Robert Huotari, Department of Mathematical Sciences, Indiana University -Purdue University at Fort Wayne, Fort Wayne, IN 46805

ISOTONIC APPROXIMATION OF APPROXIMATELY CONTINUOUS FUNCTIONS

Let M consist of all nondecreasing functions on [0,1]. If f is in $L_{\infty}[0,1]$ and $1 , then M is a closed convex subset of the uniformly convex subset of the uniformly convex Banach space <math>L_p[0,1]$ so there is a unique best L_p -approximation, f_p , to f by elements of M, i.e.,

$$\left|\left|\mathbf{f} - \mathbf{f}_{\mathbf{p}}\right|\right|_{\mathbf{p}} \leq \left|\left|\mathbf{f} - \mathbf{h}\right|\right|_{\mathbf{p}}, \mathbf{h} \in M.$$

If $\lim_{p \to \infty} p(x)$ (respectively, $\lim_{p \neq 1} p(x)$) exists almost everywhere as a bounded measurable function, then f is said to have the <u>Polya property</u> (respectively, <u>Polya-one</u>). If f has at most discontinuities of the first kind, then f has both properties [3], [1]. The purpose of this note is to present the results of our investigations of the case in which f is in bA, the set of all bounded approximately continuous functions on [0,1]. The theorems mentioned here are proven in [2].

THEOREM 1. Suppose f ε bA, $1\leq p<\infty$ and g is a best L -approximation to f by elements of M. Then g is continuous.

THEOREM 2. Let f ϵ bA. Then there exists a unique best L $_1$ approximation f $_1$ of f by elements of M.

THEOREM 3. Let $f \in bA$. Then $f \atop p$ converges uniformly to $f \atop 1$ as $p \atop 1$ decreases to one.

So, not only does the Polya-one property hold for $f \in bA$, but the convergence is uniform. The Polya property however, may fail. In [2], an example, h, is constructed which is continuous on $[0, \frac{1}{2})$ and $[\frac{1}{2}, 1]$ and approximately continuous at $\frac{1}{2}$ but there exists a sequence $\{p_n\}$ with $p_n \neq \infty$ such that $\{h_{p_n}\}$ diverges at every point in $(\frac{1}{2}, 1]$.

Of related interest is the continuity, in L_p , $1 \leq p < \infty$, of the map $f \neq f_p$. For $1 , it is known that <math>f \neq f_p$ is continuous if f is any bounded measurable function [4, Corollary 2]. This is not true if p = 1. Indeed, by [2], there exist functions f^n , $n=1,2,\ldots$ and f such that each f^n is continuous and $f^n \neq f$ pointwise but $\{f_1^n\}$ is not Cauchy in L_1 . We are however, able to state the following:

THEOREM 4. Let f, fⁿ, n=1,2,... ϵ bA. If $||f^n - f||_1 \to 0$, then $||f_1^n - f_1^+||_1 \to 0$.

REFERENCES

- 1. R. Huotari, "Best L_1 -approximation of quasi continuous functions on [0,1] by nondecreasing functions", submitted.
- 2. R.B. Darst and R. Huotari, "Best L_1 -approximation of bounded, approximately continuous functions on [0,1] by nondecreasing functions", submitted.
- R.B. Darst and S. Sahab, "Approximation of continuous and quasi continuous functions by monotone functions", J. Approx. Theory, 38(1983), 9-27.
- 4. D. Landers and L. Rogge, "Continuity of best approximants", Proc. Amer. Math. Soc., 83(1981), 683-689.