Real Analysis Exchange Vol. 9 (1983-84)

Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

MULTIPLIERS OF NONNEGATIVE DERIVATIVES

Introduction. Throughout this note the word function means a finite real function, i.e. a mapping to $R = (-\infty, \infty)$. Let Φ be a class of functions on a set $J \neq \emptyset$. By $M(\Phi)$ we denote the system of all functions f on J such that for $\in \Phi$ for each $\phi \in \Phi$. The elements of $M(\Phi)$ are called multipliers of δ . The description of $M(\Phi)$ may be trivial; if, e.g., Φ is closed under multiplication and if the function $\varphi(x) = 1$ (x \in J) belongs to Φ , then, obviously, $M(\phi) = \phi$. In particular, $M(M(\phi)) = M(\phi)$ for any ϕ . If, however, § "behaves badly" with respect to multiplication, then the investigation of $M(\Phi)$ may lead to some interesting results. Let J = [0,1], let D be the class of all finite derivatives on J and let SD be the class of all summable (= Lebesgue integrable) functions in D. For each class Φ of functions on J let Φ^+ be the class of all nonnegative functions in Φ . The systems M(D) and M(SD)have been characterized in [1] and [2] (see also [3] and [4]). It is natural to investigate $M(D^+)$. Actually, we shall investigate the system \mathfrak{M} of all functions f on

258

J such that $f \phi \in D$ for each $\phi \in D^+$; it is easy to see that $M(D^+) = \mathfrak{M}^+$. Some properties of \mathfrak{M} have been stated without proof in [4].

1. Basic properties of π

<u>Notation</u>. Let C_{ap} be the system of all functions approximately continuous on the interval J = [0,1] and let bC_{ap} be the system of all bounded functions in C_{ap} . Integrals are Lebesgue integrals.

<u>1.1.</u> Lemma. Let f be a function such that fg \in D for each $g \in D^+$ for which g(0) = 0. Then

 $\lim \sup_{x \to 0+} |f(x)| < \infty .$

<u>Proof.</u> Let, e.g., $\lim \sup_{x \to 0^+} f(x) = \infty$. There are $a_0, a_1, \ldots \in (0,1)$ such that $2a_n < a_{n-1}$ and $f(a_n) > n$ for $n = 1, 2, \ldots$. It is easy to see that there is a function F such that F' = f on (0,1]. It follows that there are $b_n \in (a_n, 2a_n)$ such that $F(b_n) - F(a_n) > n(b_n - a_n)$. Let g be a nonnegative function continuous on (0,1] such that $g = a_n/(n(b_n - a_n))$ on $[a_n, b_n]$ and $\int_{a_n}^{a_{n-1}} g < 2a_n/n$. Set g(0) = 0. If $a_n < x \le a_{n-1}$, then $x^{-1} \int_0^x g \le a_n^{-1} \int_0^{a_{n-1}} g < 4/n$ so that $g \in D^+$. By assumption there is a function Q such that Q' = fg on J and Q(0) = 0. Obviously $Q'^+(0) = 0$ so that $(Q(b_n) - Q(a_n))/a_n = (Q(b_n)/b_n) \cdot (b_n/a_n) - Q(a_n)/a_n \rightarrow 0$. However, $Q(b_n) - Q(a_n) = (a_n/(n(b_n - a_n))) \cdot (F(b_n) - F(a_n)) > a_n (n = 1, 2, ...)$ which is a contradiction.

<u>1.2.</u> Lemma. Let g be a nonnegative measurable function on J such that $x^{-1} \int_{0}^{x} g \neq 0$ (x $\neq 0+$). Then lim $ap_{x \neq 0+} g(x) = 0$.

(The proof is left to the reader.)

<u>1.3.</u> Lemma. Let f be a function such that $f \in D$ and $f^2 \in D$. Then $f \in C_{ap}$.

<u>Proof</u>. Let $a \in J$. Obviously $(f - f(a))^2 \in D$. It follows easily from 1.2 that f is approximately continuous at a with respect to J. Hence $f \in C_{ap}$.

1.4. Theorem. $\mathcal{M} \subset \mathrm{bC}_{ap}$.

<u>Proof</u>. Let $f \in \mathcal{M}$. It is obvious that $f \in D$ and it follows easily from 1.1 that f is bounded. Thus, there is a $c \in R$ such that $f - c \in D^+$. Hence $f \cdot (f - c) \in D$, $f^2 \in D$. Now we apply 1.3.

<u>1.5.</u> Theorem. Let E be the vector space generated by D^+ . Then M(E) = m.

<u>Proof</u>. It is easy to see that $E = \{g_1 - g_2; g_1, g_2 \in D^+\}$. Let $f \in m$ and $g \in D^+$. By 1.4 there is a $c \in R$ such that $|f| \leq c$ on J. Then $2fg = (c+f)g - (c-f)g \in E$. It follows that $\mathcal{M} \subset M(E)$. Obviously $M(E) \subset \mathcal{M}$.

<u>1.6.</u> Lemma. Let $g, f_n \in D, \varepsilon_n \in (0,\infty)$ $(n = 1,2,...), \varepsilon_n \rightarrow 0$. Let f be a function on J and let $|f_n - f| \leq \varepsilon_n g$ on J for each n. Then $f \in D$.

<u>Proof.</u> Let G, F_n be functions such that $F_n(0) = 0$ and that G' = g, $F'_n = f_n$ on J. It is easy to see that there is a function F such that $F_n \rightarrow F$ on J. We have $|F(y) - F(x) - (y - x)f(x)| \leq |F_n(y) - F_n(x) - (y - x)f_n'(x)| + \epsilon_n |G(y) - G(x)| + |y - x| \cdot |f_n(x) - f(x)| \quad (n = 1, 2, ..., x, y \in J).$ Hence F' = f on J.

1.7. Theorem. \mathcal{M} is closed under uniform convergence. (This follows easily from 1.6.)

<u>Remark.</u> Every function with a continuous derivative on J belongs to M(D), all the more to \mathcal{M} . It follows from 1.7 that each function continuous on J belongs to \mathcal{M} (which is easy to prove directly).

<u>1.8.</u> Theorem. Let φ be a function continuous on R and let $f \in \mathcal{M}$. Then the composite function $\varphi \circ f$ belongs to \mathcal{M} .

<u>Proof</u>. By 1.4 there is a compact interval K such that $f(J) \subset K$. There are polynomials P_1, P_2, \ldots such that $P_n \rightarrow \varphi$ uniformly on K. The system \mathfrak{M} is a vector space containing constant functions. It follows from 1.5 that \mathfrak{M} is closed under multiplication. Hence $P_n \circ f \in \mathfrak{M}$ for each n. Obviously $P_n \circ f \rightarrow \varphi \circ f$ uniformly. Now we apply 1.7.

2. Characterization of m

<u>Notation</u>. Let $N = \{1, 2, ...\}$. For each set $S \subset R$ let |S| be its outer Lebesgue measure. If f is a bounded nonnegative function on an interval I = [a,b]and if $r \in N$, we set

$$A(r,I,f) = A(r,a,b,f) = r^{-1} \sum_{k=1}^{r} \sup f([x_{k-1},x_{k}]),$$

where $x_{k} = a + k(b-a)/r$,

and

$$B(r,I,f) = B(r,a,b,f) =$$

$$\inf\{\sum_{k=1}^{r} (y_k - y_{k-1}) \sup f([y_{k-1}, y_k]); a = y_0 < y_1 < \dots < y_r = b\}.$$

2.1. Lemma. Let $a,b,c \in R$, a < b < c. Let f be a bounded nonnegative function on [a,b], let g be a bounded nonnegative function on [a,c] and let $r,s \in N$. Then

$$B(r,a,b,f) \leq (b-a)A(r,a,b,f)$$
,

 $B(r+l,a,b,f) \leq B(r,a,b,f), B(r,a,b,g) \leq B(r,a,c,g),$

$$B(r+s,a,c,g) \leq B(r,a,b,g) + B(s,b,c,g)$$

(The proof is left to the reader.)

2.2. Lemma. Let $r, s \in N$, $M \in R$. Let I be a compact interval and let f be a function such that $0 \leq f \leq M$ on I. Then

(1)
$$A(r,I,f) \leq |I|^{-1} B(s,I,f) + M(s-1)/r$$

<u>Proof.</u> Let I = [a,b], $a = Y_0 < Y_1 < \cdots < Y_s = b$. Set $x_k = a + k |I|/r$, $K = \{k; (x_{k-1}, x_k) \cap \{Y_1, \dots, Y_{s-1}\} = \emptyset\}$, $\alpha_k = \sup f([x_{k-1}, x_k])$, $\beta_j = \sup f([Y_{j-1}, Y_j])$. It is easy to see that $\sum_{k \in K} (x_k - x_{k-1}) \alpha_k \leq \sum_{j=1}^s (Y_j - Y_{j-1}) \beta_j$. Hence $|I|A(r, I, f) = |I|r^{-1} \sum_{k=1}^r \alpha_k \leq \sum_{j=1}^s (Y_j - Y_{j-1}) \beta_j + (s-1)M|I|r^{-1}$ from which (1) follows at once.

<u>2.3. Lemma</u>. Let f be a bounded nonnegative function on J. Then the following properties are equivalent:

- i) $2^{n} B(r, 2^{-n}, 2^{-n+1}, f) \neq 0$ ii) $x^{-1} B(r, 0, x, f) \neq 0$ iii) $A(r, 0, x, f) \neq 0$ iv) $A(r, 0, 1/n, f) \neq 0$
 - $(n,r \in N; n,r \rightarrow \infty, x \rightarrow 0+).$

<u>Proof</u>. Suppose that i) holds. Let $M = \sup f(J)$ and let $\varepsilon \in (0,\infty)$. There are s, $n_0 \in N$ such that $2^{k+2} B(s, 2^{-k}, 2^{-k+1}, f) < \varepsilon$ for each $k \in N \cap (n_0,\infty)$. Let $0 < x < 2^{-n_0}$. Choose $n, q \in N$ such that $2^{-n-1} \leq x < 2^{-n}$ and $2^{q-2} \varepsilon > M$. Obviously $n \geq n_0$. By 2.1 we have
$$\begin{split} & B(1+qs,0,x,f) \leq B(1,0,2^{-n-q},f) + B(s,2^{-n-q},2^{-n-q+1},f) + \cdots + \\ & B(s,2^{-n-1},2^{-n},f) \leq M \cdot 2^{-n-q} + \varepsilon (2^{-n-q-2} + \cdots + 2^{-n-3}) \leq \\ & \varepsilon \cdot 2^{-n-2} + \varepsilon \cdot 2^{-n-2} \leq \varepsilon x. \\ & \text{This proves ii}). \\ & \text{If ii} \text{ holds,} \\ & \text{then iii} \text{ holds by } 2.2; \\ & \text{iv}) \text{ is an obvious consequence of} \\ & \text{iii}). \\ & \text{From the inequalities } 2^n B(r,2^{-n},2^{-n+1},f) \leq \\ & 2 \cdot 2^{n-1} B(r,0,2^{-n+1},f) \leq 2A(r,0,2^{-n+1},f) \\ & \text{we see that iv}) \\ & \text{implies i).} \end{split}$$

2.4. Lemma. Let f be a summable derivative on an interval I = [a,b] and let T be a number less than $\sup\{|f(x)|; x \in I\}$. Then there is a function g piecewise linear on I such that $g(a) = g(b) = \int_{I} g = 0$, $\int_{I} |g| = 2|I|$ and

$$|\mathbf{I}| < \int_{\mathbf{I}} (\mathbf{fg} + |\mathbf{f}|)$$
.

<u>Proof.</u> We may suppose that $\sup\{|f(x)|; x \in I\} = \sup f(I)$. Choose an $\epsilon \in (0,\infty)$ such that the number $V = T + 3\epsilon$ is less than $\sup f(I)$. There is an $\eta \in (0,\infty)$ such that

(2) $3\eta \int_{I} |f| < \varepsilon |I| (|I| - 3\eta)$.

Since f is a Darboux function, there is a $c \in (a,b)$ such that f(c) > V. There is a $d \in (c,b)$ such that $\int_{c}^{d} f > V(d-c)$ and that d-c < n. There is a $\delta \in (0,n)$ such that $a < c-\delta$, $d+\delta < b$, $V(d-c) > (V-\varepsilon)(d-c+\delta)$ and that $\int_{c-\delta}^{c} |f| + \int_{d}^{d+\delta} |f| < \varepsilon(d-c)$. Let $\alpha = |I|/(d-c+\delta)$. Let g_1 be a function on I such that $g_1 = 0$ on $[a,c-\delta] \cup [d+\delta,b], g_1 = \alpha$ on [c,d] and that g_1 is linear on $[c-\delta,c]$ and on $[d,d+\delta]$. Then $\int_I g_1 = \alpha(d-c+\delta) = |I|$. Since $|\int_{c-\delta}^c fg_1 + \int_d^{d+\delta} fg_1| < \alpha \epsilon(d-c) < \epsilon |I|$ and $\int_c^d fg_1 = \alpha \int_c^d f > \alpha V(d-c) = |I| V(d-c)/(d-c+\delta) > |I| (V-\epsilon)$, we have $\int_I fg_1 > |I| (V-2\epsilon)$.

Let $P = I \setminus (c - \delta, d + \delta), \beta = |I|/(|I| - 3n)$. Since |P| > |I| - 3n, we have $\beta |P| > |I|$. It follows that there is a piecewise linear function g_2 on I such that $g_2 = 0$ on $\{a,b\} \cup [c - \delta, d + \delta], 0 \le g_2 \le \beta$ on I and $\int_I g_2 = |I|$. Therefore (see (2)) $\int_I fg_2 \le \beta \int_I |f| =$ $(1 + 3n/(|I| - 3n)) \int_I |f| < \int_I |f| + \epsilon |I|$. Since $\int_I f \cdot (g_1 - g_2) > |I| (V - 2\epsilon) - \int_I |f| - \epsilon |I| = |I|T - \int_I |f|$, we may choose $g = g_1 - g_2$.

2.5. Lemma. Let
$$f \in \mathcal{M}$$
, $f(0) = 0$. Then
A(r,2⁻ⁿ,2⁻ⁿ⁺¹, |f|) $\rightarrow 0$ (r,n $\in N$; r,n $\rightarrow \infty$)

<u>Proof</u>. According to 1.4, f is bounded. Let $r_1, r_2, \ldots \in N, r_n \to \infty$. Set $z_n = 2^{-n}$. Fix an $n \in N$ and set $x_k = z_n(1 + k/r_n)$ $(k = 0, \ldots, r_n)$, $I_k = [x_{k-1}, x_k]$, $\sigma_k = \sup\{|f(x)|; x \in I_k\}$ $(k = 1, \ldots, r_n)$. It follows from 2.4 that there is a function g_n piecewise linear on J such that $g_n = 0$ on $[0, z_n]$ and on $[2z_n, 1]$, $\int_{I_k} g_n = g_n(x_{k-1}) = g_n(x_k) = 0$, $\int_{I_k} |g_n| = 2z_n/r_n$ and $(\sigma_k - \frac{1}{n})z_n/r_n < \int_{I_k} (fg_n + |f|)$ for $k = 1, \dots, r_n$. Then (3) $A(r_n, z_n, 2z_n, |f|) < \frac{1}{n} + z_n^{-1} \int_z^{2z_n} (fg_n + |f|)$.

Set $g = \sum_{n=1}^{\infty} g_n$. Let G be a function on J such that $G = \sum_{n=1}^{\infty} |g_n|$ on (0,1] and G(0) = 2. It is easy to see that g, G \in D; obviously $G \pm g \in D^+$. Since 2g = (G+g) - (G-g), we have $fg \in D$. Since $f \in bC_{ap}$, we have also $|f| \in D$. Hence

$$z_n^{-1} \int_{z_n}^{2z_n} (fg + |f|) \to 0 \quad (n \to \infty)$$

This together with (3) easily implies our assertion.

<u>2.6.</u> Lemma. Let f be a bounded nonnegative measurable function on J such that $x^{-1} B(r,0,x,f) \rightarrow 0$ (x $\rightarrow 0+$, $r \in N$, $r \rightarrow \infty$). Let $g \in D^+$. Then

$$x^{-1} \int_{0}^{x} fg \rightarrow 0 \quad (x \rightarrow 0+) .$$

<u>Proof</u>. Let $S = \sup f(J)$ and let $\varepsilon \in (0,\infty)$. There is a $\delta \in (0,1)$ and an $r \in \mathbb{N}$ such that $2g(0)B(r,0,x,f) < \varepsilon x$ for each $x \in (0,\delta)$. Set $\alpha = \varepsilon/(4(S+1)r)$. There is an $n \in (0,\delta)$ such that $|\int_0^x (g-g(0))| < \alpha x$ for each $x \in (0,\eta)$. Choose such an x. There are x_j such that 2.7. Theorem. Let f be a bounded measurable function on J. Then the following properties a) - d) are equivalent:

a) $f \in \mathcal{T}_{n}$

b) $2^{n} B(r, x + 2^{-n}, x + 2^{-n+1}, |f - f(x)|) \rightarrow 0$ for each $x \in [0,1)$ and $2^{n} B(r, x - 2^{-n+1}, x - 2^{-n}, |f - f(x)|) \rightarrow 0$ for each $x \in (0,1]$

c) $(y-x)^{-1} B(r,x,y,|f-f(x)|) \to 0$ for each $x \in [0,1)$ and $(x-z)^{-1} B(r,z,x,|f-f(x)|) \to 0$ for each $x \in (0,1]$

d) $A(r,x,x+\frac{1}{n},|f-f(x)|) \rightarrow 0$ for each $x \in [0,1)$ and $A(r,x-\frac{1}{n},x,|f-f(x)|) \rightarrow 0$ for each $x \in (0,1]$ $(n,r \in N; n,r \rightarrow \infty, y \rightarrow x+, z \rightarrow x-).$

<u>Proof</u>. If $f \in \mathcal{M}$, then b) holds by 2.5 (see also 2.1). According to 2.3, conditions b) - d) are equivalent. Now suppose that c) holds. Let $g \in D^+$ and let $x \in J$. By 2.6 we have $(y-x)^{-1} \int_{x}^{y} (f - f(x)) \cdot g \to 0$ so that $(y-x)^{-1} \int_{x}^{y} fg \rightarrow f(x)g(x) \ (y \rightarrow x, y \in J)$. This shows that $fg \in D$ and that $f \in \mathcal{M}$ which completes the proof.

3. Points of discontinuity of functions in m

<u>3.1.</u> Theorem. Let $f \in \mathcal{T}$. Then f is Riemann integrable.

<u>Proof</u>. It follows from 1.4 that f is bounded. For each $x \in J$ let

$$w(x) = \lim_{h \to O+} \sup\{|f(t) - f(x)|; |t - x| < h, t \in J\}$$
.

Let $\alpha \in (0,\infty)$, $T = \{x \in J; w(x) > 2\alpha\}$. It suffices to prove that |T| = 0. For each $x \in J$ set $\varphi(x) = |T \cap (0,x)|$. Choose an $x \in [0,1)$ and an $\varepsilon \in (0,\infty)$. By 2.7 there is an $r \in N$ and a $\delta \in (0,\infty)$ such that $B(r,x,y,|f-f(x)|) < \varepsilon\alpha(y-x)$ for each $y \in (x,x+\delta)$. Choose such a y. There are x_j such that $x = x_0 < x_1 < \cdots < x_r = y$ and that $\sum_{k=1}^r \sigma_k(x_k - x_{k-1}) < \varepsilon\alpha(y-x)$, where $\sigma_k = \sup\{|f(t) - f(x)|; x_{k-1} \leq t \leq x_k\}$. Let

$$K = \{k; T \cap (x_{k-1}, x_k) \neq \emptyset\}.$$

Obviously $\varphi(\mathbf{y}) - \varphi(\mathbf{x}) = |\mathbf{T} \cap (\mathbf{x}, \mathbf{y})| \leq \sum_{k \in K} (\mathbf{x}_k - \mathbf{x}_{k-1}).$ If $\sigma_k < \alpha$ and $\mathbf{t} \in (\mathbf{x}_{k-1}, \mathbf{x}_k)$, then for each $\mathbf{v} \in (\mathbf{x}_{k-1}, \mathbf{x}_k)$ we have $|\mathbf{f}(\mathbf{v}) - \mathbf{f}(\mathbf{t})| < 2\alpha$ so that $\omega(\mathbf{t}) \leq 2\alpha$, $k \notin K$. Hence $\varphi(\mathbf{y}) - \varphi(\mathbf{x}) \leq \sum_{k \in K} \sigma_k \alpha^{-1} (\mathbf{x}_k - \mathbf{x}_{k-1}) < \varepsilon(\mathbf{y} - \mathbf{x}),$ $\varphi'^+(\mathbf{x}) = 0$. Similarly can be proved that $\varphi'^-(\mathbf{x}) = 0$ for each $x \in (0,1]$. It follows that φ is constant which completes the proof.

<u>Notation</u>. For each function f on J let Δ_f be the set of all points of discontinuity of f. For each set $S \subset R$ let cl S be its closure.

<u>Remark</u>. If $f \in \mathcal{M}$, then, by 3.1, $|\Delta_f| = 0$. Now we shall construct a function $f \in \mathcal{M}$ such that the set Δ_f is perfect and a function $g \in \mathcal{M}$ such that $\Delta_g \cap I$ is uncountable for each interval $I \subset J$.

3.2. Construction of f. Let \mathfrak{M}_0 be the set whose only element is the interval J. If \mathfrak{M}_n is a system of disjoint closed subintervals of J, let \mathfrak{M}_{n+1} be the system of all intervals [a,(2a+b)/3] and [(a+2b)/3,b], where $[a,b] \in \mathfrak{M}_n$. In this way we define, by induction, \mathfrak{M}_n for $n = 0,1,\ldots$. Let \mathfrak{P}_n be the system of all intervals ((2a+b)/3, (a+2b)/3), where $[a,b] \in \mathfrak{M}_{n-1}$ $(n = 1,2,\ldots)$. For each $I = (a,b) \in \mathfrak{P}_n$ define a function λ_I as follows: Set c = (a+b)/2, $\delta = 1/(2 \cdot 9^n)$, $\alpha = c - \delta$, $\beta = c + \delta$. Let $\lambda_I = 0$ on $(a,\alpha] \cup [\beta,b)$, $\lambda_I(c) = 1$ and let λ_I be linear on $[\alpha,c]$ and on $[c,\beta]$. Since $\beta - \alpha = (b-a)/3^n$, we have $\lambda_I = 0$ on $(a,(2a+b)/3] \cup$ [(a+2b)/3,b). Now define a function f setting $f = \lambda_I$ on $I \in \bigcup_{n=1}^{\infty} \mathfrak{P}_n$ and f = 0 elsewhere on J.

It is easy to see that Δ_f is the Cantor set.

3.3. Lemma. Let $I \in \mathfrak{P}_n$. Then $B(3,cl\,I,f) \leq 9^{-n}$. (Obvious.)

<u>3.4.</u> Lemma. Let $L \in \mathfrak{M}_n$ and let $k \in \mathbb{N}$. Then

(4) $B(2^{k+2}-3,L,f) \leq |L|(\frac{|L|}{7}+(\frac{2}{3})^k)$.

<u>Proof</u>. The number of elements of \mathfrak{P}_{n+j} contained in L is 2^{j-1} (j = 1,...,k) and the number of elements of \mathfrak{M}_{n+k} contained in L is 2^k . Since $3(1+\cdots+2^{k-1})+2^k = 4\cdot2^k-3$, we have (see 2.1 and 3.3) $B(2^{k+2}-3,L,f) \leq \sum_{j=1}^{k} \sum_{i \in \mathfrak{P}_{n+j}} B(3,cl\,i,f) + \sum_{i \in \mathfrak{M}_{n+k}} B(1,i,f) \leq \sum_{j=1}^{k} 2^{j-1}/9^{n+j} + 2^k/3^{n+k} < 9^{-n}/7 + (2/3)^k/3^n$ which proves (4).

<u>3.5. Lemma</u>. Let C be the Cantor set. Let L be a closed subinterval of J such that $L \cap C \neq \emptyset$ and let k be a natural number. Then

$$B(2^{k+2},L,f) \leq |L|(11|L|+3(2/3)^k)$$
.

<u>Proof</u>. We may suppose that |L| < 1/3. There is an $n \in N$ such that $3^{-n-1} \leq |L| < 3^{-n}$. Set $h = 3^{-n}$. There is an integer j such that $L \subset ((j-1)h, (j+1)h)$. Since $L \cap C \neq \emptyset$, we have either $[(j-1)h, jh] \in \mathfrak{M}_n$ or $[jh, (j+1)h] \in \mathfrak{M}_n$. Let, e.g., $[(j-1)h, jh] \in \mathfrak{M}_n$. Then either $(jh, (j+1)h) \in \mathfrak{B}_n$ or f = 0 on [jh, (j+1)h] so that, by 3.3 and 3.4, $B(2^{k+2}, L, f) \leq h(\frac{h}{7} + (\frac{2}{3})^k) + h^2$. Since $h \leq 3|L|$, we have $B(2^{k+2},L,f) \leq |L|((72/7)|L|+3(2/3)^k)$ which proves our assertion.

3.6. Theorem. $f \in \mathcal{M}$.

<u>Proof</u>. Let $x \in J$. If $x \notin C$, then 2.7, d) follows from the continuity of f at x. If $x \in C$, then 2.7, c) follows from 3.5.

<u>3.7.</u> Theorem. Let f be as in 3.2. Extend f setting f(x) = 0 for x < 0 and x > 1. Let $x_n \in (0,1)$ and let the set $\{x_1, x_2, \ldots\}$ be dense in J. For each $x \in J$ set $g(x) = \sum_{n=1}^{\infty} 4^{-n} f(x - x_n)$. Then $g \in \mathbb{M}$ and $\Delta_g \cap I$ is uncountable for each interval $I \subset J$.

<u>Proof</u>. Let I be an open interval, $I \subset J$. There is an n such that $x_n \in I$. Let m be the smallest natural number such that $x_n - x_m \in C$. (Obviously $m \leq n$.) Since C is closed, there is an open interval $I_1 \subset I$ such that $x_n \in I_1$ and that $x - x_k \notin C$ for $x \in I_1$ and $k = 1, \ldots, m-1$. Since $x_n - x_m \in C$ and since C is perfect, the set $S = \{x \in I_1; x - x_m \in C\}$ is uncountable. Set $\alpha(x) = \sum_{k < m} 4^{-k} f(x - x_k), \ \beta(x) = 4^{-m} f(x - x_m),$ $\gamma(x) = \sum_{k > m} \cdots$. Let $s \in S$. It is easy to see that α is continuous at s, $\lim \sup_{x \to s} \beta(x) = 4^{-m}$, $\lim \inf_{x \to s} \beta(x) = 0, \ |\gamma(x)| \leq 1/(3 \cdot 4^m)$ for each x. This easily implies that $g = \alpha + \beta + \gamma$ is not continuous at s. It follows from 3.6 and 1.7 that $g \in M$.

REFERENCES

- [1] R.J. Fleissner, Distant bounded variation and products of derivatives, Fund. Math. XCIV (1977), 1-11.
- [2] Jan Mařík, Multipliers of summable derivatives, Real Analysis Exchange, Vol. 8, No. 2 (1982-83), 486-493.
- [3] , Multipliers of various classes of derivatives (Lecture presented at Real Analysis Symposium in Waterloo), Real Analysis Exchange, Vol. 9, No. 1 (1983-84), 141-145.
- [4] , Some properties of multipliers of summable derivatives, Real Analysis Exchange, Vol. 9, No. 1 (1983-84), 251-257.

Received September 16, 1983