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 MULTIPLIERS OF NONNEGATIVE DERIVATIVES

 Introduction . Throughout this note the word function

 means a finite real function, i.e. a mapping to R = f-»,®) .

 Let $ be a class of functions on a set J ý Çf. By M($)

 we denote the system of all functions f on J such that

 fcp € 5 for each cp € $. The elements of Mil) are called

 multipliers of . The description of Mif) may be trivial;

 if, e.g., i is closed under multiplication and if the

 function cp(x) = 1 'x € J) belongs to $, then, obviously,

 Mff) ss $. in particular, M(M($)) = M f $ ) for any $. If,

 however, $ "behaves badly" with respect to multiplication,

 then the investigation of M(§) may lead to some interesting

 results. Let J = [0,1], let D be the class of all

 finite derivatives on J and let SD be the class of all

 summable (= Lebesgue integrable) functions in D. For each

 class I of functions on J let $+ be the class of all

 nonnegative functions in $. The systems M(D) and M(SD)

 have been characterized in [1] and 12] (see also [3] and

 [41). It is natural to investigate M(D+). Actually, we

 shall investigate the system 7Ą of all functions f on
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 J such that f cp € D for each co f D+; it is easy to see
 + 4*

 that M(D ) - % . Some properties of f¡' have been stated

 without proof in [4] .

 1. Basic properties of Til

 Notation. Let C

 approximately continuous on the interval J = [0,1] and

 let be be the system * of all bounded functions in c .
 ap * ap

 Integrals are Lebesgue integrals .

 1.1. Lemma, Let f be a function such that fg € D

 for each g f D+ for which g'O ) = 0. Then

 lim sup^^ jf (x) J < » .

 Proof ♦ Let, e.g., lim sup^^fíx) = ». There are

 aQ,a^,... 6 (0,1) such that 2an < an_^ and f'an) > n
 for n = 1 , 2 , . . . . It is easy to see that there is a function

 F such that F' = f on (0,1]. It follows that there are

 b £ (a ,2a ) such that F(b ) -F(a ) > nib - a ) . Let
 n n n n n n n

 g be a nonnegative function continuous on (0,1] such

 that g ^ » a /(n(b - a ) ) on [a .b ] and ^ n n n n n

 a

 J n" g < 2an/n. Set giO) = 0. If an < x <£ a^ then
 an

 -1 ^ 1 an-l ~ 4-
 x~ f 9 £ =C n ' l' ~ 9 < 4/n so that g Ç D 4- . By assumption O * n ' 0

 there is a function Q such that Q ' = f g on J and
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 QřO) = O. Obviotisly Q/+íO) = O so that <Q<b ) -Q(a ))/a n n n

 = fQ(bn)/kn) • ibi/an* ~Qfan)//an ** °* However' Q(bn* ~Q(an)

 = (an/(n(bn - an) ) ) • (F (bn) - F (an) ) > aR (n = 1,2, ... ) which
 is a contradiction.

 1.2. Lemma . Let g be a nonnegative measurable

 -1 x function on J such that x"~ -1 P g -» 0 ( x -» 0+ ) . Then
 O

 lim apXH0+ g(x) = 0.

 (The proof is left to the reader.)

 1.3. Lemma . Let f be a function such that f € D

 and f2 € D. Then f ç C .
 IT

 Proof . Let a € J. Obviously (f-f(a))2ÇD. It
 follows easily from 1.2 that f is approximately continuous

 at a with respect to J. Hence f € Cap*

 1.4. Theorem. % c b^p*

 Proof . Let f f 7Ą. It is obvious that f € D and

 it follows easily from 1.1 that f is bounded. Thus, there

 is a c € R such that f - c f D+ . Hence f • < f - c ) é D ,
 2

 f € D . Now we apply 1.3.

 1.5. Theorem. Let E be the vector space generated

 by D+. Then M(E) = fï[.

 Proof . It is easy to see that E - [g^-gjżg^, ^ € D+}.
 Let f 6 7?! and g f D+ . By 1.4 there is a c c r such that
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 ļf J £ c on J. Then '2fg = (c + f)g - fc-f)g ç E. It
 follows that U' c M(E) . Obviously M(E) c f!'.

 1.6. Lemma . Let g, f f .D, en £ (O,») (n = 1,2,...),
 e_ -» 0. Let f be a function on J and let If -fl 1 < e g n 'n 1 == n

 on J for each n. Then f ç D.

 Proof. Let G, F be functions such that F_Í0) = O

 and that G' = g, f' = f on J. It is easy to see that
 n n

 there is a function F such that F -» F on J. We have

 ļF(y) -F(x) - (y-x)f(x) I £ jFn(y) - Fn(x) - (y - x)fn'x) ' +

 en|G(y) - G(x) ' + jy - x| • |fnfx) - f fx) ļ (n = 1,2, . . . ,x,y € J) .
 Hence F' = f on J.

 1.7. Theorem. 7H is closed under uniform convergence.

 (This follows easily from 1.6.)

 Remark . Every function with a continuous derivative

 on J belongs to M(D) , all the more to 7%. It follows

 from 1.7 that each function continuous on J belongs to

 %. (which is easy to prove directly) .

 1.8. Theorem. Let cp be a function continuous on

 R and let f Ç 1ï'. Then the composite function cp o f

 belongs to 7Ą.

 Proof . By 1.4 there is a compact interval K such

 that f(J) c K. There are polynomials P^Pj,... such

 that PR -» cp uniformly on K. The system % is a vector
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 space containing constant functions. It follows from 1.5

 that 7K is closed under multiplication. Hence Pßof € 7Ą

 for each n. Obviously pn 0 f cp 0 f uniformly. Now
 we apply 1.7.

 2 . Characterization of fh

 Notation . Let N = {1,2,...). For each set S c r

 let ļsļ be its outer Lebesgue measure. If f is a

 bounded nonnegative function on an interval I = [a#b]

 and if r 6 N, we set

 A(r,I,f) = Afr,a,b,£) » r~1S^!=1 sup f ( [xk-1 »x^] ) ,

 where x^ = a + k(b-a)/r ,

 and

 B(r,I,f) = B(r,a,b,f) =

 inf{S^=1(yk-yk_i)suP f ( tyic-l^k1 } a * y0 < yl < " ' < yr =

 2.1. Lemma . Let a,b,c € R, a < b < c. Let f

 be a bounded nonnegative function on [a,b] , let g be

 a bounded nonnegative function on [a,c] and let r,s € N.

 Then

 B(r ,a,b,f ) ¿ (b -a )Aír ,a,b,f ) ,

 B(r+l#a,b,f) g B(r,a,b,f ) , B(r,a,b,g) ģ B(r,a,c,g),

 B(r+s,a,c,g) £ B(r ,a,b,g) + B(s ,b,c,g) .

 (The proof is left to the reader.)
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 2.2. Lemma . Let r,s e N, M Ç R. Let I be a

 compact interval and let f be a function such that

 O £ f £ M on I . Then

 (1) A(r,I,f) < ļlļ"1 Bfs.I.f ) + Mfs - l)/r .

 Proof . Let I = [a,b] , a = yQ < y^ < • . • < yg = b.

 Set Xk ~ a + ^|l|A/ K » (k; (*k_1'xk) n Cy!»» • • = 01'

 = sup f ( [xk-1,xk3 ) , ßj = sup f ( [yj_1,Yj] ) . It is easy to

 see that Sk€Kixk - x^íc^ Í £®=1 <y} - Yj.i'ßj • Hence

 |l|A(r,I,f) - |x|r_1 S£=1 ak S r Ļi'*} " Vj.ļ) Pj +
 (s-l)Mļlļr from which fl) follows at once.

 2.3. Lemma . Let f be a bounded nonnegative function

 on J. Then the following properties are equivalent:

 i) 2n B(r,2~n,2_n+1,f) -♦ O

 ii) x""1 B(r,0,x,f) -» O

 iii) A(r,0,x,f) O

 iv) A(r,0,l/n,f) -♦ O

 (n,r c N? n,r -» x -♦ 0+).

 Proof . Suppose that i) holds. Let M = sup ffJ) and

 let e € (O#»). There are s, n^ € N such that
 2k+2 B(s,2~k,2~k+1,f) < e for each k <= N n fnQ,®) . Let
 0 < x < 2 n°. Choose n,q £ N such that £ x < 2~n

 rr O

 and 2q~ rr e > M. Obviously n ^ nQ. By 2.1 we have
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 B(l + qs,0,x,f) ¿ B(:i,0,2~n""q,f ) + B(s,2~n"*q,2~n-q+1,f ) + • • • +

 B(s , 2""n~^ ,2~n,f ) £ M . 2"n"q + g ( 2"n~q""2 + . . . + 2~n~3 ) ¿

 e- 2~n~2 + e* 2~n"2 <£ ex. This proves ii) . If ii) holds,

 then iii) holds by 2.2? iv) is an obvious consequence of

 iii). From the inequalities 2n B(r ,2~n, 2~n+^, f ) £

 2 • 2n~1 B(r,0#2"I>fl#f) < 2A(r#0,2~n:fl,f ) we see that iv)

 implies i ) .

 2.4. Lemma. Let f be a summable derivative on an

 interval I = [a,bj and let T be a number less than

 sup { I f ( X ) ļ ; X 6 I}. Then there is a function g piecewise

 linear on I such that g (a) = g(b) = f g = O, J ļgļ = 2 ļ I ļ
 "I I

 and

 T{i i < r (fg+ |f |) .
 I

 Proof. We may suppose that sup{ļf(x)ļ; x € 1} = sup f(I).

 Choose an e £ (0,») such that the number V = T+3e is

 less than sup £(I). There is an r' € (0,®) such that

 (2) 3rt f ļ f 1 < e I iļ ( |l| - 3n) .
 I

 Since f is a Darboux function, there is a c c (a,b) such

 that f ( c ) > V. There is a d € (c,b) such that
 d

 f f > V(d-c) and that d-c < r'. There is a 6 € (0,n.)
 c

 such that a< c-6» d+6 < b, V(d-c) > (V-e)(d-c + 6)
 c d+6

 and that J ( f | + J ļf|<eid-c). Let a = ļ I ļ /(d - c + 6 ) .
 c-ô d
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 Let be a function on I such that - O on

 [a,c-6] U [d+6,b], g^ = a on [c,d] and that g^ is
 linear on [c - 5 ,cl and on [d,d+ôj. Then

 c d+6

 J gŁ » a(d-c+ ô) « 1 1 1 - Since ļj ^ + j f9]J<
 d d

 ae(d-c) < eļlļ and j fg. = a j f > aV(d-c) =
 c c

 ļ I ļ V ( d - c ) /( d - c + 6) > ļ I ļ (V - e ) , we have " f fg > jij(V-2e).
 " I

 Let P = I'(c -ft#d + 6) , ß = ļ I {/( 1 1 i - 3n) . Since

 ļpļ > ļlļ - 3n, we have ß1p1 > ļlļ. It follows that there

 is a piecewise linear function g2 on I such that g2 = 0
 on {a,b) U [c - 6 ,d + 6] , 0 ^ g2 ^ ß on I and J g2 = ļlļ .

 Therefore (see (2)) f fg £ ß f ļ f ļ =
 I I

 ( 1 + 3n/( ļlļ-3n)) f ļfļ < r ļfļ + eļlļ. S ince
 I I

 J f - (g1-g2) > |l|řV-2e) - J ļ f j -eļlļ = (iļT-J ļfļ,
 I I I

 we may choose g = g^-g2.

 2.5. Lemma . Let f € Tl» f(O) = O. Then

 A(r , 2~n,2~n+^, ļf ļ ) -»O fr,ntN;r,n-»oo) .

 Proof . According to 1.4, f is bounded. Let

 r, ,r0,... 6 N, r -» ». Set z„ = 2~n. Fix an n f N and X ä n n

 set x.^ s z ^ ( 1 + ) ( k = 0 * « « • f rn ) , 1 9 9
 = sup{ļf(x)ļ; X ç I^) (k = l,...,rn). It follows from

 2.4 that there is a function gn piecewise linear on J
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 such that g = O on 1 [O, z ] and on [2z ,1], f g = 1 n n o _ g *n

 VW * Vxk> = °' IT K' " 2Vrn and ' °k " n » Vrn <
 k

 J (fgn+ ļfļ) for k = l,...,rn. Then
 Ik

 (3) A(r„.zn,2«n.|í|> < n+ zñ' Í ,f9n+ lfl> •
 zn

 Set g = S* -i g„. Let G be a function on J such that n= i -i n

 G = £^=1 |gni on (0,1] and GfO) = 2. It is easy to see

 that g, G e D; obviously G ± g € D+ . Since

 2g = (G + g) - (G - g) , we have fg f D . Since f € be ,
 ap

 we have also ļfļ 6 D. Hence

 i 2z
 zn 'I ( f g + ļ f ļ > -» o ( n -» » ) .

 zn

 This together with (3) easily implies our assertion.

 2.6. Lemma . Let f be a bounded nonnegative measurable

 function on J such that x~"^ B(r,0,x,f) -♦ O

 (x-»0+, r € N, r-»oo). Let g 6 D . Then

 -1 x
 x~ J f g -» 0 <x •* Of ) .

 Proof . Let S = sup f(J) and let e € (0,»). There

 is a 6 £ (0,1) and an r € K such that 2g(0)B(r ,0,x,f ) < ex

 for each x £ (0,6). Set a = e/(4(S+ l)r). There is an
 x

 n £ (0,s) such that ļf (g-g(0))ļ < ax for each
 Jo

 x £ (0,n). Choose such an x. There are x^ such that
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 O = xQ < Xx < . . . < xr = X and that 2g(0)Z£=ļ c^ļl^l < ex,
 where = txk-l'xk^ and °k ~ sup fiIk^* Obviously

 I J (g - g(O) ) ļ < a(xk>_1 + xk) < 2 ax, J g < 2ax+ g(O) ļl^ļ ,
 Ik Ik

 ^ f f g £ "" 2aSx + g ( 0 ) a ļ I, J* ļ for each k . Therefore ^ T "" Kl J*

 k
 X

 J' fg £ 2arSx + g(O) ° ^ ļ Ik Ì < ex* This completes the

 proof.

 2.7. Theorem. Let f be a bounded measurable

 function on J. Then the following properties a) - d)

 are equivalent:

 a) f € m

 b) 2n B(r,x + 2~n,x+ 2~n+1, ļf - f(x) ' ) -»0 for each

 xf [0,1) and 2n B(r ,x - 2~n+1,x - 2~n, |f - f (x) ļ) -» O for
 each x 6 (0,1]

 c) (y-x)"^ B(r ,x,y, ļ f - f (x) 1) -» O for each x € [0,1)

 and (x-z)~^ B(r ,z,x, j f - f (x) ļ ) -» O for each x Ç (0,1]

 d) A(r ,x,x + - , ļ f - f (x) ļ ) -♦ O for each x <• [0,1)

 and A(r,x -~,x, ļf - f (x) ļ ) ■+ 0 for each x € '0,1]

 (n,r € N ; n , r •* », y -» x+, z ■* x- ) .

 Proof ♦ If f € 7H, then b) holds by 2.5 < see also ,2.1).

 According to 2.3, conditions b) - d) are equivalent. Now

 suppose that c) holds. Let g € D+ and let x € J. By
 -1 *y

 2 . 6 we have (y-x) j (f-f(x))»g-»0 so that
 x
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 -1 -y
 (y-x) J fg -♦ f(x)g(x) (y -» x, y € J) . This shows that

 X

 fg € D and that f ç 7% which completes the proof.

 3 . Points of discontinuity of functions in %

 3.1. Theorem . Let f f T;. Then f is Riemann

 integrable .

 Proof . It follows from 1.4 that f is bounded. For

 each X € J let

 u) í X ) = liit^^^ sup( Jf (t) - f ( X ) ļ ? Jt-xJ < h, t Ç J} .

 Let a £ (0,»), T = {x 6 J; uu(x) > 2a}. It suffices to prove

 that ļ T ļ = 0. For each x € J set çp(x) = ļT fi (0,x) ļ .

 Choose an x € [0,1) and an e € (O,«»). By 2.7 there is

 an r £ N and a ß <= (0,») such that B(r ,x,y, J f - f ix) ļ ) <

 ea(y-x) for each y Ç (x,x+ô). Choose such a y. There

 are x ^ such that x = xQ < x^ < • • • < xf = y and that
 ^k=l °k'xk~xk-l* ^ ea(y-x), where = supf ļf ( t) - f (x) | ?
 xk-l ^ Ś xk^ * Let

 K = {k; T O (x^,*^ i 0) .

 Obviously cp(y)-«p(x) = |t n (x,y) ļ ¿ I^€K (x^x^).
 If < a and t Ç (x^_^,x^), then for each v € (x^ j/X^)
 we have ļf(v) -f(t){ < 2a so that u>(t) £ 2a, k £ K.

 Hence cp(y)-cp(x) ¿ SkçK aka~1(xk " xk-l* < e(y-x),
 cp/ + (x) = 0. Similarly can be proved that «p' "fx) = O
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 for each x € (0,1] . It follows that ęp iś constant which

 completes the proof .

 Notation . For each function f on J let A^ be
 the set of all points of discontinuity of f. For each set

 S c R let cl S be its closure.

 Remark . If f Ç 7Ą, then, by 3.1, ļAfļ = O. Now we

 shall construct a function f ę w such that the set a^

 is perfect and a function g € TĄ such that Ag H I is
 uncountable for each interval I c J.

 3.2. Construction of f. Let be the set

 whose only element is the interval J. If is a system

 of disjoint closed subintervals of J, let be the

 system of all intervals [a,(2a+b)/3] and [ (a + 2b)/3 ,b] ,

 where [a,b] € 531^. In this way we define, by induction,
 © for n = 0,1,... . Let the system of all
 n n

 intervals ((2a+b)/3, (a+2b)/3), where [a,b] €

 (n = 1,2,...). For each I = (a,b) € ?n define a function

 Xj as follows: Set c = (a + b)/2, 6 - l/(2-9n), a - c-6,
 ß = c+ô. Let Xj ~ O on (a, a] U [ß,b), Xj(c) = 1 and
 let Xj he linear on [a,c] and on tc,ß], Since
 ß-ct = (b-a)/3n, we have Xj = O on (a,í2a+b)/3] U
 [ (a + 2b)/3 ,b) . Now define a function f setting f = Xj on
 I ř U #i $ &nd f = 0 elsewhere on J. ^n=l rn

 It is easy to see that A^ is the Cantor set.
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 3.3. Lemma. Let I € IL . Then BÍ3,clI,f) ¿ 9~n.
 ■ 1 n ~

 ( Obvious . )

 3.4. Lemma. Let L Ç SK_ -and let k ç N. Then

 (4) B(2k+2 - 3,L,f) < |L| (-ly-U (*|)k) .

 Proof. The number of elements of contained in

 L is 2^"^ (j = l,...,k) and the number of elements of
 231 contained in L is 2k. Since 3 ( 1 + • • ♦ + 2k~'*) + 2k =

 n+K

 4-2k-3, we have (see 2.1 and 3.3) B(2k+2 - 3 ,L,f ) <

 Ei-1 J Eie<B B(3,cl *. f) + B ( 1 , 1 , f ) ¿ J c^n+j n+k

 2k/3n+k < 9"n/7+ (2/3)k/3n which proves (A).

 3.5. Lemma . Let C be the Cantor set. Let L be

 a closed subinterval of J such that L fi C ^ 0 and let

 k be a natural number. Then

 B(2k+2,L,f) ¿ ļ Ł ļ { 11 { L ļ + 3 ( 2/3 ) k ) .

 Proof . We may suppose that ļLļ < 1/3. There is an

 n € N such that S'"*"1 ģ |l| < 3~n. Set h « 3~n. There is
 an integer j such that L c ((j-l)h, (j+l)h). Since

 L H C =/ 0, we have either [(j - l)h, jh] € ©n or

 [jh,(j+l)h] € ®n. Let, e.g., í(j-l)h,jh] €5^. Then
 either ( jh, ( j + l)h) 6 ® or f = O on [jh,(j + l)h] so

 V4- 0 H 9 k 2
 that, by 3.3 and 3.4, B(2* V4- 0 ,L,f) £ h{~+ H f-|) ) + h . Since
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 h£3|L{, we have B(2k+2,L,f)¿ ļLļ ( Í72/7) ļ L ļ + 3f2/3)k)
 which proves our assertion.

 3.6. Theorem, f Ç 7T(.

 Proof. Let x € J. If x je C, then 2.7, d) follows

 from the continuity of f at x. If x 6 C, then 2.7, c)

 follows from 3.5.

 3.7. Theorem. Let f be as in 3 . 2. Extend f

 setting f(x) = 0 for x < 0 and x > 1. Let xn € (0,1)

 and let the set {X^/Xj#...} be dense in J. For each

 x Ç J set g(x) = ^""n f(x-xn). Then g Ç 7K and
 A H I is uncountable for each interval I c J.

 9

 Proof . Let I be an open interval, I c J. There is

 an n such that x € I. Let m be the smallest natural
 n

 number such that x -x € C. (Obviously m < n.) Since
 n m -

 C is closed, there is an open interval 1^ c I such that

 xn € I^ and that x - x^ / C for x Ç 1^ and k - 1, ... ,m - 1.
 Since x -x € C and since C is perfect, the set

 n m

 S = {x C Iļ? X - xm € c) is uncountable. Set

 a(x) - £k<m 4"k f(x-xk), ß(x) = 4~m ffx-x^),

 y(x) » • Let s € S. It is easy to see that a

 is continuous at s, lira sup 3(x) = 4~m,

 lim in£Xmķg 3(x) = ' y (x) | £ l/(3-4m ) for each x. This
 easily implies that g = a + ß + y is not continuous at s.

 It follows from 3.6 and 1.7 that g c %,
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