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 The Peano derivative: What's known and what isn't

 The Peano derivative is a notion of nth order differentiation

 which flourished in the first half of the twentieth century

 attracting the attention not only of real analysts but also that

 of those working in Fourier series. It has fallen completely

 out of favor with harmonic analysts and has fared only slightly

 better among real analysts. The aim of this paper is to attempt

 to revive some interest in this topic at least among those working

 in real variables. It is hoped to accomplish this goal by first

 bringing to the reader's attention several early papers in the

 area which, in light of later results, become all the more

 interesting, and then stating several unsolved problems which,

 if resolved, would clarify the relationship between the Peano

 derivative and various notions of first order differentiation.

 The place to begin is, of course, the conventions, notations

 and basic definitions. The letter I will denote a fixed, closed

 subinterval of the real line and for any set E of real numbers

 Ē will denote the closure of E. The letters m,n and p will

 denote nonnegative integers. All functions will be real-valued or

 extended real-valued functions defined on I.

 Definition; A function f is said to have an nth Peano

 derivative at x € I if there are numbers f^ (x) , f ^ (x) , . . . ,
 f (x) such that for y € I

 n
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 (1) f (y) = f (x) + fļ (x) (y-x) +• • • + [ fn (x) + en (x,y) ] (y-x) n/n.'

 where lira en(x,y) = 0.

 The number f (x) is called the nth Peano derivative of f
 n

 at x.

 The classical Taylor Theorem asserts that if f has an

 ordinatry nth derivative, f ^ (x) , at x, then f (x)
 /n'

 exists and f (x) = f (x) . The converse is false if n ^ 2

 as can be seen from the standard example involving xn+^ sin x

 More to the point the nth Peano derivative is more general than

 the ordinary nth derivative in that the existence of f (x)

 implies the existence of the lower order derivatives in an entire

 neighborhood of x, while the existence of f (x) implies only

 the existence of f (x) , f ^ (x) , . . . , fn_ļ (x) • More general yet
 are the several notions of nth order differentiation defined

 as limits of various nth order difference quotients. For

 example, the nth Riemann derivative is

 n (-1) n~^ (!?) f (x + jh --ł-nh)
 lira h-O

 The existence of such a limit on a set implies the existence of

 f a.e. on that set. (See [7], Theorem 1, page 2.) However, the
 n

 existence of f on an interval imolies the existence of
 n

 only on an open, dense set. These facts seem to make a strong

 case for the assertion that the nth Peano derivative is the

 best notion of nth order differentiation.
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 The transition from the nth Peano derivative to the nth

 Peano derivates and hence to the definition of infinite nth

 Peano derivatives is as one might expect. Suppose that

 exists and set

 f(y) - f(x) - f. 1 (x) (y-x)
 a (f;x.y) = 0_(x. y) =

 n " (y-x) /n!

 Then clearly f^ (x) exists if and only if lim (x,y) exists
 and in that case

 (2) f (x) = lim . O (x,y) 1 . n y-»x . n 1

 Consequently, it is quite natural to define the nth Peano

 derivates in terms of 0 .
 n

 Definition? The upper, right nth Peano derivate is denoted

 by f + (x) and is defined by
 n

 fn+(x) = Ti^y^+ On(x,y).

 The other three derivates, * anc^ f n_ M are
 all defined similarly. Equation (2) can serve as a means to

 define the equality f (x) = ® or f (x) =
 n n

 Although this notion of nth order differentiation was

 introduced much earlier, (in [11] and [14]) the first extensive

 study of the concept seems to be due to Den joy [5] in 193 5. The

 foundation of the first part of his work is the so-called

 La Grange Formula which says how to recover the coefficients

 of a polynomial of degree n from the values of the polynomial
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 at n+1 distinct points. Assume f exists on I and for

 a and r' (small) positive numbers let E (f;a, rļ) =•■ [x € I : y € I

 ¿nd ļx-yļ < Tļ implies ļen(x#y) i a}. Now the behavior of
 ^l'^2' ""f~n °n En(f;a#ri) is investigated. Let z € Ēn ( f ? c.t, r.)

 and pick Zq z . . . # any n+1 distinct points such that

 'z-z^' < ri/2 for each i. Let x € En(f;a,in) with ļx-zļ < r'/2.
 Then for each i = 0,1, according to (1)

 f(zi) = f(x) + f-^x) {z^-rì -f. . .+[fn(x) + en(x,Ei) J (2i"x)n/n.'

 Using the La Grange Formula an expression for f^ (x) is obtained
 in terms of the numbers f (zn) , f (z, f (z ) , e (z#z0),

 V-J a. n n u

 e (x, z,) #...#e (x# z ). Since the first half of these are fixed
 n i n n

 and the second half are bounded by a for ļz-x| < r'/ 2 and

 x € E (f;a#n)# f , (x) # . . . # f (x) are bounded. Pick any
 n 1 n

 f i P Ś, n-l, any limit value# a # of f (x) as x tends
 po ° po Po

 to z through En(f;a, n) and a sequence from E; (f;ot,Ti) on
 which f tends to a . Considering the remaining functions

 po Po
 f one at a time choose limiting values and thin out the sequence

 to arrive at a, and {x. } in E (f?a, -n) such that
 l p n

 lim f (x^) = ap for p = l#2#...n. Since f is continuous,
 lim f (x^) = f(z). Now let y be any number with iy-z'i < n.
 Then for k so large that ^

 f (y) = f (x^) + (y-ację)-*-* ' ,+ffn(xfc) + cn (xk'y^ J (Y-^h/hï

 and Letting k tend to ® gives

 f (y) = f (z) + a^ (y- z) +* • • +!>n+e (y) ] (y-z) n/nJ

 where ļ s (y) | £ a. Since this holds for all such y, for at least

 p = l#...#n-l it follows that f (z) = a . Fince a was
 P P P0
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 arbitrary, f is continuous at z relative to E (f;a,rļ) and
 po n

 since po was arbitrary, the same is true of f]/ • • * » fn-i* T^e
 continuity of these functions relative to Ēn(f;a, ri) follows at
 once. The conclusion that can be drawn from the above for p = n

 is that both the limit superior and limit inferior of as

 X tends to z through E (f;a, -n) differ from fn (z) by no
 more than a. Finally, it follows that ļe (z,y) ļ <1 2a if

 I z-Y I <

 The observation about the behavior of f on Ē (f;a, n)
 n n

 together with the fact that U *_jE (f;a, l/m) = I for any a

 can be used to imply that f is a function of Baire class 1.
 n

 The continuity of f^, . . . , fR_ļ on Ēn(f;a,n) implies that these
 *

 functions are or generalized continuous on I. As was

 pointed out quite recently by David Preiss this latter fact when

 combined with (2) proves that f is Baire 1 even when f is
 n n

 permitted to have infinite values. This answers a question

 raised in [6], Lastly, the observation concerning e (z, y)
 n

 implies Ēn(f;a,n) c En(f;2a,rļ). Consequently facts about
 elements of E (f;2ct, ri) hold for Ē (f;a, -r) as well,

 n n

 Such a fact follows from another application of the

 La Grange Formula. It can be shown that there is a number B
 n

 depending only on n such that if x,y Ç En(f;a, n) with
 ļx-yļ < v, then for p= l,..€,n

 fp(y) = fp(x) + fp+1 (x) (y-x) +• • -+[fn (x) + aßp (x,y) ] ^ñ-p) ;

 where 1ß (x,y) ļ £ B . Due to the comment at the end of the
 r 11

 preceding paragraph, if P is any perfect subset of I, then

 on a dense, subset of p and for p = l,...,n-l, f
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 has an (n-p) th Peano derivative relative to P and (f ) = f
 p m p-Hn

 for m £ n-p. By a similar argument, if f has finite nth

 Peano derivates on I, then any perfect subset, P, has a dense,

 Gj subset on which each f , p = 1, ...,n-l has an (n-p-1) th
 Peano derivative and finite (n-p) th Peano derivates all relative

 to P with the expected equalities.

 Perhaps the most difficult theorem in the paper also has to

 do with nth Peano derivates and is as follows.

 Theorem; Suppose f is continuous on I. Then almost

 everywhere on the set where the nth Peano derivates exist and

 both from at least one side are finite, f exists (and is finite) .

 To see how this theorem relates to it, the Denjoy-Saks-

 Young Theorem is stated as follows: If f is an arbitrary

 function, then (i) almost everywhere on the set where both

 (first order) derivates from at least one side are finite, f

 exists (and is finite) , (ii) almost everywhere on the set where

 all derivates are infinite, the two uppers are +<* and the two

 lowere are -®, and (iii) almost everywhere on the set where from

 at least one side one derivate is finite and the other infinite,

 one pair of opposite derivates are finite and equal while the other

 pair are opposite infinities. (The upper right and lower left

 derivates are one pair of opposite derivates.) The theorem stated

 bove is the generalization to nth Peano derivates of (i) with

 the added assumption that f is continuous. An obvious question

 is if the continuity assumption can be removed. The other obvious

 question, whether (ii) and/or (iii) hold for nth Peano derivates,

 was posed by Den joy in his paper and answered later.
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 The first negative answer to (ii) was given by Frederic

 Roger [13]. He constructed an example of a continuous function

 for which f^+ ~ f2+ = » and - f = -® on a set of positive
 measure. Ernest Corominas [3] presented a second negative answer

 to (ii) and also answered (iii) again in the negative. Concerning

 (ii) he not only gave an example like the one due to Roger, but

 also found a continuous function for which f = ® on a set of
 n

 positive measure. For (iii) he again discovered two examples?

 one of a continuous function having, on a set of positive measure,

 f + = <*» f = -» < f < O < f, < », the other a
 n n- n +

 continuous function with f + = f ~ = ® and 0 < f f <
 n n n+ n-

 These four examples are just a small part of the total contribution

 to the theory made by Corominas. He published a lengthy work in

 1953 which will be discussed next.

 Corominas based his study [4] of the nth Peano derivative

 on the notion of the nth divided difference which is now re-

 called. For n = 1 and xq'xi € xo ^ X1 *et
 f (x0) - f (x,)

 V«:vxl} ° '

 Suppose V (f;x-,,...,x ) has been defined when x-., . . . , x„, are
 n u n u n

 n-s-l distinct elements of I. Let xo'***'xn+l n+^ distince
 elements of I and set

 /i (f * » _ Vn(f ?xO' * ' * ,xn* - Vn (f?xl' ' ' ' *xn+l* Vn+1 /i (f * xo' * * ' ' xn+l » _ *
 x0 n+1

 It is possible to prove that

 Vn ( f ' x0 ' ' ' ' ' xn) =Si=0 f(xi)/«P'ÍXi)
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 n

 where cp (x) = II. _(x-x.) and consequently V (f;x_,...,x ) is
 i=VJ i nOn

 independent of the order in which the numbers x_,...,x are
 O n

 listed. Corominas takes this concept one step farther defining

 Vn (f ;xQ, . . . , x^) when the numbers x^, ...,xn are not necessarily
 distinct by setting

 V (f jx-., O . . . , x n' Ì = lim ... lim V (f;y~, ...,y ) n O . . . , n' yo 0 ... n n

 when this iterated limit exists. The connection between this

 iterated limit and the nth Peano derivative is given in the

 following theorem.

 Theorem: The divided difference V (f;xn,...,x-5 exists
 n u u

 if and only if f (x_) exists. Moreover, when f (x~) exists no no

 Vn (f ;x,xQ, . . . ,xQ) = (fn(xQ) + en(x0,x) )/nJ and V (f ;xQ, . . . #xQ) =

 fn(x0)/n: .

 In fact it is not hard to see that if a number, c, appears

 p times in the finite sequence Xq,x^, ...,x , then the iterated

 limit exists if and only if ^p_i exists.
 The first part of the paper deals with mean value theorems.

 A few examples follow. Assume throughout that f exists and

 is finite on I.

 Theorem: If x^,...,x_ are n+1 distinct points in I,

 then there is a number c between min {x^ : i = 0,...,n} and
 max (x. : i = 0,..,,n] such that Vn (f ;xQ, . . . , xn) = fn(c)/n! .
 Conversely, if f (c) is neither the maximum nor the minimum

 value of f on I, then there are distinct x^, ...,xn in I
 such that v (f rx,., . . . , x Ì = f (c)/n! no n n
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 Corollary: The function f has the Darboux property on I.

 Theorem: If m < n and if x~. . . . žx are n-m+1 distinct

 points in I# then there is a number c as before such that

 Vn.(V*0

 Theorem: If are n+1 (not necessarily distinct)

 points in I, then there is a number c as before such that

 Vn(f;x0

 These mean value theorems are followed by analogous Cauchy-

 type mean value theorems from which Taylor polynomial-type ex-

 pansions with La Grange-type remainders are established. More

 significantly the mean value theorem concerning f above is

 used to prove that if f is bounded above or below on I , then

 f = f ^ on I. One might ask if that mean value theorem is
 n

 true if the assumption of distinct points is dropped. A partial,

 positive answer was unknowingly furnished in the article

 by Oliver to be mentioned next.

 Since his paper appeared in 1954, Oliver [8] was probably

 unaware of the work of Corominas, for he established many of the

 same theorems using different techniques. For example he proved

 the Darboux property and that bounded above or below implies

 f = f ^ . The Darboux property is proved by induction on n
 n

 along with his mean value theorem which is stated here for the .

 purpose of comparison.

 Theorem: If f exists (finitely) on I and if x,y Ç I,
 ----- n

 then there is a number c between x and y such that
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 t - ' n-m-l
 -ID f (y) - f ÍQ (x) - f m+1 , (x) (y-x) -• • • -f n-I ļ (x) (n-m-1) n : , -ID

 , , n-m / , s. ' n v ' *
 , (y-x) , / / , (n-m) s. ! '

 Oliver also proved that f possesses the Denjoy property or

 the property of Zahorski.

 As was already noted if infinite values are allowed, f
 n

 is still a function of Baire class 1. In [2] it is shown that

 £n <x) = lim x _x ... lim vn(£;x0
 n O

 holds when infinite values are permitted for f (x) . So it

 seems reasonable to ask what of the other results established

 for finite Peano derivatives in the works discussed above also

 hold when f (x) can be ® or

 There are several seemingly difficult questions that can be

 posed for the finite Peano derivative. In 1982, David Preiss [12]

 characterized the associated sets (the associated sets of a function

 f are the sets of the form (x : f(x) < a] and {x : f (x) > a}

 of finite derivatives. (He also characterized associated sets

 for derivatives of continuous functions and derivatives of

 arbitrary functions.) In that paper he showed that the same

 conditions characterize the associated sets of approximate

 derivatives. It would be interesting to know if the same con-

 ditions characterize the associated sets of finite nth Peano

 derivatives and also nth Peano derivatives allowing infinite values.

 The next question relates to the notion of selective derivative

 introduced by Richard O'Malley [9] in 1977. He showed that every

 approximate derivative is a selective derivative of its primitive.

 In addition he has shown [10] that there is a sequence tFn)
 closed sets whose union is I such that for each n and each
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 X e Fn , fap"(x) = lim y^x t y€p (f(y) - f (x) ) /(y-x) . In this
 case it is said that f is a composite derivative of f. The

 ap

 two obvious questions that arise in this context are: (1) is f

 a selective derivative and if so is it a selective derivative of

 fn_ļ# and (2) is f a composite derivative and if so is it a
 composite derivative of And, finally# in [1] it was shown

 that every approximate derivative can be written in the form

 g' + hk' where g, h, and k are dif ferentiable functions.

 It is reasonable to ask if such a representation is possible for

 nth Peano derivatives.
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