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 Porosity Characteristics of Intersection Sets
 with the Typical Continuous Function

 In 1931, Banach and Mazurkiewicz proved independently that the 'typical

 continuous function1 is nowhere dif ferentiable. (We use the term 'typical

 continuous function' to mean that the set of functions which exhibit the

 property we are discussing is residual in C [0,lj.) In 1933 and 1934 Jarnik

 proved that the typical continuous function has every extended real number

 as a derived number, everywhere; and every extended real number as an

 essential derived number, almost everywhere.

 We will come back to these results to illustrate some applications of

 the present work: in which we ask for what fixed family of functions 3

 and 'smallness' P is the set (f € C[0,1] ļ for every g € 2? {t: f(t) - g(t)}

 is P} residual? That is, for what 3 and P does the typical continuous

 function intersect every function in S in a P set?

 For example, in 1961, Goffman showed that for any modulus of continuity

 a and corresponding equicontinuous class C-(o), the typical continuous

 function intersects every function in c(o) ir» a measure zero set. In 1981,

 Thomson showed that every level set of the typical continuous function is

 bilaterally strongly porous; (in this case the family of functions is all

 horizontal lines). In 1982 Bruckner and myself showed that for any a-compact

 family 3, the typical continuous function intersects every function in 3.

 in a bilaterally strongly porous set.

 In order to strengthen the 'smallness' P, (much as bilateral strong

 porosity strengthens measure zero), we will consider the following generalized

 porosity:
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 Def: Let i be a strictly increasing continuous function with

 <ļ>(0) = 0. Say a set B £ IR is (ļi-porous at x if there exists

 a sequence of intervals {In} with I c (Bu{x})c so that

 In ■* x and d(x,In) < <ļ»C i I n i ) Vn. Similarly define right,

 left, and bilateral porosity at x. Say B is <|>-porous if

 B is <|>-porous at all of its points. If 4> = {<1>al a € J}

 (here, J is an open interval) is a family of porosity functions,

 say B is strongly 4>-porous if B is <1>a~porous Vor € J. We

 will call <t> ordered if a,ß £ J with or < ß imply there

 exists a 6 > 0 so that <ļ> (x) < <1>0(x) tfx € (0,6).
 a p

 Some examples of porosity families:

 * = j ^(x) = «x a 6 (0,»)}. Here, bilateral strong porosity is
 equivalent to bilateral strong 4>-porosity.

 2- )»G(x) = x1/ût a € (0,1)}.
 Both the above porosity families are ordered.

 If, for an increasing function h, (h(0) = 0), we let u'1 be the

 (outer) Hausdorff measure associated with h, then it is not hard to show
 - 1

 that if a set B is <j>-porous it is also nowhere dense and p (B) = 0.

 One of the results in my thesis is that for any fixed, ordered

 porosity family <f>, the typical continuous function intersect every Lipshitz

 function in a bilaterally strongly <J>-porous set. Just recently, Humke and

 Laczkovich showed that for any fixed, ordered porosity family <î>, the typical

 conti nous function intersects every monotonie function in a bilaterally

 strongly ^-porous set.

 It is not obvious from these examples what the connection is (if any)

 between the family 3 and the small ness P. The question can be answered

 in the case where the family 3 is controlled by a modulus of continuity:
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 Def: For a modulus of continuity a, let

 =£(a) = (gi 3m > 0 Vx, y ¡g(x) - g(y) ¡ š ma( x - y )}.

 Theorem: Let a be a concave modulus of continuity and be an

 ordered porostiy family so that D+(o<|> "*)(0) = 0. Then,

 {f€ i3¡V'g€ s£(or) ļt: f(t) = g(t)} is strongly <J>-porousj

 is residual.

 We next give some applications of the above results when the smallness P

 is taken in the context of Hausdorff dimension: the typical continuous

 function intersect every function in af (0 < ß < 1) , in a set of Hausdorff

 dimension less than or equal to 1 - ß ; and if we let A be the set of

 finitely different ¡able functions, then the typical continuous function

 intersect every function in ¿ 'j à U % (where TT; = monotonie functions)

 in a set of Hausdorff dimension zero. [These results are obtained by choosing

 the second porosity family in the examples.]

 Some more technical applic?tions will lead us back to the original

 examples of this talk: if E is a system of paths such that there is a

 porosity function <j> so that each Ey is (unii.) <ļ)-nonporous at x,
 (i.e. not <|>-porous at x), then the typical continuous function is nowhere

 E differenti abi e; and, the typical conti nous function has + or - » as

 a left and right essential derived number, everywhere.

 We conclude with a result that I worked on for a long time and finally

 materialized with some help by David Preiss:

 Theorem: Let o be a modulus of continuity and be an ordered

 and refined* porosity family. If there is a € 4» so that

 *Def: 4> is refined if {t } right <ļ> -nor.porous at zero implies there

 exists a <1>p so is right <J>ß-nonporous at zero. Examples 1
 and 2 of porosity families are both refined.
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 0+Co«1ł 1)(0) > O, then . {f € <3-1 V g C- sf(o) {t: f(t) = g(t)} is

 strongly <ł>-porous} is empty.
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