INROADS Real Analysis Exchange Vol. 9 (1983-84)

Inga Libicka, Institute of Mathematics, University of Eódź 90-238 Lódź, Poland

On Generalized cluster Sets

The paper consists of three parts. In the first we consider σ-ideals of subsets of the plane adjoint with some σ-ideal \mathcal{J} of subsets of the real line. The second part contains some theorems concerning σ-algebras of the form $(B \Delta \mathcal{J})^{2}$, where β is a σ-algebra of Borel sets. In the third pact the facts from the two earlier parts are used to study generalized limit numbers of real function defined in the upper half-plane.

1. Let H denote the open upper half-plane above the real line R, S - a σ-algebra of subsets of R and S^{2} the smallest σ-algebra generated by sets $A \times B$, where $A \in S$ and $B \in S . L(x, \theta)$ is the halfline beginning at $x \in R$ in the direction $\theta, L(x, \theta, r)$ - the segment beginning at $x \in R$ in the direction θ having length r. For $x \in R$ let h_{x} be the real function defined in H such that $h_{x}(p)=$ $=r$ for $p \in H$, where r is the distance of p from x.

For any σ-ideal $\mathcal{J} \subset S$ and direction $\theta \in(0, \pi)$ we shall define the σ-ideal $\mathcal{J}^{2}(\theta)$ adjoint with \mathcal{J} in the direction θ :

$$
\begin{gathered}
\mathcal{J}^{2}(\theta)=\left\{M \in S^{2}: \text { there is a set } U \in \mathcal{J}\right. \text { such that } \\
\left.h_{x}(L(x, \theta) \cap M) \in \mathcal{J} \text { for each } x \in R-U\right\}
\end{gathered}
$$

The σ-ideal $J^{2}(\pi / 2)$ was defined by R. Ger in his work [3]. Let us notice that for some u-ideals J we obtain:
(1) $\quad r^{2}\left(\theta_{1}\right)=g^{2}\left(\theta_{2}\right)$ for $\theta_{1}, \theta_{2} \in(0, \pi), \theta_{1} \neq \theta_{2}$. namely for $\mathcal{J}=\{\varnothing\}$, the σ-ideal of measure zero sets and the σ-ideal of first category sets which follow from the Fubini theorem and the Kuratowski-Ulam theorem (see [5], Chapter XIV, XV) . Fonever it is possible to give an example of a o-ideal for which(1) is not valid. For instance, let s be the o-qlgebra of all subsets of R and z - the σ-ideal of countable sets. Let A be the set of $x \in[0,1]$ the ternary expansion of which has the form $x=0, a_{1} a_{2} a_{3} \ldots$, where

$$
a_{i}=\left\{\begin{array}{llll}
0 & \text { or } 2 & \text { for } i & \text { odd } \\
0 & & \text { for } i & \text { even }
\end{array}\right.
$$

and B be the set of $y \in[0,1]$ the ternary expansion of which has the form $y=0, b_{1} b_{2} b_{3} \ldots$ where

$$
b_{i}=\left\{\begin{array}{llll}
0 & & \text { for } & i \\
\text { odd } \\
0 & \text { or } 2 & \text { for } & i \\
\text { even }
\end{array} .\right.
$$

Then the set $M=A \times B \in S^{2}$ and $M \in \mathcal{I}^{2}(3 \pi / 4)$, but $M \notin J^{2}(\pi / 2)$.

Similar to the σ-ideal $g^{2}(\theta)$ we shall define a σ-ideal $\mathcal{J}^{2}(\mathrm{x})$ adjoint with \mathcal{J} at the point x for an arbitrary σ-ideal $\mathcal{I} \subset S$ and for every point $x \in R$.

$$
\begin{gathered}
\mathcal{J}^{2}(x)=M \in s^{2}: \text { there is a set } \Theta \in J \text { such that } \\
\left.h_{x}(\mathcal{L}(x, \theta) \cap M) \in \mathcal{J} \text { for each } \theta \in(0, \pi)-\Theta\right)
\end{gathered}
$$

Let us notice that for such σ-ideals as $\sigma=\{\phi$, the family of sets of measure zero and for the family of sets of first category we have

$$
\begin{equation*}
g^{2}\left(x_{1}\right)=g^{2}\left(x_{2}\right) \text { for } x_{1}, x_{2} \in R, \quad x_{1} \neq x_{2} \tag{2}
\end{equation*}
$$

It can be shown that for the σ-ideal of countable sets the equality (2) does not hold. It suffices to transform homeomorfically the unit square Q_{0} onto a tetragon in such a way that the points of the halflines $L(x, T / 2)$ for $x \in[0,1]$ will be transformed into those of the halflines $L(0, \theta)$ for $\theta \in[\pi / 4, \operatorname{arc} \operatorname{tg} 2]$ and the points of the halflines $L(x, 3 \pi / 4)$ for $x \in[0,2]$ will be transformed into those of the halfines $L(4, \varphi)$ for $\varphi \in\left[3 \pi / 4, \pi-\operatorname{arc} \operatorname{tg} \frac{1}{2}\right]$. Then the image E of the set M from the above example, obtained by means of the homeomorphism, belongs to s^{2} (assuming that the continuum hypothesis istrue, see [6]), and $E \in \mathcal{J}^{2}(4)$, but $E \notin \mathcal{J}^{2}(0)$.

It follows from those above considerations that we can define the σ-ideal g^{2} adjoint to a given o-ideal $J \subset \mathrm{~s}$ in all directions:

$$
J^{2}=\bigcap_{\theta \in(0, \pi)} \mathcal{J}^{2}(\theta)
$$

and the σ-ideal \mathcal{J}_{*}^{2} adjoint to a given σ-ideal $\mathcal{I} \subset S$ in all points:

$$
J_{*}^{2}=\bigcap_{x \in R} g^{2}(x)
$$

For the σ-ideal \mathcal{J} of countable sets one can prove that if $A, B \subset(0, \pi), A \cap B=\varnothing, A \cup B=(0, \pi), A \neq \varnothing . B \neq \varnothing$, then there exists a set $M \subset H$ such that $M \notin J^{2}(\theta)$ for each $\theta \in A$ and $M \in \mathcal{J}^{2}(\theta)$ for each $\theta \in B$.
(We assume that the continuum hypothesis is true). It follows from that, that $\mathcal{J}_{*}^{2} \not \subset \mathcal{J}^{2}$. Similarly $\mathcal{J}^{2} \not \subset \mathcal{J}_{*}^{2}$.
2. We are now going to study the σ-algebra $B \Delta \mathcal{J}=$ $=\{B \Delta U: B \in B, U \in \mathcal{J}\} ;$ where B denotes the σ-algebra of Borel subsets of R and \mathcal{J} will be a σ-ideal in R. Let \& be the family of open sets. We give now some main properties of the σ-algebra $\beta \Delta J$.

Theorem 1. If \mathcal{J}_{0} is a σ-ideal such that $B \Delta \mathcal{I}_{0}=$ $=\& \Delta J_{0}$, then for any σ-ideal $J_{1} \supset J_{0}$ we have the equality $B \Delta J_{1}=\& \Delta J_{1}$.

It is known that for the σ-ideal \mathcal{J} of sets of the first category we have the equality $B \Delta J=\& \Delta \mathcal{J}$. We can construct a σ-ideal, which is proper, movable and essentially larger than either the σ-ideal of measure zero sets or the σ-ideal of first category sets.

Really, let J_{0} be the σ-ideal of measure zero sets or the σ-ideal of first category sets and $E_{O} \subset R$ be the

Sierpinski set; that is, a nonmeasurable set such that

$$
\operatorname{card}\left(\left(E_{O}+x\right) \Delta E_{O}\right) \leq K_{O} \text { for every } x \in R,
$$

(see [7], p. 135, C_{70}). The set E_{0} does not have the Baire property either.

$$
J_{1}=\left\{C \cup D: C \in \mathcal{J}_{0}, \quad D \in E_{0}\right\}
$$

and

$$
\mathcal{J}_{2}=\left\{\bigcup_{n=1}\left(E_{n}+x_{n}\right): E_{n_{1}} \in \mathcal{I}_{1} \text { and } x_{n} \in R \text { for every } n\right\}
$$

Then \mathcal{J}_{2} is a proper σ-ideal with the required properties.
Theorem 2. If \mathcal{J} is a σ-ideal such that $\mathcal{B} \Delta \mathcal{J}=$ $=\& \Delta J$, then $(B \Delta J)^{2} \subset \mathcal{J}^{2}(\pi / 2)$.

It is known that there exists a set E of the second category in the plane, no three points of which are on a line (see [5], th. 15.5). So it does not have the Baire property. Hence we have that there exists a σ-ideal \mathcal{J} such that $B \Delta \mathcal{J}=\Delta \mathcal{J}$ and $\mathscr{H}^{2} \wedge \mathcal{J}^{2}(\pi / 2) \not \subset(B \Delta \mathcal{J})^{2}$.
3. We shall consider real functions f defined in the open upper half-plane H and we shall introduce the concepts of directional limit numbers of f with respect to a σ-ideal \mathcal{J} and limit numbers of f with respect to the σ-ideals \mathcal{J}^{2} and J_{*}^{2}. Those concepts are natural generalizations of qualitative limit numbers discussed in the papers [8], [2] and [4].

Let $x \in R$. A real number y is called a limit. number of f at x in the direction $\theta \in(0, \pi)$ with respect to a σ-ideal J, if there exists $\varepsilon>0$ such that

$$
h_{X}\left(L(x, \theta, r) \cap f^{-1}((y-\varepsilon, y+\varepsilon))\right) \notin \mathcal{F} \text { for each } r>0 .
$$

Moreover the number $+\infty,(-\infty)$ is called a limit number of f at x in the direction θ with respect to the σ-ideal J, if there exists $a \in R$ such that

$$
h_{x}\left(L(x, \theta, r) \cap f^{-1}((a,+\infty))\right) \notin J,\left(h_{x}\left(L(x, \theta, r) \cap f^{-1}((-\infty, a))\right) \notin \mathcal{J}\right)
$$

for each $r>0$. The set of such limit numbers we shall denote by $C_{g}(f, x, \theta)$.

A real number y is called a limit number of f at x with respect to the σ-ideal $\mathcal{F}^{2},\left(\sigma_{*}^{2}\right)$, if for each $\varepsilon>0$ and $r>0$

$$
K(x, r) \cap f^{-1}((y-\varepsilon, y+\varepsilon)) \notin \mathcal{J}^{2},\left(K(x, r) \cap f^{-1}((y-\varepsilon, y+\varepsilon)) \notin J_{*}^{2}\right)
$$

where $K(x, r)$ denotes the circle with the center x and radius r. Moreover $+\infty$ is called a limit number of f at x with respect to the σ-ideal $\tau^{2},\left(\mathcal{J}_{*}^{2}\right)$, if for each $a \in \mathbb{R}$ and $r>0$

$$
K(x, r) \cap f^{-1}((a,+\infty)) \notin \mathcal{I}^{2},\left(K(x, r) \cap f^{-1}((a,+\infty)) \notin J_{*}^{2}\right) .
$$

Similarly we define $-\infty$ as a limit number of f at x with respect to the σ-ideal $J^{2},\left(J_{*}^{2}\right)$. The set of such limit numbers we shall denote by $C_{\mathcal{J}^{2}}(f, x),\left(C_{J_{*}^{2}}(f, x)\right)$.

The following theorem is similar to the theorem concerning essential limit numbers proved in the paper [l].

Theorem 3. Let I be a σ-ideal which does not include nonempty open sets and satisfies the conditions:

$$
B t J=\& \Delta J
$$

and
(4) $\quad J^{2}\left(\theta_{1}\right)=J^{2}\left(\theta_{2}\right)$ for any two directions

$$
\theta_{1}, \theta_{2} \in(0, \pi), \quad \theta_{1} \neq \theta_{2} .
$$

If $f: H \rightarrow R$ is a measurable function with respect to the σ-algebra $(\beta \Delta J)^{2}$, then for any direction $\theta \in(0, \pi)$
$\sup C_{g}(f, x, \theta)$ is a measurable function of x with respect to the σ-algebra $B \Delta \mathcal{J}$.

By similar assumption, we can obtain generalizations of many theorems concerning the qualitative limit numbers. Those theorems can be found in the works [8], [2], [4].

Theorem 4. Let J be a σ-ideal which does not include nonempty open sets and satisfies conditions (3) and (4). If $f: H \rightarrow R$ is a measurable function with respect to the σ-algebra $(\beta \Delta J)^{2}$, then for any two directions $\theta_{1}, \theta_{2} \in(0, \pi), \theta_{1} \neq \theta_{2}$ we have
$\left\{x \in R: \sup C_{\mathcal{J}}\left(f, x, \theta_{1}\right) \leqslant \sup C_{\mathcal{J}}\left(f, x, \theta_{2}\right) ` \in \mathcal{J}\right.$.

Theorem 5. If \mathcal{J} is a σ-ideal which does not include nonempty open sets and if $f: H \rightarrow R$ is a continuous function, then for any two directions $\theta_{1}, \theta_{2} \in(0, \pi), \theta_{1} \neq \theta_{2}$ the set

$$
\left\{x \in R: \sup C_{\mathcal{J}}\left(f, x, \theta_{1}\right)<\inf C_{\mathcal{J}}\left(f, x, \theta_{2}\right)\right\}
$$

is at most denumerable.

Theorem 6. If \mathcal{J} is a σ-ideal which does not include nonempty open sets and satisfies conditions (3) and (4). If $f: H \rightarrow R$ is a measurable function with respect to the σ algebra $(B \Delta J)^{2}$, then for any two directions $\theta_{1}, \theta_{2} \in(0, \pi)$. $\theta_{1} \neq \theta_{2}$ we have

$$
\left\{x \in R: C_{\mathcal{J}}\left(f, x, \theta_{1}\right)-C_{\mathcal{J}}\left(f, x, \theta_{2}\right) \neq \varnothing: \in \mathcal{J}\right.
$$

Theorem 7. Let J be a σ-ideal which does not include nonempty open sets and satisfies conditions (3) and (4). If $f: H \rightarrow R$ is a measurable function with respect to the $\sigma-$ algebra $(\beta \Delta J)^{2}$ and $\left\{\theta_{n}\right\}$ is an arbitrary sequence of directions from the interval $(0, \pi)$, then

$$
\left\{x \in R: \bigcap_{n=1}^{\infty} c_{\mathcal{J}}\left(f, x, \theta_{n}\right)=\varnothing\right\} \in \mathcal{J} .
$$

Theorem 8. If a σ-ideal \mathcal{J} does not include nonempty open sets and if $f: H \rightarrow R$ is a continuous function, then for every direction $\theta \in(0, \pi)$ and for every $x \in R$

$$
C_{J}(f, x, \theta) \subset c_{J^{2}}(f, x)
$$

Example. There exists a σ-ideal \mathcal{J} and a continuous function $f: H \rightarrow R$ such that for some direction $\theta \in(0, \pi)$ $\theta \in(0, \pi)$

$$
\left\{x \in R: C_{g^{2}}(f, x) \notin C_{J}(f, x, \theta)\right\} \notin g
$$

It suffices to take $\mathcal{I}=\{\varnothing\}$ and

$$
f(z)=\max ((\operatorname{Arg} z-\pi / 2), 0) \text { for } z \in H .
$$

It is easy to prove that for $\theta \in(0, \pi / 2)$ and $x_{0}=0$ we have $C_{\mathcal{J}^{2}}\left(f, x_{0}\right) \notin C_{g}\left(f, x_{0}, \theta\right)$.

Theorem 9. If $f: H \rightarrow R$ is an arbitrary function, then for every $\quad x \in R$

$$
\left\{\theta \in(0, \pi): c_{g}(f, x, \theta) \subset c_{\mathcal{J}_{*}^{2}}(f, x)\right\}=(0, \pi)-A,
$$

where $A \in I$.

The directional limit numbers of f with respect to a σ-ideal \mathcal{J} are related to the limit of the function f at x with respect to the σ-ideal J.

Let $f: H \rightarrow R, x \in R, \theta \in(0, \pi)$. The real number y is called the upper limit of f at x in the direction θ with respect to σ-ideal \mathcal{J} if
1^{0} for every $\varepsilon>0$ there is $r>0$ such that

$$
h_{x}\left(L(x, \theta, x) \cap f^{-1}([y+\epsilon,+\infty))\right) \in \mathcal{J},
$$

2° for every $\varepsilon>0$ and for every $r>0$

$$
\left.h_{x}\left(L(x, \theta, r) \cap f^{-1}((y-\varepsilon, y])\right)\right) \notin \mathcal{J}
$$

and it will be denoted by $I-\lim _{p \rightarrow x, \theta} \sup _{f} f(p)$.
The real number y is called the lower limit of f at x in the direction θ with respect to the σ-ideal \mathcal{J} is
1^{0} for every $\varepsilon>0$ there is $r>0$ such that

$$
h_{x}\left(L(x, \theta, r) \cap f^{-1}((-\infty, y-\varepsilon])\right) \in \mathcal{J},
$$

2^{0} for every $\varepsilon>0$ and for every $r>0$

$$
h_{x}\left(L(x, \theta, r) \cap f^{-1}([y, y+\varepsilon))\right) \notin \mathcal{J}
$$

and it will be denoted by $\mathcal{J}-\lim _{p \rightarrow x, \theta} \inf f(p)$.
The real number y is called the limit of f at x in the direction θ with respect to the σ-ideal \mathcal{J} if

$$
J-\lim _{p \rightarrow x, \theta} \sup f(p)=J-\lim _{p \rightarrow x, \theta} \inf ^{f} f(p)=y
$$

Theorem 10. Let $f: H \rightarrow R, \theta \in(0, \pi), x, y_{O} \in R$. If the σ-ideal \mathcal{J} does not include nonempty open sets, then the following conditions are equivalent:

$$
1^{0} y_{O}=\mathcal{J}-\lim _{p \rightarrow X, \theta} f(p)
$$

2^{0} for every $\varepsilon>0$ there is $r>0$ such that

$$
h_{x}\left(L(x, \theta, r)-f^{-1}\left(\left(y_{O}-\varepsilon, y_{O}+\varepsilon\right)\right)\right) \in \mathcal{J}
$$

REFERENCES

[1] M.J. Evans, P.D. Humke, Directional cluster sets and essential directional cluster sets of real functions defined in the upper half plane, Rev. Roum. Math. Pures et Appl. 23 4, Bucarest (1978), p. 533-542.
[2] M.J. Evans, P.D. Humke, On qualitative cluster sets, Colloquium Math. 37 2(1977), p. 255-261.
[3] R. Ger, On some functional equations with a restricted domain, Fund. Math. 89 (1975), p. 131-149.
[4] I. Libicka, On intersections of qualitative directional cluster sets, Zeszyty Naukowe U.L. 34 (1980), p. 79-84.
[5] C. Oxtoby, Measure and category, New York-Heidelberg--Berlin, 1971.
[6] B.V. Rao, On discrete borel spaces and projective sets, Bulletin of the American Math. Soc. 75 (1969), p. 614-617.
[7] W. Sierpiński, Hypothèse du continu, Warszawa-Lwów, 1934.
[8] W. Wilczyński, Qualitative cluster sets, Colloquium Math. 321 (1974), p. 113-118.

Received April 17, 1983

