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 * *

 (In this note the P-, RS-, P - integrals denote the Perron, Riemann-
 ap

 Stieltjes and approximately continuous Perron integral of Burkill

 respectively) .

 * * r 1. Theorem, [3]. If f#-P (a,b), F « ? -jfř r G of bounded variation
 *

 then fG^P (a,b) and

 * b b
 P - / fG * F(b)G(b) - F(a)G(a) -RS - / FdG.
 a a

 It is sufficient to prove this for G increasing,

 bounded, with G (a) = 0.

 A natural candidate for a major function of fG is

 X

 R(x) = M(x)G(x) - / MdG, a <_ x £ b, (1)
 a

 where M is a major function of f; replacing M by m, a minor

 function of f, we get r, a natural candidate for a minor function of

 f G.

 Unfortunately R is only a left major function of fG; that is, it

 366



 satisfies the required differential inequalities for left derivatives;

 only - similarly r is only a left minor function. However if we
 * *

 replace, in (1), G by G , where G (x) « G(x) - G(b), a <_ x <_ b, the
 * *

 function R is a right minor function of fG . Hence

 m(x)G(b) + R (x) is a right minor function of fG, and similarly

 *

 M(x)G(b) + r (x) is a right major function.

 So we can construct left, and right, major and minor functions of

 fG: this, together with Ridder's observation, (4], that the McShane
 *

 Perron integral is trivially equivalent to the P -integral completes the

 proof .

 * * r 2. Theorem, [2]. Let ff-P (a,b), f = P -If, r g of bounded
 ap ap
 r *

 variation, G = Jo, and if (a,b) then

 fG*-P (ab) and
 ap

 * b * b
 P -/ fG « F(b)G(b) - F(a)G(a) - P -/ Fg. (2)

 ap L ap L u a
 *

 (The need to assume F^-P is demonstrated in [2]).

 In this case the analogous R is a major function and so the proof

 does not present the difficulties met in the classical case; (this is

 because here G' = g n.e,, whereas above G' = g a. e.) Alternatively we

 can remark that the right-hand side of (2) is, as a function of b,

 *

 [ACG ], [1] and has an approximate derivative equal to fG a.e.
 ap

 Another proof is given in [2].
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