Jan Marík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

MULTIPLICATION AND TRANSFORMATION OF DERIVATIVES

We shall investigate finite real functions on the interval $J=[0,1]$. For each system S of functions on J let $S^{+}[b S]$ be the system of all nonnegative [bounded] functions in S. Let $D[L, C a p$ be the system of all derivatives [Lebesgue functions, approximately continuous functions] on J. Let H be the system of all increasing homeomorphisms of J onto $J, H_{1}=$ $\left\{h \in H ; 0<h^{\prime}<\infty\right.$ on $\left.J\right\}, Q=\{h \in H ; f \circ h \in C$ for each f. $\in C_{a p}$) (where $(f \circ h)(x)=f(h(x))$) and $W=\left\{f \in D ; f^{2} \in D\right\}$. For each system $s \subset D$ let $M(S)=\{\varphi \in D ; \varphi \bar{f} \in D$ for each $f \in S\}$ and $T(S)=\{h \in H ; f \circ h \in D$ for each $f \in S\}$.

The systems $0, M(D)$ and $T(D)$ have been characterized in [1], [3] and [4], respectively; the system $T(W)$ has been investigated in [2]. It is not difficult to show that
(1) $\quad b C_{a p} \subset W \subset L \subset D \cap C_{a p^{\prime}}$
(2) $M(D) \subset b C_{a p} \quad M(L)=b D$,
(3) $I_{.}=\{f g ; f, g \in W\}$,
(4) $\quad Q=T\left(b C_{a p}\right)$.

We shall need the following two assertions:
$\left(A_{1}\right)$ Let $h \in Q, a \in J$. Then there is a number $\delta>0$ such that $|h(x)-h(a)| /|x-a|^{\delta} \rightarrow 0(x+a, x \in J)$.
$\left(A_{2}\right)$ Let $S \subset D, h \in H_{1}, g=h^{-1}$. Then $h \in T(S)$ if and only if $g^{\prime} \in M(S)$.

The proof of $\left(A_{1}\right)$ can be found in [1]; the proof of $\left(A_{2}\right)$ is very simple.

Let $f_{1} \in \mathrm{bD}^{+} \backslash C_{a p}, f_{2} \in W^{+} \backslash b D$ and let $f_{3}=w^{2}$, where w is a function in w^{+}such that $w^{3} \nRightarrow D$. By (1) - (3) we have $f_{1} \in M(L) \backslash M(D), f_{2} \in M(W) \backslash M(L)$, $f_{3} \in M\left(C_{a p}\right) \backslash M(W)$, and jet follows easily from $\left(A_{2}\right)$ that the obvious inclusions

$$
\begin{equation*}
T(D) \subset T(L) \subset T(W) \subset T\left(b C_{a p}\right) \tag{5}
\end{equation*}
$$

are proper. We also see from (2) and $\left(A_{2}\right)$ that there is an $h \in H_{1} \backslash T(D)$ such that both functions h^{\prime} and $\left(h^{-1}\right)^{\prime}$ are bounded.

To formulate the main result $\left(A_{3}\right)$ we need the following notation: If f is a function on J and if $x \subseteq J$, then $\bar{D} f(x)$ [Df(x)] is the upper [lower] derivate of f at x; if $x \in\{0,1\}$, we mean, of course, the corresponding unilateral derivates. If γ is a mapping of J to $[0, \infty]$ and if $a, b \in J, a \neq b$, then $\sup (\gamma, a, b)$ means $\sup \{y(x) ; x \in I\}$, where I is the closed interval with endpoints a, b. If $\gamma(\mathrm{x})=\infty$ for some $\mathrm{x} \in \mathrm{I}$, let
$\operatorname{var}(\gamma, a, b)=\infty$; otherwise let $\operatorname{var}(\gamma, a, b)$ be the variation of γ on I.
$\left(A_{3}\right)$ Let $h \in H, g=h^{-1}$. Let γ be a mapping of J to $[0, \infty]$ such that $\underline{D} g \leqq \gamma \leqq \overline{\mathrm{D}}$. Then we have $h \in T(L)$ if and only if

$$
\begin{array}{r}
\lim \sup \frac{1}{g(x)-g(a)} \int_{a}^{x} \sup (\gamma, t, x) d t<\infty \tag{6}\\
\quad(x \rightarrow a, x \in J) \text { for each } a \in J ;
\end{array}
$$

we have $h \in T(D)$ if and only if

$$
\begin{gather*}
\lim \sup \frac{1}{g(x)-g(a)} \int_{a}^{x} \operatorname{var}(y, t, x) d t<\infty \tag{7}\\
\quad(x \rightarrow a, x \in J) \text { for each } a \in J
\end{gather*}
$$

The characterization of $\mathrm{T}(\mathrm{D})$ by (7) is different from the characterization given in [4].

It follows easily from (6) that the set
$\{x \in J ; \underline{L}(x)=0\}$ is finite for each $h \in T(L)$. We see that there are infinitely differentiable functions in $H \backslash T(L)$. According to $\left(A_{1}\right)$, there are convex functions in $H \backslash Q$; by (4) and (5), in $H \backslash T(D)$. It can be proved, however, that $h \in T(D)$ for each convex function $h \in Q \cap H$.

It follows from (δ) that $h \in T(L)$, if both h and h^{-1} are Lipschitz functions.

It is easy to prove that $h \in T(D)$ for each $h \in H_{1}$ such that h^{\prime} is of bounded variation. It is, however, not difficult to construct a function $h \in H$ such that $h^{\prime \prime}$ is continuous and $h^{\prime}>0$ on $(0,1]$.

REFERENCES

[1] A.M. Bruckner, Density-preserving homeomorphisms and a theorem of Maximoff, Quart. J. Math. Oxford (2), (21) (1970), 337-347.
[2]
_- On transformations of derivatives, Proc. Amer. Math. Soc., Vol. 48 (1975), 101-107.
[3] R.J. Fleissner, Distant bounded variation and products of derivatives, Fund. Math. XCIV (1977), 1-11.
[4] M. Laczkovich and G. Petruska, on the transformers of derivatives, Fund. Math. 1978, 179-199.

