INROADS Real Analysis Exchange Vol. 9 (1983-84)

Inga Libicka, Institute of Mathematics, University of Łódź 90-238 Łódź, Poland

On Generalized Cluster Sets

The paper consists of three parts. In the first we consider σ -ideals of subsets of the plane adjoint with some σ -ideal \mathcal{I} of subsets of the real line. The second part contains some theorems concerning σ -algebras of the form $(\mathcal{B} \wedge \mathcal{I})^2$, where \mathcal{E} is a σ -algebra of Borel sets. In the third part the facts from the two earlier parts are used to study generalized limit numbers of real function defined in the upper half-plane.

1. Let H denote the open upper half-plane above the real line R, S - a σ -algebra of subsets of R and S² - the smallest σ -algebra generated by sets A x B, where A \in S and B \in S. L(x, θ) is the halfline beginning at $x \in R$ in the direction θ , L(x, θ ,r) - the segment beginning at $x \in R$ in the direction θ having length r. For $x \in R$ let h_x be the real function defined in H such that $h_x(p) = r$ for $p \in H$, where r is the distance of p from x.

For any σ -ideal $\mathcal{T} \subset S$ and direction $\theta \in (0,\pi)$ we shall define the σ -ideal $\mathcal{T}^2(\theta)$ adjoint with \mathcal{T} in the direction θ :

 $\mathcal{J}^{2}(\theta) = \{ M \in S^{2} : \text{ there is a set } U \in \mathcal{J} \text{ such that} \\ h_{x}(L(x,\theta) \cap M) \in \mathcal{J} \text{ for each } x \in R - U \}$

273

The σ -ideal $J^2(\pi/2)$ was defined by R. Ger in his work [3].

Let us notice that for some σ -ideals \mathcal{J} we obtain:

(1)
$$\mathcal{J}^{2}(\theta_{1}) = \mathcal{J}^{2}(\theta_{2})$$
 for $\theta_{1}, \theta_{2} \in (0, \pi)$, $\theta_{1} \neq \theta_{2}$

namely for $\mathcal{I} = \{\emptyset\}$, the σ -ideal of measure zero sets and the σ -ideal of first category sets which follow from the Fubini theorem and the Kuratowski-Ulam theorem (see [5], Chapter XIV, XV). However it is possible to give an example of a o-ideal for which(1) is not valid. For instance, let S be the σ -algebra of all subsets of R and \mathcal{I} - the σ -ideal of countable sets. Let A be the set of $x \in [0,1]$ the ternary expansion of which has the form $x = 0, a_1 a_2 a_3 \dots$, where

$$a_{i} = \begin{cases} 0 & \text{or } 2 & \text{for } i & \text{odd} \\ 0 & & \text{for } i & \text{even} \end{cases}$$

and B be the set of $y \in [0,1]$ the ternary expansion of which has the form $y = 0, b_1 b_2 b_3 \dots$, where

$$b_{i} = \begin{cases} 0 & \text{for } i \text{ odd} \\ 0 & \text{or } 2 \text{ for } i \text{ even} \end{cases}$$

Then the set $M = A \times B \in S^2$ and $M \in \mathcal{J}^2(3\pi/4)$, but $M \notin \mathcal{J}^2(\pi/2)$.

Similar to the σ -ideal $\mathcal{J}^2(\theta)$ we shall define a σ -ideal $\mathcal{J}^2(\mathbf{x})$ adjoint with \mathcal{J} at the point x for an arbitrary σ -ideal $\mathcal{J} \subset S$ and for every point $\mathbf{x} \in \mathbb{R}$.

 $\mathcal{J}^{2}(\mathbf{x}) = (\mathbf{M} \in \mathbf{S}^{2} : \text{there is a set } \mathbf{\Theta} \in \mathcal{J} \text{ such that}$

 $h_{\mathbf{x}}(\mathbf{L}(\mathbf{x}, \theta) \cap \mathbf{M}) \in \mathcal{J}$ for each $\theta \in (\mathbf{0}, \pi) - \Theta$.

Let us notice that for such σ -ideals as $\mathcal{T} = \{ \phi \}$, the family of sets of measure zero and for the family of sets of first category we have

(2)
$$J^{2}(x_{1}) = J^{2}(x_{2})$$
 for $x_{1}, x_{2} \in \mathbb{R}, x_{1} \neq x_{2}$.

It can be shown that for the σ -ideal of countable sets the equality (2) does not hold. It suffices to transform homeomorfically the unit square Q_0 onto a tetragon in such a way that the points of the halflines $L(x,\pi/2)$ for $x \in [0,1]$ will be transformed into those of the halflines $L(0,\theta)$ for $\theta \in [\pi/4, \arctan {\rm tg} 2]$ and the points of the halflines $L(x,3\pi/4)$ for $x \in [0,2]$ will be transformed into those of the halflines $L(x,3\pi/4)$ for $x \in [0,2]$ will be transformed into those of the halflines $L(4,\phi)$ for $\phi \in [3\pi/4, \pi - \arctan {\rm tg} \frac{1}{2}]$. Then the image E of the set M from the above example, obtained by means of the homeomorphism, belongs to S^2 (assuming that the continuum hypothesis is true, see [6]), and $E \in \mathcal{J}^2(4)$, but $E \notin \mathcal{J}^2(0)$.

It follows from those above considerations that we can define the σ -ideal \mathcal{T}^2 adjoint to a given σ -ideal $\mathcal{T} \subseteq S$ in all directions:

$$\boldsymbol{\sigma}^2 = \bigcap_{\boldsymbol{\theta} \in (\boldsymbol{O}, \boldsymbol{\pi})} \boldsymbol{\sigma}^2(\boldsymbol{\theta}) \quad \boldsymbol{\sigma}^2(\boldsymbol{\theta})$$

and the σ -ideal \mathcal{I}^2_{\star} adjoint to a given σ -ideal $\mathcal{I} \subset S$ in all points:

$$\mathcal{J}_{\star}^{2} = \bigcap_{\mathbf{x} \in \mathbb{R}} \mathcal{J}^{2}(\mathbf{x}) \quad .$$

For the σ -ideal \mathcal{J} of countable sets one can prove that if A,B \subset (0, π), A \cap B = \emptyset , A U B = $(0,\pi)$, A $\neq \emptyset$. B $\neq \emptyset$, then there exists a set M \subset H such that

$$M \notin \mathcal{J}^2(\theta)$$
 for each $\theta \in A$

and

$$M \in \mathcal{J}^2(\theta)$$
 for each $\theta \in B$

(We assume that the continuum hypothesis is true). It follows from that, that $\sigma_{\star}^2 \not\subset \sigma^2$. Similarly $\sigma^2 \not\subset \sigma_{\star}^2$.

2. We are now going to study the σ -algebra $\beta \wedge \mathcal{J} = \{B \wedge U : B \in \mathcal{B}, U \in \mathcal{J}\};$ where β denotes the σ -algebra of Borel subsets of R and \mathcal{J} will be a σ -ideal in R. Let \mathscr{J} be the family of open sets. We give now some main properties of the σ -algebra $\beta \wedge \mathcal{J}$.

<u>Theorem 1</u>. If \mathcal{T}_0 is a σ -ideal such that $\mathcal{B} \land \mathcal{T}_0 = \mathcal{I} \land \mathcal{T}_0$, then for any σ -ideal $\mathcal{T}_1 \supset \mathcal{T}_0$ we have the equality $\mathcal{B} \land \mathcal{T}_1 = \mathcal{I} \land \mathcal{T}_1$.

It is known that for the σ -ideal \mathcal{J} of sets of the first category we have the equality $\mathcal{B} \Delta \mathcal{J} = \mathscr{L} \Delta \mathcal{J}$. We can construct a σ -ideal, which is proper, movable and essentially larger than either the σ -ideal of measure zero sets or the σ -ideal of first category sets.

Really, let \mathcal{T}_{O} be the σ -ideal of measure zero sets or the σ -ideal of first category sets and $E_{O} \subseteq R$ be the Sierpiński set; that is, a nonmeasurable set such that

$$card((E_{O} + x) \Delta E_{O}) \leq \aleph_{O}$$
 for every $x \in R$,

(see [7], p. 135, C_{70}). The set E_0 does not have the Baire property either.

 $\mathcal{I}_{1} = \{ C \cup D : C \in \mathcal{I}_{O}, \quad D \subset E_{O} \}$

and

$$\mathcal{T}_2 = \{ \bigcup_{n=1}^{\infty} (\mathbf{E}_n + \mathbf{x}_n) : \mathbf{E}_n \in \mathcal{T}_1 \text{ and } \mathbf{x}_n \in \mathbb{R} \text{ for every } n \} .$$

Then \mathcal{I}_2 is a proper σ -ideal with the required properties.

<u>Theorem 2</u>. If \mathcal{T} is a σ -ideal such that $\mathcal{B} \Delta \mathcal{T} = \mathscr{F} \Delta \mathcal{T}$, then $(\mathcal{B} \Delta \mathcal{T})^2 \subset \mathcal{T}^2(\pi/2)$.

It is known that there exists a set E of the second category in the plane, no three points of which are on a line (see [5], th. 15.5). So it does not have the Baire property. Hence we have that there exists a σ -ideal \mathcal{J} such that $\mathcal{B} \land \mathcal{J} = \mathcal{J} \land \mathcal{J}$ and $\mathcal{J}^2 \land \mathcal{J}^2(\pi/2) \not\subset (\mathcal{B} \land \mathcal{J})^2$.

3. We shall consider real functions f defined in the open upper half-plane H and we shall introduce the concepts of directional limit numbers of f with respect to a σ -ideal \mathcal{J} and limit numbers of f with respect to the σ -ideals \mathcal{J}^2 and \mathcal{J}^2_* . Those concepts are natural generalizations of qualitative limit numbers discussed in the papers [8], [2] and [4].

Let $x \in R$. A real number y is called a limit number of f at x in the direction $\theta \in (0,\pi)$ with respect to a σ -ideal \mathcal{I} , if there exists $\varepsilon > 0$ such that

$$h_{\mathbf{X}}(\mathbf{L}(\mathbf{x},\theta,\mathbf{r})\cap\mathbf{f}^{-1}((\mathbf{y}-\varepsilon,\mathbf{y}+\varepsilon)))\not\in\mathcal{J} \quad \text{for each} \quad \mathbf{r}>0.$$

Moreover the number $+\infty$, $(-\infty)$ is called a limit number of f at x in the direction θ with respect to the σ -ideal \mathcal{I} , if there exists a $\in \mathbb{R}$ such that

$$h_{x}(L(x,\theta,r)\cap f^{-1}((a,+\infty)))\notin \mathcal{I},(h_{x}(L(x,\theta,r)\cap f^{-1}((-\infty,a)))\notin \mathcal{I})$$

for each r > 0. The set of such limit numbers we shall denote by $C_{\tau}(f, x, \theta)$.

A real number y is called a limit number of f at x with respect to the σ -ideal \mathcal{I}^2 , (\mathcal{I}^2_*) , if for each $\varepsilon > 0$ and r > 0

$$K(\mathbf{x},\mathbf{r}) \cap \mathbf{f}^{-1}((\mathbf{y}-\varepsilon,\mathbf{y}+\varepsilon)) \notin \mathcal{J}^2, (K(\mathbf{x},\mathbf{r}) \cap \mathbf{f}^{-1}((\mathbf{y}-\varepsilon,\mathbf{y}+\varepsilon)) \notin \mathcal{J}^2_*)$$

where K(x,r) denotes the circle with the center x and radius r. Moreover $+\infty$ is called a limit number of f at x with respect to the σ -ideal \mathcal{J}^2 , (\mathcal{J}^2_{\star}) , if for each $a \in \mathbb{R}$ and r > 0

$$K(\mathbf{x},\mathbf{r}) \cap f^{-1}((\mathbf{a},+\infty)) \notin \mathcal{J}^2, \quad (K(\mathbf{x},\mathbf{r}) \cap f^{-1}((\mathbf{a},+\infty)) \notin \mathcal{J}^2_{\star})$$

Similarly we define $-\infty$ as a limit number of f at x with respect to the σ -ideal \mathcal{T}^2 , (\mathcal{T}^2_*) . The set of such limit numbers we shall denote by $C_{\mathcal{T}^2}(f,x)$, $(C_{\mathcal{T}^2}(f,x))$.

The following theorem is similar to the theorem concerning essential limit numbers proved in the paper [1].

<u>Theorem 3</u>. Let \mathcal{I} be a σ -ideal which does not include nonempty open sets and satisfies the conditions:

$$(3) \qquad \qquad \beta \Delta \mathcal{J} = \mathscr{J} \Delta \mathcal{J}$$

and

(4)
$$\mathcal{J}^{2}(\theta_{1}) = \mathcal{J}^{2}(\theta_{2})$$
 for any two directions
 $\theta_{1}, \theta_{2} \in (0, \pi), \quad \theta_{1} \neq \theta_{2}$.

If $f: H \rightarrow R$ is a measurable function with respect to the σ -algebra $(\mathcal{B} \Delta \mathcal{I})^2$, then for any direction $\theta \in (0,\pi)$ sup $C_{\mathcal{J}}(f, x, \theta)$ is a measurable function of x with respect to the σ -algebra $\mathcal{B} \Delta \mathcal{I}$.

By similar assumption, we can obtain generalizations of many theorems concerning the qualitative limit numbers. Those theorems can be found in the works [8], [2], [4].

Theorem 4. Let \mathcal{T} be a σ -ideal which does not include nonempty open sets and satisfies conditions (3) and (4). If $f: H \rightarrow R$ is a measurable function with respect to the σ -algebra $(\mathcal{B} \ \Delta \ \mathcal{T})^2$, then for any two directions $\theta_1, \ \theta_2 \in (0,\pi), \ \theta_1 \neq \theta_2$ we have

$$\{\mathbf{x} \in \mathbb{R} : \sup C_{\mathcal{J}}(\mathbf{f}, \mathbf{x}, \theta_1) < \sup C_{\mathcal{J}}(\mathbf{f}, \mathbf{x}, \theta_2) \in \mathcal{J} \}$$

<u>Theorem 5</u>. If \mathcal{J} is a σ -ideal which does not include nonempty open sets and if $f: H \rightarrow R$ is a continuous function, then for any two directions θ_1 , $\theta_2 \in (0,\pi)$, $\theta_1 \neq \theta_2$ the set

$$\{\mathbf{x} \in \mathbf{R} : \sup C_{\mathcal{J}}(\mathbf{f}, \mathbf{x}, \theta_1) < \inf C_{\mathcal{J}}(\mathbf{f}, \mathbf{x}, \theta_2)\}$$

is at most denumerable.

<u>Theorem 6</u>. If \mathcal{T} is a σ -ideal which does not include nonempty open sets and satisfies conditions (3) and (4). If $f: H \rightarrow R$ is a measurable function with respect to the σ algebra $(\mathcal{B} \ \Delta \ \mathcal{I})^2$, then for any two directions $\theta_1, \ \theta_2 \in (0, \pi), \ \theta_1 \neq \theta_2$ we have

$$\{\mathbf{x} \in \mathbb{R} : C_{\mathcal{J}}(\mathbf{f}, \mathbf{x}, \theta_1) - C_{\mathcal{J}}(\mathbf{f}, \mathbf{x}, \theta_2) \neq \emptyset \in \mathcal{J} \}$$

<u>Theorem 7</u>. Let \mathcal{T} be a σ -ideal which does not include nonempty open sets and satisfies conditions (3) and (4). If $f: H \rightarrow R$ is a measurable function with respect to the σ algebra $(\mathcal{B} \Delta \mathcal{T})^2$ and $\{\theta_n\}$ is an arbitrary sequence of directions from the interval $(0,\pi)$, then

$$\{\mathbf{x} \in \mathbb{R} : \bigcap_{n=1}^{\infty} C_{\mathcal{J}}(\mathbf{f}, \mathbf{x}, \theta_n) = \emptyset\} \in \mathcal{J} .$$

<u>Theorem 8</u>. If a σ -ideal \mathcal{T} does not include nonempty open sets and if $f: H \rightarrow R$ is a continuous function, then for every direction $\theta \in (0, \pi)$ and for every $\mathbf{x} \in \mathbf{R}$

$$C_{\mathcal{J}}(f,x,\theta) \subset C_{\mathcal{J}}^{2}(f,x)$$

Example. There exists a σ -ideal \mathcal{I} and a continuous function $f: H \rightarrow R$ such that for some direction $\theta \in (0, \pi)$ $\theta \in (0, \pi)$

{
$$\mathbf{x} \in \mathbf{R} : C_{\tau^2}(\mathbf{f}, \mathbf{x}) \notin C_{\tau}(\mathbf{f}, \mathbf{x}, \theta)$$
} $\notin \mathcal{I}$.

It suffices to take $\mathcal{I} = \{ \phi \}$ and

$$f(z) = max((Arg \ z - \pi/2), 0)$$
 for $z \in H$.

It is easy to prove that for $\theta \in (0, \pi/2)$ and $\mathbf{x}_0 = 0$ we have $C_{\mathcal{J}^2}(\mathbf{f}, \mathbf{x}_0) \not\in C_{\mathcal{J}}(\mathbf{f}, \mathbf{x}_0, \theta)$.

<u>Theorem 9</u>. If $f: H \rightarrow R$ is an arbitrary function, then for every $x \in R$

$$\{\theta \in (0,\pi) : C_{\mathcal{J}}(f,x,\theta) \subset C_{\mathcal{J}^2_*}(f,x)\} = (0,\pi) - A$$
,

where $A \in \mathcal{J}$.

The directional limit numbers of f with respect to a σ -ideal \mathcal{T} are related to the limit of the function f at x with respect to the σ -ideal \mathcal{T} .

Let $f: H \rightarrow R$, $x \in R$, $\theta \in (0, \pi)$. The real number y is called the upper limit of f at x in the direction θ with respect to σ -ideal \mathcal{J} if

 1^O for every $\varepsilon>0$ there is r>0 such that $h_{\mathbf{X}}(\mathbf{L}(\mathbf{x},\theta,r)\cap f^{-1}([y+\varepsilon,+\infty)))\in\mathcal{J},$

2⁰ for every $\epsilon > 0$ and for every r > 0 $h_{x}(L(x,\theta,r) \cap f^{-1}((y-\epsilon,y]))) \notin \mathcal{J}$

and it will be denoted by \mathcal{T} - lim sup f(p). p+x, θ

The real number y is called the lower limit of f at x in the direction θ with respect to the σ -ideal \mathcal{T} if
$$\begin{split} 1^{0} & \text{for every } \varepsilon > 0 & \text{there is } r > 0 & \text{such that} \\ & h_{x}(L(x,\theta,r) \cap f^{-1}((-\infty,y-\varepsilon))) \in \mathcal{J} , \\ 2^{0} & \text{for every } \varepsilon > 0 & \text{and for every } r > 0 \\ & h_{x}(L(x,\theta,r) \cap f^{-1}([y,y+\varepsilon))) \notin \mathcal{J} \end{split}$$

and it will be denoted by \mathcal{J} - lim inf f(p). p+x, θ

The real number y is called the limit of f at x in the direction θ with respect to the σ -ideal \mathcal{T} if

$$\mathcal{J} - \limsup_{p \to \mathbf{x}, \theta} f(p) = \mathcal{J} - \liminf_{p \to \mathbf{x}, \theta} f(p) = y$$

<u>Theorem 10</u>. Let $f: H \rightarrow R$, $\theta \in (0, \pi)$, $x, y_0 \in R$. If the σ -ideal \mathcal{J} does not include nonempty open sets, then the following conditions are equivalent:

- $1^{O} \quad y_{O} = \mathcal{T} \lim_{p \to x, \theta} f(p) ,$

REFERENCES

- M.J. Evans, P.D. Humke, Directional cluster sets and essential directional cluster sets of real functions defined in the upper half plane, Rev. Roum. Math. Pures et Appl. 23 4, Bucarest (1978), p. 533-542.
- [2] M.J. Evans, P.D. Humke, On qualitative cluster sets, Colloquium Math. 37 2(1977), p. 255-261.
- [3] R. Ger, On some functional equations with a restricted domain, Fund. Math. 89 (1975), p. 131-149.
- [4] I. Libicka, On intersections of qualitative directional cluster sets, Zeszyty Naukowe U.L. 34 (1980), p. 79-84.
- [5] C. Oxtoby, Measure and category, New York-Heidelberg--Berlin, 1971.
- [6] B.V. Rao, On discrete borel spaces and projective sets, Bulletin of the American Math. Soc. 75 (1969), p. 614-617.
- [7] W. Sierpiński, Hypothèse du continu, Warszawa-Lwów, 1934.
- [8] W. Wilczyński, Qualitative cluster sets, Colloquium Math. 32 1 (1974), p. 113-118.

Received April 17, 1983