{C}\iota$ P_1^n where $\operatorname{\it CL} P_1^n$ denotes closure of $\operatorname{\it P}_1^n$. Suppose that there is $\operatorname{\it n}_o$ such that $\mu(\mathcal{C}\ell P_1^{n_0}) > 0$. Let $g(x) = f(x) + n_0 x$. Then the set $\mathcal{C}_{\mathbf{1}} P_{\mathbf{1}}^{\mathbf{1}_{\mathbf{0}}}$ will be precisely the set $\mathcal{C}_{\mathbf{1}} P_{\mathbf{n}}$ of Theorem A for the function g(x). Let Q denote the set of bilateral limit points of $CLP_1^{n_0}$ and $Q_i = Q \cap [\frac{i-1}{2n}, \frac{i}{2n}]$ for i = 1, 2, ... 2n. by Theorem A and Theorem B $\, g \,$ is increasing on $\, Q_{i} \,$ for each i and therefore g is measurable and of generalized bounded variation on $\mathcal{C}_{\mathbf{1}} P_{\mathbf{1}}^{0}$. Hence the function g is approximately derivable at almost all points of $\operatorname{\mathcal{C}\!\ell}$ $\operatorname{P}_1^{\operatorname{n}\! \circ}$ which contradicts the assumption of the function $f(x) = g(x) - n_0x$. Therefore for every n $\mu(\mathcal{C}\ell \ P_1^n) = 0$ and $\mathcal{C}\ell \ P_1^n$ is nowhere dense set. Hence the set P_1 is of measure zero and of first category. Let h(x) = -f(x). Then h(x) = -f(x) and $P_2 = \{x \in [0,1] \quad {}^{S}f'(x) < \infty\} = \{x \in [0,1] \quad {}_{S}h'(x) > -\infty\}.$ Hence $\mu(P_2) = 0$ and P_2 is a set of first category and

Because the set of nowhere approximately differentiable functions is a residual subset of C[0,1] ([3]), the theorem is proved.

also $P \subset P_1 \cup P_2$.

Theorem 3.

Let $f:[0,1] \to R$ and $K \subset [0,1]$ satisfy the following conditions:

- (i) if $x \in K$ and f'(x) exists, then $|f'(x)| < \infty$
- (ii) for every $x \in K$ $D_L f(x) \cap D_R f(x) \neq \emptyset$ where $D_L f(x)$ $(D_R f(x))$ denotes the set of left-sided (right-sided) derived numbers at x.

Let $g: K \to R$ be a function such that for every $x \in K$ $g(x) \in D_L^f(x) \cap D_R^f(x)$ and $|g(x)| < \infty$. Then there is a selection S such that at all $x \in K$ sf'(x) = g(x).

The assumptions (i), (ii), (iii) are necessary -

- (i) For every set K such that $\mu(K) = 0$ there exists the continuous function f such that $f'(x) = \infty$ at all $x \in K$. (See [1], page 229.)
- (ii) By [5], $\mathrm{sD}_L f(\mathbf{x}) \subseteq \mathrm{D}_L f(\mathbf{x})$ and $\mathrm{sD}_R f(\mathbf{x}) \subseteq \mathrm{D}_R f(\mathbf{x})$ where $\mathrm{sD}_L f(\mathbf{x})$ ($\mathrm{sD}_R f(\mathbf{x})$) denotes the set of left-sided (right-sided) selective derived numbers of \mathbf{x} . If $\mathrm{D}_L f(\mathbf{x}) \cap \mathrm{D}_R f(\mathbf{x}) = \emptyset$, then $\mathrm{sD}_L f(\mathbf{x}) \cap \mathrm{sD}_R f(\mathbf{x}) = \emptyset$.
- (iii) Let P denote the set of bilateral limit points of the Cantor set C. The set C is of measure zero and of the first category. We define

$$f(x) = \begin{cases} x & \text{if } x \in [0,1] \setminus P \\ 0 & \text{if } x \in P \end{cases}.$$

For every natural n C \cap C $^{(n)}$ = C. If $x \in [0,1] \setminus C$, then f'(x) = 1. If $x \in C \setminus P$, then $D_L f(x) \cap D_R f(x) = \{1\}$ and if $x \in P$, then $D_L f(x) \cap D_R f(x) = \{0\}$. If there exists the selection S such that the function f is selectively differentiable with respect to S at all $x \in C$, then sf'(x) = 1 at $x \in C \setminus P$ and sf'(x) = 0 at $x \in P$. Of course sf'(x) = 1 at $x \in [0,1] \setminus C$ and the selective derivative exists and it is finite at all points of [0,1]. This is impossible because f is not a Darboux function nor is it Baire 1. (See [5], Theorem 11.)

Proof of Theorem 3.

Let $x_0 \in K$. Then $g(x_0) \in D_L f(x_0) \cap D_R f(x_0)$ and there are two sequences $\{x_n^{}\}$, $\{y_n^{}\}$ such that $x_n^{} \to x_0^{}$ and for every n $x_n > x_0$ and $y_n \rightarrow x_0, y_n > y_0$ and

$$\lim_{n\to\infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} = \lim_{n\to\infty} \frac{f(y_n) - f(x_0)}{y_n - x_0} = g(x_0).$$

Since for every $k \geq 2 K^{(k)} \subset K^{(k-1)}$, $K \supset K \cap K' \supset K'' \cap K \supset \dots$

$$s([a,b]) \in \{a_n > a : a_n \to a | \lim_{n \to \infty} \frac{f(a_n) - f(a)}{a_n - a} = g(a) \} \cap (a,b)$$

if and only if

1) $a \in K$ and $b \notin K$

or

2) $a \in K \cap K'$ and $b \notin K \cap K'$

or

3) there is a natural number p such that a $\in K \cap K^{(p)}$ 470

a $\notin K \cap K^{(p+1)}$ and there is a natural number s < p such that $b \in K \cap K^{(s)}$ and $b \notin K \cap K^{(s+1)}$.

$$s([a,b]) \in \{b_n < b : b_n \to b \mid \lim_{n \to \infty} \frac{f(b_n) - f(b)}{b_n - b} = g(b)\} \cap (a,b)$$

if and only if

4) b ∈ K and a ∉ K

or

5) b∈K∩K anda∉K∩K'

or

6) there is a natural number p such that $b \in K \cap K^{(p)}$, $b \notin K \cap K^{(p+1)}$ and there is a natural number s < p such that $a \in K \cap K^{(s)}$ and $a \notin K \cap K^{(s+1)}$.

If (1) - (6) aren't satisfied, then let $s([a,b]) = \frac{a+b}{2}$. Let $x_0 \in K$ and $K = K^O$. Then there is a number $p \in \{0,1,2,\ldots n_O-1\}$ such that $x_0 \in K \cap K^{(p)}$ and $x_0 \notin K \cap K^{(p+1)}$. Therefore, there is a $\delta > 0$ such that $(x_0 - \delta, x_0 + \delta) \cap K \cap K^{(p)} = \{x_0\}$. Let $|h| < \delta$. If $0 < h < \delta$, then $[x_0, x_0 + h] \subset [x_0, x_0 + \delta)$ and $x_0 + h \in K \cap K^{(p)}$ where s < p or $x_0 + h \notin K$ if p = 0, and $x_0 + h \notin K \cap K^{(p)}$. Therefore, $s([x_0, x_0 + h]) \in \{x_0^O > x_0 : x_0^O + x_0 \}$ im $x_0^O - x_0^O = g(x_0)$. If $-\delta < h < 0$, then $[x_0 - h, x_0] \subset (x_0 - \delta, x_0]$, $x_0 - h \in K \cap K^{(k)}$ where k < p or $x_0 - h \notin K$ if k = 0, and $x_0 - h \notin K \cap K^{(p)}$. Therefore

$$s([x_o - h, x_o]) \in \{x_n^o < x_o : x_n^o \to x_o, \lim_{n \to \infty} \frac{f(x_n^o) - f(x_o)}{x_n - x_o} = g(x_o)\}.$$

Hence

$$sf'(x) = \lim_{h\to 0} \frac{f(s([x_0, x_0 + h])) - f(x_0)}{s([x_0, x_0 + h]) - x_0} = g(x_0)$$

and the theorem is proved.

REFERENCES

- [1] A.M. Bruckner Differentiation of real function. Lecture Notes in Mathematics, 659, Springer-Verlag, New York 1978.
- [2] A.M. Bruckner, J.Ceder and M.Weiss On the differentiability structure of real function. Trans. Amer. Math. Soc. 142 (1969), 1-13.
- [3] V. Jarnik Sur la dérivabilité des fonctions continuous. Spisy Privadov. Fak. Univ. Korlovy 129 (1934), 3-9.
- [4] M. Laczkovich On the Baire class of selective derivatives. Acta Math. Sci. Hung. 29 (1977), 99-105.
- [5] R.J. O'Malley Selective derivates. Acta. Math. Sci. Hung. 29 (1977), 77-97.

Received April 15, 1984.