Real Analysis Exchange Vol. 9 (1983-84)

A point about $\mathbb{N} \times \mathbb{N}$ watrices and ℓ^{∞}.
by
Max Jodeit, Jr.

When we assembled one afternoon during the Waterloo Symposium, the following question from Marshall Ash was on the blackboard $(m \wedge n$ means $\min (m, n))$:

If $\sum_{j=1}^{\infty} a_{j}=0$ and $\left|\sum_{k=1}^{n} b_{k}\right| \leq M<\infty$, does

$$
\lim _{m \wedge n \rightarrow \infty} \sum_{j=1}^{m} \sum_{k=1}^{n} \frac{j}{\sqrt{j}^{2}+k^{2}} a_{j} b_{k} \text { exist? }
$$

The answer is: not always. My explanation may be the longest, since it involves putting the question into a setting involving the sequence spaces c_{0} and e^{∞}. In this more familiar setting an application of the fact that, in ℓ^{I}, weak and strong convergence of sequences are equivalent (Dunford-Schwartz [1, p. 296]) reduces the problem to checking whether an operator T (derined later) maps c_{0} into 2^{l} continuously. Finally, an example shows that it does not, and this gives the negative answer.

Let us denote by A_{m} the partioi sum $\sum_{j=1}^{m} a_{j}, m=1,2, \ldots$, so $A_{m} \rightarrow 0$ as $m \rightarrow \infty$, or, $A \in c_{0}$. Similarly, $B \in l^{\infty}$, where B_{n} denotes the n-th partial sum of the b_{k}. It will help to use $F(x, y)=x / \sqrt{x^{2}+y^{2}}$. Then, with $S_{m n}(a, b)$ denoting the double sum in the question, we do enough summing by parts (Zygmund [2,p.3]) to get, for large m and n,

$$
\begin{aligned}
S_{m n}(a, b) & =\sum_{k=1}^{n-1} \sum_{j=1}^{m-1}[F(j, k)-F(j, k+1)-F(j+1, k)+F(j+1, k+1)] A_{j} B_{k} \\
& +B_{n} \sum_{j=1}^{m-1}[F(j, n)-F(j+1, n)] A_{\cdot j}+(a \text { similar term }) \\
& +A_{m} F(m, n) B_{n} .
\end{aligned}
$$

The "similar term" arises by interchanging A and B, m and n, j and k. We will show that the first (double) sum "replaces" $S_{m n}$. The last term clearly tends to 0 as $m \wedge n \rightarrow \infty$. The first of the "similar terms" may be written as
(2) $\quad-B(n) \int_{I}^{m-1} \frac{\partial F}{\partial x}(x, n) A(x) d x$,
where $A(x)=A_{j}$ in $[j, j+1)$. Noting that $F(x, y)=x / r$, we have $\partial F / \lambda x=y^{2} / r^{3}$, so the quantity in (2) is dominated by

$$
|B(n)| \int_{0}^{\infty} \frac{n^{2}}{\left(x^{2}+n^{2}\right)^{3 / 2}}|A(x)| d x=|B(n)| \int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)^{3 / 2}}|A(n x)| d x,
$$

which is bounded (independent of m), and, by Lebesgue's dominated convergence theorem, tends to 0 as $n \rightarrow \infty$. The other term is a little easier, since the corresponding integral only has to be shown to be (uniformly) bounded.

Therefore, we have shown that $S_{m n}(a, b)$ has a limit as
$m \wedge n \rightarrow \infty$, if and only if the same is true for
$I_{m n}(A, B)=\sum_{j=1}^{m} \sum_{k=1}^{n} G_{k j} A_{j} B_{k}$, in which $G_{k j}$ denotes the quantity
in square brackets in the double sum in (1).
We might now apply the following lemma, but will wait until
after its proof to do so.

Lemma:

Let X be a topological linear space of sequences $A=\left\{A_{m}\right\}$, of second category in itself. Suppose that $X_{m} A \rightarrow A$ in x as $m \rightarrow \infty$, where $\left(X_{m} A\right)_{j}=A_{j}$ for $1 \leq j \leq m$, and $\left(X_{m} A\right)_{j}=0$ otherwise. Then for any matrix $\left(K_{k j}\right)_{k \geq 1, j \geq 1}$, $\lim _{m \rightarrow \infty} \sum_{k=1}^{n} \sum_{j=1}^{m} K_{k j} A_{j} B_{k}$ exists for each $A \in X$ and $B \in i^{\infty}$, $m \wedge n \rightarrow \infty \quad k=1 \quad j=1 \quad k j k$ if and only if the linear operator T given by (TA) $k=\sum_{j=1} K_{k j} A_{j}$, $k=1,2, \ldots$, maps X continuously into i^{1}, in which case the limit is given by $\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{\infty} K_{k j} A_{j}\right\} B_{k}$.

Proof: Let $I_{m n}(A, B)$ denote the double sum, and let $\left\langle x, x^{*}\right\rangle$ denote the duality pairing between a space Y and its dual space Y^{*}. Then, if $L(A, B)=\lim _{m \wedge n \rightarrow \infty} I_{m n}(A, B)$ exists for each $A \in x$ and $B \in l^{\infty}$, we have, for each fixed A, that $L(A, B)=\langle B, X\rangle$ for some $X=X(A) \in\left(l^{\infty}\right)^{*}$. It is straightforward to show that, if $\left\langle X_{n} B, X\right\rangle$ converges to $\langle B, X\rangle$, then $\langle B, X\rangle=\sum_{k=1}^{\infty} B_{k} X_{k}$, where $\sum_{k=1}\left|X_{k}\right|<\infty$.

$$
\text { Now } L\left(X_{m} A, X_{n} B\right)=I_{m n}(A, B) \text { and } L\left(A, X_{n} B\right)=\lim _{m \rightarrow \infty} I\left(X_{m} A, X_{n} B\right)
$$

We examine

$$
\begin{aligned}
\left|L(A, B)-L\left(A, X_{n} B\right)\right| & \leq\left|L(A, B)-L\left(X_{m} A, X_{n} B\right)\right| \\
& +\left|L\left(X_{m} A, X_{n} B\right)-L\left(A, X_{n} B\right)\right|
\end{aligned}
$$

The first term on the right is small if both of m, n are large enough. Having chosen m and n, we may further restrict m, to ensure that the second term is small. It follows that
$L\left(A, X_{n} B\right)=\left\langle X_{n} B, X\right\rangle \rightarrow\langle B, X\rangle=L(A, B)$, so $L(A, B)=\langle T A, B\rangle$, where T is a linear operator mapping X into $i^{\mathcal{I}}$ (here, the pairing
is $\left.\left\langle l^{1}, \ell^{\infty}\right\rangle\right)^{*}$ since $I_{m n}(A, B)=\left\langle X_{n} T X_{m} A, B\right\rangle, X_{n_{r}} T X_{m_{r}} A$ converges weakly to TA if $m_{r} \wedge n_{r} \rightarrow \infty$ as $r \rightarrow \infty$. Since sequential weak and strong convergence in i^{1} are equivalent, the convergence is actually in i^{1} norm. Since each $X_{n} T X_{m}$ is bounded from x to i^{1}, the principle of uniform boundedness shows that T is a continuous operator, as was to be shown.

Since $X_{m} A \rightarrow A$ in $X,(T A)_{k}=\lim _{m \rightarrow \infty}\left(T X_{m} A\right)_{k}=$

$$
=\lim _{m \rightarrow \infty}\left\langle I X_{m} A, e_{k}\right\rangle=\lim _{m \rightarrow \infty} \sum_{j=1}^{m} X_{k j} A_{j},
$$

so the series converges, and the lemma follows.
Now if we assume that the limit $L(A, B)$ exists, we must agree that $\left\{\sum_{j=1}^{\infty} G_{k j} A_{j}\right\}$ is a sequence in i^{I} whenever $A \in c_{0}$, where $\quad G_{k j}=F(j, k)-F(j, k+1)-F(j+1, k)+F(j+1, k+1)$. Let us take $A_{m}=\frac{1}{n+1}$ if $2^{n} \leq m<2^{n+1}, n \geq 0$. Then

$$
(T A)_{k}=\sum_{n=0}^{\infty} \frac{1}{n+1}\left[F\left(2^{n+1}, k+1\right)-F\left(2^{n+1}, k\right)-F\left(2^{n}, k+1\right)+F\left(2^{n}, k\right)\right]
$$

because of telescoping on the dyadic blocks. Let us sum by partssince F is bounded, the boundary term will tend to zero-giving

$$
(T A)_{k}=\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)}\left[F\left(2^{n+1}, k+1\right)-F(1, k+1)-F\left(2^{n}, k\right)+F(1, k)\right]
$$

Since $\{F(1, k)-F(1, k+1)\} \approx\left\{1 / k^{2}\right\} \in i^{1}$, it is enough to show that when these terms are dropped the remaining part is not in l^{l} :

[^0]\[

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)}\left(\frac{2^{n+1}}{\sqrt{2^{2 n+2}+(k+1)^{2}}}-\frac{2^{n}}{\sqrt{2^{2 n}+k^{2}}}\right) \\
& \quad=\sum_{n=0}^{\infty} \frac{2^{n}}{(n+1)(n+2)} \frac{2 A^{1 / 2}-B^{1 / 2}}{A^{1 / 2} B^{1 / 2}}\left(A=2^{2 n+k^{2}}, B=2^{2 n+2}+(k+1)^{2}\right) \\
& \quad=\sum_{n=0}^{\infty} \frac{2^{n}}{(n+1)(n+2)} \frac{4 A-B}{\left(2 A^{1 / 2}+B^{1 / 2}\right) A^{1 / 2} B^{1 / 2}} \\
& \quad=\sum_{n=0}^{\infty} \frac{2 n}{(n+1)(n+2)} \frac{3 k^{2}-2 k-1}{\left(2 A^{1 / 2}+B^{1 / 2}\right) A^{1 / 2} B^{1 / 2} \geq 0} \\
& \text { for each } k \geq 1 .
\end{aligned}
$$
\]

Since, for n fixed, $A^{1 / 2}$ and $B^{1 / 2}$ are asymptotic to k as $k \rightarrow \infty$, we have, that the sum in k is like $\Sigma 1 / k$, so TA $\notin l^{l}$.

References

1. N. Dunford, and J. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
2. A.Zygmund, Trigonometric Series, vol. I, Cambridge, 1968.

[^0]: * this easy argument could have been avoided by citing weak sequential completeness of i^{1}.

