Jan Marík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

MULTIPLICATION AND TRANSFORMATION OF DERIVATIVES

We shall investigate finite real functions on the interval J = [0,1]. For each system S of functions on J let S⁺ [bS] be the system of all nonnegative [bounded] functions in S. Let D [L,C_{ap}] be the system of all derivatives [Lebesgue functions, approximately continuous functions] on J. Let H be the system of all increasing homeomorphisms of J onto J, H₁ = {h \in H; 0 \leq h' $\leq \infty$ on J}, Q = {h \in H; f \circ h \in C_{ap} for each f \in C_{ap}} (where (f \circ h) (x) = f(h(x))) and W = {f \in D; f² \in D}. For each system S \subseteq D let M(S) = { $\phi \in$ D; ϕ f \in D for each f \in S} and T(S) = {h \in H; f \circ h \in D for each f \in S}.

The systems Q, M(D) and T(D) have been characterized in [1], [3] and [4], respectively; the system T(W) has been investigated in [2]. It is not difficult to show that

(1)
$$bC_{ap} \subset W \subset L \subset D \cap C_{ap}$$
,
(2) $M(D) \subset bC_{ap}$, $M(L) = bD$,
(3) $L = \{fg; f, g \in W\}$,
(4) $Q = T(bC_{ap})$.

We shall need the following two assertions:

(A₁) Let $h \in Q$, $a \in J$. Then there is a number $\delta > 0$ such that $|h(x) - h(a)| / |x - a|^{\delta} \to 0$ ($x \to a$, $x \in J$).

(A₂) Let $S \subseteq D$, $h \in H_1$, $g = h^{-1}$. Then $h \in T(S)$ if and only if $g' \in M(S)$.

The proof of (A_1) can be found in [1]; the proof of (A_2) is very simple.

Let $f_1 \in bD^+ \backslash C_{ap}$, $f_2 \in W^+ \backslash bD$ and let $f_3 = w^2$, where w is a function in W^+ such that $w^3 \notin D$. By (1) - (3) we have $f_1 \in M(L) \backslash M(D)$, $f_2 \in M(W) \backslash M(L)$, $f_3 \in M(C_{ap}) \backslash M(W)$, and it follows easily from (A₂) that the obvious inclusions

(5)
$$T(D) \subset T(L) \subset T(W) \subset T(bC_{ap})$$

are proper. We also see from (2) and (A₂) that there is an $h \in H_1 \setminus T(D)$ such that both functions h' and $(h^{-1})'$ are bounded.

To formulate the main result (A_3) we need the following notation: If f is a function on J and if $x \in J$, then $\overline{Df}(x)$ [$\underline{Df}(x)$] is the upper [lower] derivate of f at x; if $x \in \{0,1\}$, we mean, of course, the corresponding unilateral derivates. If γ is a mapping of J to [$0,\infty$] and if a, $b \in J$, $a \neq b$, then $\sup(\gamma,a,b)$ means $\sup\{\gamma(x); x \in I\}$, where I is the closed interval with endpoints a, b. If $\gamma(x) = \infty$ for some $x \in I$, let $var(\gamma, a, b) = \infty$; otherwise let $var(\gamma, a, b)$ be the variation of γ on I.

(A₃) Let $h \in H$, $g = h^{-1}$. Let γ be a mapping of J to $[0,\infty]$ such that $\underline{D}g \leq \gamma \leq \overline{D}g$. Then we have $h \in T(L)$ if and only if

(6)
$$\limsup \frac{1}{g(x)-g(a)} \int_{a}^{x} \sup(\gamma,t,x) dt < \infty$$

$$(x \rightarrow a, x \in J)$$
 for each $a \in J$;

we have $h \in T(D)$ if and only if

(7)
$$\limsup \frac{1}{g(x)-g(a)} \int_{a}^{x} var(\gamma,t,x)dt < \infty$$
$$(x \neq a, x \in J) \text{ for each } a \in J.$$

The characterization of T(D) by (7) is different from the characterization given in [4].

It follows easily from (6) that the set $\{x \in J; \underline{D}h(x) = 0\}$ is finite for each $h \in T(L)$. We see that there are infinitely differentiable functions in $H\setminus T(L)$. According to (A_1) , there are convex functions in $H\setminus Q$; by (4) and (5), in $H\setminus T(D)$. It can be proved, however, that $h \in T(D)$ for each convex function $h \in Q \cap H$.

It follows from (6) that $h \in T(L)$, if both h and h^{-1} are Lipschitz functions.

It is easy to prove that $h \in T(D)$ for each $h \in H_1$ such that h' is of bounded variation. It is, however, not difficult to construct a function $h \in H$ such that h" is continuous and h' > 0 on (0,1).

REFERENCES

- [1] A.M. Bruckner, Density-preserving homeomorphisms and a theorem of Maximoff, Quart. J. Math. Oxford (2), (21) (1970), 337-347.
- [2] _____, On transformations of derivatives, Proc. Amer. Math. Soc., Vol. 48 (1975), 101-107.
- [3] R.J. Fleissner, Distant bounded variation and products of derivatives, Fund. Math. XCIV (1977), 1-11.
- [4] M. Laczkovich and G. Petruska, On the transformers of derivatives, Fund. Math. 1978, 179-199.