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 On generalizations of exact Peano derivatives and integrals

 - via the coefficient problems of convergent trigonometric series -

 1. Introduction

 For a given trigonometric series

 1 00
 j à Q + 2 (ancos nx + bn sin nx) (T)

 n=l

 consider the following conditions: (k being a positive integer)

 (Cq) (T) converges to fQ(x) for every x in R =

 (Ck) (T) is (C,k)-summable to f^U) for every x in R;

 (CJ (T) converges in the distributional sense to a distribution f^
 in R.

 For a = 0, k, or the (C )-coefficient problem is: how can one represent
 OL

 the coefficients a , b„ in terms of the "sum" f of (T)? We will discuss
 n n a

 some solutions to these problems and indicate how certain integrals used

 in the solutions are related to the concept of exact Peano derivatives.

 Furthermore, a generalization of the later concept arising naturally through

 the discussion will be considered.

 Before discussing the solutions, first let us recall that if the series

 (T) converges to f(x) uniformly for x in R, then the coefficients an and bp
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 can be represented by the Euler-Fourier formulae:

 a n - j J-TĪ f f(t)cos nt dt, bn = ~J ' f(t)sin nt dt, J-TĪ ' »-7T

 where the integral involved is the definite Riemann integral. Therefore,

 to solve the ((^-coefficient problem, one essentially needs to extend

 the definite Riemann integral so that modified Euler-Fourier formulae would

 make sense even if the continuous function f is replaced by the "sum"

 f of the series (T).
 Ulr

 370



 2. Solutions to the (Cg) -coefficient problem.

 It is well-known that if two trigonometric series [of the form (T)]

 converge pointwisely to the same function, then the sequences of the co-

 efficients of the two series are identical. Hence the (CQ)-coefficient

 problem is well-posed in the sense that if the condition (Cq) holds then

 the coefficients an, bn are completely determined by the sum function fQ.

 Before we discuss the solutions to the problem, we note that the

 Lebesgue integral or even the Denjoy integral in the wide sense (cf. Saks

 [11]) is not good enough to solve the coefficient problem. For, there

 are everywhere convergent trigonometric series of which the sum functions

 are not even Denjoy integrable. For example, (T) is such a series if

 an = 0 and bn = l/£n(n+l).

 The (Cg)-coefficient problem has been solved by Denjoy [2], Marcinkiewicz

 and Zygmund [9], James [3], Burkill [1], respectively. They have developed

 a theory of the totalization symétrique à deux degrés (to be called the

 D5 S -integral), the (T)-integral , the P -integral, and the SCP-integral , c ) S

 respectively. If A denotes one of the integral, then the (CgJ-coefficient

 problem is solved in the following sense: if (Cq) holds then the functions

 fQ(x)cos nx and f0(x)sin nx are A-integrable and the coefficients an and

 bn are given by some modified Euler-Fourier formulae using the definite

 A- integral .

 To indicate what these integrals are, let us recall that the Denjoy-

 Perron integral (cf. [11]) solves the classical primitive problem in the

 sense that it integrates every derivative and recpature its primitive up
 2

 to a constant term. The d9 C S -integral and the P -integral have been developed C 9 S

 in a similar manner that essentially each of these integrals integrates the
 2

 second symmetric derivative D F and recpatures the second primitive F up to

 a linear term, where D2F is defined by D2F(x) = 1 im[F(x+h)+F(x-h)-2F(x)]/2h2.
 h-*-0
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 Due to the nature of being second order, the definite integral of a function

 is related to the second variation of its second primitive. Thus, the

 modified Euler-Fourlcr formulae using these integrals in solving the (Cg)-

 coefficient problem look like

 an = Aj- J f(t)cosntdt ,
 71 (-2tt,0,2TT)

 where the definite integral essentially means the second variation of the

 second primitive of the function f(t)cosnt at the three points -2tt,0,2it.

 On the other hand, the (T)-integral and the SCP-integral are first

 order in nature. Each of these integrals is developed so that essentially
 2

 it integrates the second symmetric derivative D F and recaptures the ordinary

 derivative F' almost everywhere and up to a constant term. Using these

 integrals, the modified Euler-Fourier formulae look like

 , -a+2TT

 an = ir J f (t)cosntdt ,
 06

 where a can be any point in a set of full measure, and the definite integral

 essentially means the first variation of the first derivative of the second

 primitive of the function f(t)cosnt at the points a and a + 2tt, i.e. if

 D F(t) - f(t)cosnt, then an = F' (a+2Tr)-F' (a) . This sounds more like the

 fundamental theorem in integral calculus. Although the indefinite integral

 in such a theory is only almost everywhere defined, it must be nice in

 the sense that it is almost everywhere an exact derivative. Extending the

 the last viewpoint, we are going to see that the exact (k+l)tłl Peano

 derivative plays a role in a certain integral theory used in solving the

 (Ck)-coefficient problem. (Cf. next section.)
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 3. Solutions to (CķJ-coefficient problems.

 The (C^-coefficient problem is not well-posed in general. For example,
 oo

 the series I nsin nx is (C,2)-summable to 0 but the coefficients are not
 n=l

 zero. However, if some extra conditions are imposed on the coefficients

 an» bn, then one still can consider the problem of representing afJ and bn

 in terms of the sum function f^. Such problems have been investigated
 ? k+2

 by James [4]. He has extended his P -integral to a P -integral which in
 k+2

 essence integrates the (k+2)-symmetric derivative D F and recaptures the
 + h

 (k+2) primitive F up to a polynomial of degree k+1, and hence the modified

 Euler-Fourier formulae are much more complicated and will not be reviewed

 here. On the other hand, extending the SCP-integral , a Gk+ļ -integral has

 been obtained in [8], which has been used to solve the same (C^-coefficient

 problem considered by James. The G^ļ -integral is still of order 1 in nature.

 In essence, it integrates the (k+2)^ symmetric derivative D^F and re-
 j, L.

 captures the (k+1) Peano derivative almost everywhere and up to

 a constant term. The Euler-Fourier formulae in the solution for the (C^)-

 coefficient problem considered by James using the -integral look like

 ļ # 05+ 2rr

 an = Ï J fk(t)cosntdt = F, k+1 , (c.+2-ir) _ F(k+ļ)(o) ,
 Ot

 k+2
 where F is a function such that D F(t) = fk(t)cosnt subject to some extra

 conditions. An indefinite Gk+ļ integral is only almost everywhere defined,
 A. L

 but must be almost everywhere an exact (k+1) Peano derivative.
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 4. A perfect solution for the (Cœ) -coefficient problem.

 ÍTT ,fw(t)cosntdt °° mean?
 IT °°

 Unlike the case for the point functions (i.e. real-valued functions of a

 real variable), every distribution f is the distributional derivative of

 a distribution L. Hence, to solve the (C^) °° -coefficient problem, we first
 r b °°

 try to see what the definite integral J f(t)dt means in terms of the dis-

 tribution L. The concept of the value of a distribution T at a point Xq

 in R is the key. We recall it below.

 A distribution T is said to have a value at Xq if the distribution

 TUx+Xq) converges in the distributional sense as a -»■ 0, i.e. for each

 test function <j>,

 jT(ax+x0)<ļ>(x)dx = /T< x)ļaTi,(~ār")dx

 converges as a 0. One shows that if T has value at x0, then lim T(ax+xn)
 a+Q

 is a constant distribution, and this constant is called the value of T at

 Xq, and will be denoted as v(T,Xq).

 Given a distribution f and two reals a, h with a^b, define

 fb
 T(x) e J f(x+t)dt = L(x+b) - L(x+a),

 where L is a distribution with L' = f. (Note that it is well-defined since

 two primitives of the same distribution can be different by at most a

 constant distribution.) If T has value at 0, then define

 rb
 I f(t)dt - v(T ,0) ,
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 which 1s called the definite integral of the distribution f from a to b.

 It is easily shown that if f is a periodic distribution (with period
 rn

 2tt), then the definite integral/ f(t)dt exists. Thus, for every periodic
 -TT

 1 r71
 distribution f, the Fourier coefficients of f, (i.e. -I f(t)cosntdt and

 ' -TT

 1
 - I f(t)sin ntdt) make sense, and we have the Fourier series for such a

 -TT

 distribution. Furthermore, we have the following "perfect" situation

 (cf. [10]):

 Theorem 1 . If f is a periodic distribution (with period 2tt) , then its

 Fourier series converges in the distributional sense to f. Conversely,

 if the trigonometric series (T) converges in the distributional sense to

 f , then (T) is the Fourier series of f . 00 'CO

 Thus, in the distribution theory, convergent trigonometric series and

 Fourier series of periodic distributions are identical. This is beautiful.

 But what does it imply if we are going to stay within the domain of the

 classical theory of point functions? We will discuss one implication in

 the next section.
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 5. Tauberian conditions and exact generalized Peano derivatives.

 It is well-known that if (Cg) holds then so does (C^) (and fļ^fg).

 It is also easy to show that if-tC^) holds, then so does (Cœ). (But in

 this case the relation between the function f^ and the distribution f^

 requires further investigation and will not be discussed here.) The converse

 of each of the above results is not true. However, (C^) plus a certain

 (Tauberian) condition would imply (Cq). This kind of results are also

 well-known. On the other hand, what kind of conditions plus (C^) would

 imply (Cķ) for some k seems to be left unnoticed. We give such a Tauberian

 condition in the following result (cf. [13]):

 Theorem 2. If (C ) holds and if f has value at xn, * then there exists
 • ■■

 a positive integer k such that the series (T) is (C,k)-summable to vif^.Xg)

 at X = Xq.

 With the Tauberian condition in theorem 2, we are led to consider the

 following class of point functions:

 let V = {f| there exists a distribution T of finite order

 such that v(T,x) exists and is equal to f(x) for all x}.

 How do we characterize V within the domain of point functions (i.e. without

 using the concept of distributions)? It happens that a sightly generalized

 notion of the exact Peano derivative will do the job. In fact, we have the

 following result [cf. [7]):

 Theorem 3. A function f is in V if and only if there exist a continuous

 function F and a positive integer k such that for each x in R there exists

 a positive integer n = n(x) such that where 6 is a
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 nth primitive of F.
 i. i.

 Here, denotes the (n+k) Peano derivative of G at x. Recall

 that a function f is called an exact Peano derivative of order k if there

 exists a function F such that F^^(x) = f(x) for all x. From theorem 3, we
 see that for every k, an exact Peano derivative of order k is in V. However,

 there are functions in V which are not exact Peano derivatives of any (finite)

 order (cf. [5]). (Such functions may as well called the exact Peano derivatives

 of «o order.)

 Keeping in mind the perfect result (i.e. theorem 1) in the distribution

 theory, we are hoping that the class V (of the exact generalized Peano

 derivatives) could be utilized to improve and/or unify some results in the

 theory of point functions.

 377



 References

 1 . -J. C. Burkill, Integrals and trigonometric series, Proc. London Math.

 Soc. (3), 1 (1951), 46-57. [Cf. H. Burkill, A note on tirgonometric

 series, J. Math. Anal, and Appl. 40 (1972), 39-44.]

 2. A. Denjoy, Leçons sur le calcul coefficients d'une série trigonométrique,

 Paris (1941 and 1949) .

 3. R. D. James, A general integral II, Cañad. Jour. Math. 2 (1950), 297-306.

 4.

 99-110. [Cf. G. Cross, The representation of (C, k) summable series in

 Fourier form, Cañad. Math. Bull. 21 (1978), 149-158.]

 5. M. Laczkovich, On the absolute Peano derivatives, Ann. Univ. Sci.

 Budapest. Eötvös Sect. Math. 21 (1978), 83-97.

 6. S. Lojasiewicz, Sur la valeur et le limite d'une distribution dans un

 point, Studia Math. 16 (1957), 1-36.

 7. C. M. Lee, Generalizations of Cesàro continuous functions and integrals

 of Perron type, Trans. Amer. Math. Soc. 266 (1981), 461-481.

 8.

 Bull. 24 (1981), 433-440.

 9. J. Marcinkiewicz and A. Zygmund, On the differentiability of functions

 and the summability of trigonometric series, Fund. Math. 25 (1936), 1-43.

 10. J. Mikusinski and R. Sikorski, The elementary theory of distribution (I),

 Polska Akad. Inst. Mat., Warszawa (1957).

 11. S. Saks, Theory of the integral, Warsaw (1937).

 12. L. Schwartz, Théorie des distributions, Paris (1950,51).

 13. G. Walter, Pointwise convergence of distribution expansions, Studia

 Math. 26 (1966), 143-154.

 378


	Contents
	p. 369
	p. 370
	p. 371
	p. 372
	p. 373
	p. 374
	p. 375
	p. 376
	p. 377
	p. 378

	Issue Table of Contents
	Real Analysis Exchange, Vol. 9, No. 2 (1983-84) pp. 298-583
	Front Matter
	PROCEEDINGS OF THE SEVENTH SYMPOSIUM
	SEVENTH SYMPOSIUM ON REAL ANALYSIS [pp. 302-305]
	Maximal operators and strong differentiability of the integral [pp. 306-312]
	MULTIPLICATION AND TRANSFORMATION OF DERIVATIVES [pp. 313-316]
	A GENERAL NONSEPARABLE THEORY OF FUNCTIONS AND MULTIFUNCTIONS [pp. 317-335]
	On Porosity and Exceptional Sets [pp. 336-340]
	Baire Classification of Generalized Extreme Derivatives [pp. 341-344]
	ON THE GENERAL THEORY OF POINT SETS [pp. 345-353]
	The Peano derivative: What's known and what isn't [pp. 354-365]
	A SIMPLE PROOF OF THE INTEGRATION BY PARTS THEOREM FOR PERRON INTEGRALS [pp. 366-368]
	On generalizations of exact Peano derivatives and integrals - via the coefficient problems of convergent trigonometric series - [pp. 369-378]
	A FUNCTION IS PERRON INTEGRABLE IF IT HAS LOCALLY SMALL RIEMANN SUMS [pp. 379-379]
	A RIEMANN INTEGRAL AND THE DIVERGENCE THEOREM [pp. 380-380]
	SYMMETRIC AND SMOOTH FUNCTIONS: A FEW QUESTIONS AND FEWER ANSWERS [pp. 381-385]
	Porosity Characteristics of Intersection Sets with the Typical Continuous Function [pp. 386-389]
	Density topology and the Luzin (N) condition [pp. 390-393]
	On Residual Subsets of Darboux Baire Class 1 Functions [pp. 394-396]
	Darboux-like Properties of Generalized Derivatives [pp. 397-399]
	REMARKS ON AGRONSKY'S THEOREM ON STRONG CONTAINMENT AND CONTINUITY ROADS [pp. 400-414]
	ISOTONIC APPROXIMATION OF APPROXIMATELY CONTINUOUS FUNCTIONS [pp. 415-416]
	ON FUNCTIONAL COMPLEXITY AND SUPERPOSITIONS OF FUNCTIONS [pp. 417-431]
	A Note on Blumberg Pairs [pp. 432-433]
	MARCZEWSKI SETS, MEASURE AND THE BAIRE PROPERTY [pp. 434-435]

	TOPICAL SURVEY
	A survey of Borel selection theory [pp. 436-462]

	RESEARCH ARTICLES
	Selective differentiation of typical continuous functions [pp. 463-472]
	Constructions of Some Non-σ-porous Sets on the Real Line [pp. 473-482]
	On Typical Bounded Functions in the Zahorski Classes [pp. 483-494]
	On Foran's Conditions A(N), B(N) and (M) [pp. 495-501]
	CEDER'S CONJECTURE ON BAIRE 1 SELECTIONS IS NOT TRUE [pp. 502-507]
	POROSITY ESTIMATES FOR THE DINI DERIVATIVES [pp. 508-538]

	INROADS
	SOME APPLICATIONS OF PARTITIONING COVERS [pp. 539-557]
	On Foran's Property (M) and its relation to Lusin's Property (N) [pp. 558-562]
	Transformations of Functions [pp. 563-577]
	The Powers and their Bernstein Polynomials [pp. 578-583]




