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 A point about IÍX M matrices and t .

 by

 Max Jodeit, Jr.

 When we assembled one afternoon during the Waterloo

 Symposium, the following question from Marshall Ash was on the

 blackboard (m An means min(m,n)):
 ce n

 If Z a. =0 and ļ E b, J < M < » , does
 j=l 3 fc=l

 in n j

 lim E E ■ * a-(bv J m An -co j=i k=l /i ~2 J /3 +k

 The answer is: not always, řty explanation may be the longest,

 since it involves putting the question into a setting involving

 the sequence spaces cQ and ¿ . In this more familiar setting
 an application of the fact that, in & , weak and strong

 convergence of sequences are equivalent (Dunford-Schwartz [1,

 p. 296]) reduces the problem to checking whether an operator T

 (defined later) maps cq into continuously. Finally, an
 example shows that it does not, and this gives the negative

 answer.

 m

 Let us denote by A the partial sum E a. , m = 1,2,...,
 ¿•i 3

 so A^ -* 0 as m - » , or, A € cq . Similarly, B € t , where

 Bn denotes the n-t'n partial sum of the bfc . It will help to
 / 2 2

 use F(x,y) = x/ ,/x 2 +y 2 . Then, with S^iajb) denoting the

 double sum in the question, we do enough summing by parts

 (Zygmund [2, p. 3]) to get, for large m and n ,
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 n-1 m-1

 Smn(a,b) = S S [F(j,k) -F(j,k+1) -F(j+l,k)+F(j+l,k+l)]A.B. 3 k=l j=l 3 K
 m-1

 (1) + B E [F(j,n) - F(j+l,n) JA. + (a similar* term)
 j=l '3

 + AmF(iD,n)Bn .

 The "similar term" arises by interchanging A and B , m and

 n , j and k . We will show that the first (double) sum

 "replaces" S • The last term clearly tends to 0 as m An-*® .
 ran

 The first of the "similar terms" may be written as

 (2) -B(n) ||(x,n)A(x)dx ,

 where A(x) =A^ in [j,¿}+l) . Noting that F(x,y) =x/r , we
 have ř)F/hx = y /r , so the quantity in (2) is dominated by

 |B(n)|J o" 2 i/o lA(x)|dx=-- |B(n)|J ¿ , /gļ A(nx) | dx ,
 0 (x*"+n y' 0 (x +1)~"'

 which is bounded (independent of m ), and, by Lebesgue' s

 dominated convergence theorem, tends to 0 as n-*» . The other

 term is a little easier, since the corresponding integral only

 has to be shown to be (uniformly) bounded.

 Therefore, 7 we have shown that S
 7

 m An -♦ » , if and only if the same is true for
 m n

 L (AJE) = S E G. .A.B. , in which G.. denotes the quantity
 mn ^

 in square brackets in the double sum in (1) .

 We might now apply the following lemma, but will wait until

 after its proof to do so.
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 Lemma:

 Let I be a topological linear space of sequences A - { Am) ,

 of second category in itself. Suppose that x^A - A in I as

 m -» » , where ("X^A) ^ = A^. for 1 <j <m , and (XpA) ^ = 0

 otherwise. Then for any matrix (Kj..«)k> i j>i >
 n m ~ ~ œ

 lim E II K, .A.B. exists for each A€ï and B€£ ,
 mAn-»k=l á=l 3 3 œ
 if and only if the linear operator T given by (TA)k= £ ,

 1
 k = l,2,... , maps % continuously into t , in which case the

 eo m

 limit is given by E { ? K.A.}B, .
 k=l j=l ^ 3 K

 Proof: Let L (A.B) denote the double sum, and let (x,x )
 1,1 nin

 denote the duality pairing between a space Y and its dual space

 Y* . Then, if L(A,B) = lim L (A,B) exists for each A€ Ï
 ron

 Ä m An
 and B € t Ä , we have, for each fixed A , that L(A,B) = <B,X)

 00 ^

 for some X = x(A) € (-t ) . It is straightforward to show that,
 eo

 if {Xj^X) converges to <B,X) , then <B,X> = E Bj^ , where
 » k=l

 S i'l <- •
 k=l

 Now LCXj/^B) = L^iAjB) and LÍA^B) = lim L^A^B) .
 m

 We examine

 |l(A,B) - LÍAjX^B) ļ < |L(A,B) - LCXj^XjB)!

 + ILÎV^B) - L(A,XnB)| .

 The first term on the right is small if both of m,n are large

 enough. Having chosen m and n , we may further restrict m ,

 to ensure that the second term is small. It follows that

 LÍAjXjB) = (X^X) -* <B,X> = L(A,B) , so L(A,B) = <TA,B> , where

 T is a linear operator mapping 3E into «t,1 (here, the pairing
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 is <<Ł ,l >). Since Lm(A,B) = (y^TX^AjB) , Xn A converges
 r r

 weakly to TA if a n w as r -» » . Since sequential

 weak and strong convergence in Ą?" are equivalent, the

 convergence is actually in norm. Since each Xr^Xm is
 bounded from X to , the principle of uniform boundedness

 shows that T is a continuous operator, as was to be shown.

 Since X^A - A in S , (TA)k = lim (D^A^ =
 m

 = m -»a» m-® j=JL ¿Vj ' m -»a» m-® j=JL

 so the series converges, and the lemma follows.

 Now if we assume that the limit L(A,B) exists, we must
 00 ,

 agree that { Z G. .A.} is a sequence in ¿ whenever A € c ,
 j_l J °

 where G. . = F(¿j,k) -F(j,k+1) -F( j+l,k) + F( J+l,k+l) . Let us
 Kj

 take A = --z- if 2n < m < 2n*'*~ , n > 0 . Then m EH-JL - , -

 00

 (TA). = 2 -~[F(2nfl,]sH) -P(2M'1,k) -F(2n,k+1) + F(2n,k)J,
 k n=0 0+1

 because of telescoping on the dyadic blocks. Let us sum by parts-

 since F is bounded, the boundary term will tend to zero- giving

 00

 (TA)k = Sq (Qn)(r»2)[F(2"*1>k+1) -F(2n,k) + F(l,k)].

 Since {F(l,k) -F(l,k+1)} *(l/k2} € Í.1 , it is enough to show

 that when these terms are dropped the remaining part is not in

 this easy argument could have been avoided by citing weak
 sequential completeness of {A .
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 09 X / 2rtfl 2n '

 <*° (ałl)(nł2)y22»2ł (k+i)^ JF77~'

 • ¿0TSfīTTS (A.22n+ka,B.22W2+(l»l)2)

 " 2n

 n=0 (^1) i1*2) ( 2A1//2+ B1/2 ) a1/2B1//'2

 _ J 2n

 n=0 (^K1*1"2) (2a /2+B1/2) a1/2B1//2 ~

 for each k>l .

 Since, for n fixed, A"^2 and B"^2 are asymptotic to k as

 k -» » , we have, that the sum in k is like E l/k , so TA .
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