Real Analysis Exchange Vol. 9 (1983-84)

Ladislav Mišík, Matematický ústav SAV, ul. Obrancov mieru 49, 814 73 Bratislava, Czechoslovakia.

<u>Hájek's Theorem Does Not Hold for n > 1</u>

1. In [3], O. Hájek proved that the extreme bilateral derivatives of an arbitrary real function of a real variable are in the second class of Baire. An analogous theorem for extreme strong derivatives of an additive interval function defined on E_n does not hold for n > 1.

2. Let E_n be n-dimensional Euclidean space, d(A) the diameter of A, and m(A) the Lebesgue outer measure of the subset A of E_n . Let (\mathcal{X}_n, ρ) be the metric space of all non-degenerate closed intervals in E_n , where the metric $\rho(I, J)$, I, $J \in \mathcal{X}_n$ is defined by the symmetric difference I ΔJ of I and J as follows: $\rho(I, J) = m(I \Delta J)$.

Let φ be an additive interval function defined on (χ_n, ρ) (or on some suitable subset of χ_n). Then the upper strong derivative $\overline{\varphi}'(X)$ of φ at X is defined as follows:

$$\overline{\varphi}'(\mathbf{X}) = \inf\{\sup\{\frac{\varphi(\mathbf{I})}{m(\mathbf{I})}: \mathbf{X} \in \mathbf{I}, \mathbf{I} \in \mathcal{X}_n, d(\mathbf{I}) \leq \frac{1}{k}\}: k =$$

 $= 1, 2, 3, \ldots$

Proposition. There exists an additive interval function defined on (x_2, ρ) whose upper strong derivative is not Borel measurable.

Proof. Let $C = \{ (x,y) \in E_2 : x > 0, y > 0, x^2 + y^2 = 1 \}$. Let f be the characteristic function of a subset A of C which is not Borel measurable. Let $\varphi : \mathcal{X}_2 \rightarrow (-\infty, \infty)$ be defined as follows: $\varphi([a,b] \times [c,d]) = f(b,d) - f(a,d) -$ - f(b,c) + f(a,c) for each $[a,b] \times [c,d] \in \mathcal{X}_2$, where a < b and c < d. The function φ is an additive interval function defined on \mathcal{X}_2 .

Let $I = [a,b] \times [c,d]$ be sufficiently small. Let $X \in A$. If X = (a,c) or X = (b,d), then $\varphi(I) = 1$; if X = (a,d) or X = (b,c), then $\varphi(I) = -1$ or $\varphi(I) = -2$. Therefore $\overline{\varphi}'(X) = \infty$. Let $X \notin A$. If X = (a,c)or X = (b,d), then $\varphi(I) = 0$; if X = (a,d) or X = (b,c), then $\varphi(I) = 0$ or $\varphi(I) = -1$. Therefore $\overline{\varphi}'(X) = 0$. Therefore $\overline{\varphi}'$ is not Borel measurable.

3. In the paper [5], it is proved that the upper strong derivative of each continuous additive interval function defined on (\mathcal{X}_{p}, ρ) is of the second class of Baire.

Let T be the set of all (i_1, \ldots, i_n) , where $i_j \in \{-1, 1\}$ for all $j = 1, 2, \ldots, n$. Let $E_n^+ =$ $= \{(h_1, \ldots, h_n) \in E_n : h_j > 0$ for $j = 1, 2, \ldots, n\}$. Let $i = (i_1, \ldots, i_n) \in T$, X, $Y \in E_n$ and $A \subset E_n$. Then we define $X + iY = (x_1 + i_1 y_1, \ldots, x_n + i_n y_n)$ and X + $+ iA = \{X + iZ : Z \in A\}$. We can define extreme "unilateral" strong derivatives. Let φ be an interval function defined on (\mathcal{X}_n, ρ) and let $i \in T$. Then the upper i-strong derivative $\overline{\varphi}^{(i)}(X)$ of φ at X is defined as follows: $\overline{\varphi}^{(i)}(X) = inf\{ sup\{\frac{\varphi(I)}{m(I)}: I = \langle min(X,Y), max(X,Y) \rangle$, $Y \in X + i E_n^+$, $d(I) \leq \frac{1}{k}\}$: $k = 1, 2, 3, \ldots\}$. By min (X, Y)or max (X, Y) we understand the point $(\min(x_1, y_1), \ldots, \min(x_n, y_n))$ or $(\max(x_1, y_1), \ldots, \max(x_n, y_n))$, respectively and $\min(X, Y)$ and $\max(X, Y)$ are the principal vertices of the interval I.

A function $f : E_n \rightarrow (-\infty, \infty)$ will be called lower T-semicontinuous iff for each $X \in E_n$ and for each $a \in (-\infty, \infty)$ satisfying the condition f(X) > a there exists an $i \in T$ and $Y \in X + iE_n^+$ such that f(Z) > a for all Z of the closed interval $I = \langle \min(X, Y), \max(X, Y) \rangle$.

In [5], it is also proved that (i) the upper i-strong derivative of a continuous interval function defined on (\mathcal{X}_n, ρ) is the limit of a non-increasing sequence of lower semicontinuous functions and hence it is in the second class of Baire; (ii) the upper strong derivative of a subadditive interval function is the limit of a non-increasing sequence of lower T-semicontinuous functions. Each lower T-semicontinuous function is Lebesgue measurable. This is a consequence of the known assertion that the union of an arbitrary system of closed intervals is a Lebesgue measurable set (Lemma 4.1 of [2], p. 112, or [6], p. 177.)

From our Proposition and (ii) we have that there are lower T-semicontinuous functions which are not Borel measurable.

4. In Banach's proof, [1] (as in my proof, [4]), that extreme unilateral derivatives of each bounded (arbitrary) Borel function of a real variable of the class α are Borel functions of the class $\alpha + 2$, the following assertion plays a key role: Let f be a real Borel function of a real variable of the class α , where $\alpha > 0$, let 0 < a < b (let $0 \le a \le b$ and k a natural number). Then the function $\varphi(x;a,b) = \sup\{f(x + h) - f(x) : a \le h \le b\} (\varphi_k(x;a,b) =$ $= \sup\{f(x + h) - f(x) : |f(x + h)| \le k, a \le h \le b\})$ is a Borel function of the class α ([1], ([4])).

To prove the last mentioned assertion, S. Banach proved first that the function $f(x) + \varphi(x;a,b)$ has left and right limits at every real number. From the asymmetry theorem of W.H. Young it follows that $f(x) + \varphi(x;a,b)$ is of the first class of Baire. In E_1 the asymmetry is related to countability, but in E_n for n > 1 it is related to sets of the first category and of Lebesgue measure zero.

Open questions:

1. Does there exist a Borel additive interval function φ defined on (\mathcal{X}_n, ρ) of the first class for which the upper strong derivative $\overline{\varphi}'$ is not a Borel function?

2. Let n > 1, let φ be a Borel additive interval function defined on (\mathcal{X}_n, ρ) of the class α , $\alpha > 0$, $A = (a_1, \dots, a_n)$ and $B = (b_1, \dots, b_n) \in E_n^+$ such that $a_i < b_i$ for $i = 1, 2, \dots, n$. Let $\varphi_k(X; A, B) =$ $= \sup\{\varphi(<X, X + H>) : |\varphi(<X, X + H>)| \le k, H =$ $= (h_1, \dots, h_n), a_i \le h_i \le b_i$ for $i = 1, 2, \dots, n\}$. Is $\varphi_k(X; A, B)$ a Borel function of the class α ?

3. Is it true that $\bar{\varphi}^{(i)}$ is a Borel function of the class $\alpha + 2$ if φ is a Borel additive interval function of the class α ? We assume n > 1. For n = 1, this

assertion is true.

References

- [1] Banach S., Sur les fonctions dérivées des fonctions mésurables, Fund. Math. 3 (1922), 128-132.
- [2] Banach S., Sur une classe de fonctions d'ensembles, Fund. Math. 6 (1924), 170-188.
- [3] Hájek O., Note sur la mésurabilité B de la dérivée supérieure, Fund. Math. 44 (1957), 238-240.
- [4] Mišík L., Halbborelsche Funktionen und extremeAbleitungen, Math. Slovaca 27 (1977), 409-421.
- [5] Mišík L, On extreme strong derivatives of a function of an interval (will appear in the Proc. to 70th birthday of Prof. L. Iliev).
- [6] Ward A.J., On the differentiation of additive functions of rectangles, Fund. Math. 26 (1936), 166-182.
- [7] Young W.H., La symmétrie de structure des fonctions de variables reélles, Bull. Soc. Math. 52 (1928), 265-280.

Received August 22, 1983

288