Real Analysis Exchange vol. 9 (1983-84)

Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

MULTIPLIERS OF NONNEGATIVE DERIVATIVES

Introduction. Throughout this note the word function means a finite real function, i.e. a mapping to $R=(-\infty, \infty)$. Let Φ be a class of functions on a set $J \neq \varnothing$. By $M(\Phi)$ we denote the system of all functions f on J such that $\mathrm{f} \varphi \in \Phi$ for each $\varphi \in \Phi$. The elements of $M(\Phi)$ are called multipliers of π. The description of $M(\Phi)$ may be trivial; if, e.g., Φ is closed under multiplication and if the function $\varphi(x)=1 \quad(x \in J)$ belongs to Φ, then, obviously, $M(\Phi)=\Phi$. In particular, $M(M(\Phi))=M(\Phi)$ for any Φ. If, however, Φ "behaves badly" with respect to multiplication, then the investigation of $M(\Phi)$ may lead to some interesting results. Let $J=[0,1]$, let D be the class of all finite derivatives on J and let $S D$ be the class of all summable (= Lebesgue integrable) functions in D. For each class Φ of functions on J let Φ^{+}be the class of all nonnegative functions in Φ. The systems $M(D)$ and $M(S D)$ have been characterized in [1] and [2] (see also [3] and [4]). It is natural to investigate $M\left(D^{+}\right)$. Actually, we shall investigate the system m of all functions f on
J such that $f_{\varphi} \in D$ for each $\varphi \in D^{+}$; it is easy to see that $M\left(D^{+}\right)=m^{+}$. Some properties of m have been stated without proof in [4].

1. Basic properties of m

Notation. Let $C_{\text {ap }}$ be the system of all functions approximately continuous on the interval $J=[0,1]$ and let $b C_{\text {ap }}$ be the system of all bounded functions in C ap Integrals are Lebesgue integrals.
1.1. Lemma. Let f be a function such that $f g \in D$ for each $g \in D^{+}$for which $g(0)=0$. Then

$$
\lim \sup _{x \rightarrow 0^{+}}|f(x)|<\infty .
$$

Proof. Let, e.g., $\lim \sup _{x \rightarrow 0+} f(x)=\infty$. There are $a_{0}, a_{1}, \ldots \in(0,1)$ such that $2 a_{n}<a_{n-1}$ and $f\left(a_{n}\right)>n$ for $n=1,2, \ldots$. It is easy to see that there is a function F such that $F^{\prime}=\mathrm{f}$ on $(0,1]$. It follows that there are $b_{n} \in\left(a_{n}, 2 a_{n}\right)$ such that $F\left(b_{n}\right)-F\left(a_{n}\right)>n\left(b_{n}-a_{n}\right)$. Let g be a nonnegative function continuous on (0,1] such that $g=a_{n} /\left(n\left(b_{n}-a_{n}\right)\right)$ on $\left[a_{n}, b_{n}\right]$ and
$\int_{a_{n}}^{a_{n-1}} g<2 a_{n} / n$. Set $g(0)=0$. If $a_{n}<x \leqq a_{n-1}$, then $x^{-1} \int_{0}^{x} g \leqq a_{n}^{-1} \int_{0}^{a} n-1 \quad g<4 / n$ so that $g \in D^{+}$. By assumption there is a function Q such that $Q^{\prime}=f g$ on J and
$Q(0)=0$. Obviously $Q^{\prime+}(0)=0$ so that $\left(Q\left(b_{n}\right)-Q\left(a_{n}\right)\right) / a_{n}$ $=\left(Q\left(b_{n}\right) / b_{n}\right) \cdot\left(b_{n} / a_{n}\right)-Q\left(a_{n}\right) / a_{n} \rightarrow 0$. However, $Q\left(b_{n}\right)-Q\left(a_{n}\right)$ $=\left(a_{n} /\left(n\left(b_{n}-a_{n}\right)\right)\right) \cdot\left(F\left(b_{n}\right)-F\left(a_{n}\right)\right)>a_{n}(n=1,2, \ldots)$ which is a contradiction.
1.2. Lemma. Let g be a nonnegative measurable function on J such that $x^{-1} \int_{0}^{x} g \rightarrow 0(x \rightarrow 0+)$. Then $\lim a p_{x \rightarrow 0+} g(x)=0$.
(The proof is left to the reader.)
1.3. Lemma. Let f be a function such that $f \in D$ and $f^{2} \in D$. Then $f \in C_{a p}$.

Proof. Let $a \in J$. Obviously $(f-f(a))^{2} \in D$. It follows easily from 1.2 that f is approximately continuous at a with respect to J. Hence $f \in C_{a p}$.
1.4. Theorem. $m \subset \mathrm{bc}_{\mathrm{ap}}$.

Proof. Let $f \in m$. It is obvious that $f \in D$ and it follows easily from l.l that f is bounded. Thus, there is a $c \in R$ such that $f-c \in D^{+}$. Hence $f \cdot(f-c) \in D$, $f^{2} \in D$. Now we apply 1.3.
1.5. Theorem. Let E be the vector space generated by D^{+}. Then $M(E)=m$.

Proof. It is easy to see that $E=\left\{g_{1}-g_{2} ; g_{1}, g_{2} \in D^{+}\right]$. Let $f \in m$ and $g \in D^{+}$. By 1.4 there is $a \quad c \in R$ such that
$|f| \leqq c$ on J. Then $2 f g=(c+f) g-(c-f) g \in E$. It follows that $m \subset M(E)$. Obviously $M(E) \subset m$.
1.6. Lemma. Let $g, f_{n} \in D, \varepsilon_{n} \in(0, \infty)(n=1,2, \ldots)$, $\varepsilon_{n} \rightarrow 0$. Let f be a function on J and let $\left|f_{n}-f\right| \leqq \varepsilon_{n} g$ on J for each n. Then $f \in D$.

Proof. Let G, F_{n} be functions such that $F_{n}(0)=0$ and that $G^{\prime}=g, F_{n}^{\prime}=f_{n}$ on J. It is easy to see that there is a function F such that $F_{n} \rightarrow F$ on J. We have $|F(y)-F(x)-(y-x) f(x)| \leqq\left|F_{n}(y)-F_{n}(x)-(y-x) f_{n}(x)\right|+$ $\varepsilon_{n}|G(y)-G(x)|+|y-x| \cdot\left|f_{n}(x)-f(x)\right| \quad(n=1,2, \ldots, x, y \in J)$. Hence $F^{\prime}=f$ on J.
1.7. Theorem. m is closed under uniform convergence.
(This follows easily from 1.6.)

Remark. Every function with a continuous derivative on J belongs to $M(D)$, all the more to m. It follows from 1.7 that each function continuous on J belongs to m (which is easy to prove directly).
1.8. Theorem. Let φ be a function continuous on R and let $f \in M$. Then the composite function $\omega \circ f$ belongs to m.

Proof. By 1.4 there is a compact interval K such that $f(J) \subset K$. There are polynomials P_{1}, P_{2}, \ldots such that $P_{n} \rightarrow \varphi$ uniformly on K. The system m is a vector
space containing constant functions. It follows from 1.5 that m is closed under multiplication. Hence $P_{n} \circ f \in m$ for each n. Obviously $P_{n} \circ f \rightarrow \varphi \circ f$ uniformly. Now we apply 1.7.

2. Characterization of M

Notation. Let $N=\{1,2, \ldots\}$. For each set $S \subset R$ let $|S|$ be its outer Lebesgue measure. If \hat{f} is a bounded nonnegative function on an interval $I=[a, b]$ and if $r \in N$, we set

$$
\begin{aligned}
A(r, I, f)= & A(r, a, b, f)=r^{-1} \sum_{k=1}^{r} \sup f\left(\left[x_{k-1}, x_{k}\right]\right), \\
& \text { where } x_{k}=a+k(b-a) / r,
\end{aligned}
$$

and

$$
\begin{aligned}
& B(r, I, f)=B(r, a, b, f)= \\
& \inf \left\{\sum_{k=1}^{r}\left(y_{k}-y_{k-1}\right) \sup f\left(\left[y_{k-1}, y_{k}\right]\right) ; a=y_{O}<y_{1}<\cdots<y_{r}=b\right\} .
\end{aligned}
$$

2.1. Lemma. Let $a, b, c \in R, a<b<c$. Let f be a bounded nonnegative function on $[a, b]$, let g be a bounded nonnegative function on $[a, c]$ and let $r, s \in N$. Then

$$
\begin{gathered}
B(r, a, b, f) \leqq(b-a) A(r, a, b, f), \\
B(r+1, a, b, f) \leqq B(r, a, b, f), B(r, a, b, g) \leqq B(r, a, c, g), \\
B(r+s, a, c, g) \leqq B(r, a, b, g)+B(s, b, c, g) .
\end{gathered}
$$

(The proof is left to the reader.)
2.2. Lemma. Let $r, s \in N, M \in R$. Let I be a compact interval and let f be a function such that $0 \leqq £ \leqq M$ on I. Then

$$
\begin{equation*}
A(x, I, f) \leqq|I|^{-1} B(s, I, f)+M(s-1) / r . \tag{1}
\end{equation*}
$$

Proof. Let $I=[a, b], a=y_{0}<y_{1}<\cdots<y_{s}=b$. Set $x_{k}=a+k|I| / r, K=\left\{k ;\left(x_{k-1}, x_{k}\right) \cap\left\{y_{1}, \ldots, y_{s-1}\right\}=\varnothing\right\}$, $\alpha_{k}=\sup f\left(\left[x_{k-1}, x_{k}\right]\right), \beta_{j}=\sup f\left(\left[y_{j-1}, y_{j}\right]\right)$. It is easy to see that $\Sigma_{k \in K}\left(x_{k}-x_{k-1}\right) \alpha_{k} \leqq \sum_{j=1}^{s}\left(y_{j}-y_{j-1}\right) \beta_{j}$. Hence $|I| A(r, I, f)=|I| r^{-1} \sum_{k=1}^{r} \alpha_{k} \leqq \sum_{j=1}^{s}\left(y_{j}-y_{j-1}\right) \beta_{j}+$ (s - 1) M|I|r from which (1) follows at once.
2.3. Lemma. Let f be a bounded nonnegative function on J. Then the following properties are equivalent:
i) $2^{\mathrm{n}} \mathrm{B}\left(\mathrm{r}, 2^{-\mathrm{n}}, 2^{-\mathrm{n}+1}, f\right) \rightarrow 0$
ii) $X^{-1} B(x, 0, X, f) \rightarrow 0$
iii) $A(r, 0, X, f) \rightarrow 0$
iv) $A(r, 0,1 / n, f) \rightarrow 0$
$(n, r \in N ; n, r \rightarrow \infty, x \rightarrow 0+)$.

Proof. Suppose that i) holds. Let $M=\sup f(J)$ and let $\varepsilon \in(0, \infty)$. There are $s, n_{0} \in N$ such that $2^{k+2} B\left(s, 2^{-k}, 2^{-k+1}, f\right)<\epsilon$ for each $k \in N \cap\left(n_{0}, \infty\right)$. Let $0<x<2^{-n} 0$. Choose $n, q \in N$ such that $2^{-n-1} \leqq x<2^{-n}$ and $2^{q-2} \varepsilon>M$. Obviously $n \geqq n_{0}$. By 2.1 we have
$B(1+q s, 0, x, f) \leqq B\left(1,0,2^{-n-q}, f\right)+B\left(s, 2^{-n-q}, 2^{-n-q+1}, f\right)+\cdots+$ $B\left(s, 2^{-n-1}, 2^{-n}, f\right) \leqq M \cdot 2^{-n-q}+\epsilon\left(2^{-n-q-2}+\cdots+2^{-n-3}\right) \leqq$ $\varepsilon \cdot 2^{-n-2}+\varepsilon \cdot 2^{-n-2} \leqq \varepsilon x$. This proves ii). If ii) holds, then iii) holds by 2.2 ; iv) is an obvious consequence of iii). From the inequalities $2^{n} B\left(r, 2^{-n}, 2^{-n+1}, f\right) \leqq$ $2 \cdot 2^{n-1} B\left(r, 0,2^{-n+1}, f\right) \leqq 2 A\left(r, 0,2^{-n+1}, f\right)$ we see that iv) implies i).
2.4. Lemma. Let f be a summable derivative on an interval $I=[a, b]$ and let T be a number less than $\sup \{|f(x)| ; x \in I\}$. Then there is a function g piecewise linear on I such that $g(a)=g(b)=\int_{I} g=0, \int_{I}|g|=2|I|$ and

$$
T|I|<\int_{I}(f g+|f|)
$$

Proof. We may suppose that $\sup \{|f(x)| ; x \in I\}=\sup f(I)$. Choose an $\epsilon \in(0, \infty)$ such that the number $V=T+3 \epsilon$ is less than sup $f(I)$. There is an $\eta \in(0, \infty)$ such that

$$
\begin{equation*}
3 \eta \int_{I}|f|<\varepsilon|I|(|I|-3 n) . \tag{2}
\end{equation*}
$$

Since f is a Darboux function, there is a $c \in(a, b)$ such that $f(c)>V$. There is a $d \in(c, b)$ such that
$\int_{c}^{d} f>V(d-c)$ and that $d-c<n$. There is a $\delta \in(0, n)$
such that $a<c-\delta, d+\delta<b, V(d-c)>(v-\varepsilon)(d-c+\delta)$ and that $\int_{c-\delta}^{c}|f|+\int_{d}^{d+\delta}|f|<\varepsilon(\alpha-c)$. Let $\alpha=|I| /(d-c+\delta)$.

Let g_{1} be a function on I such that $g_{1}=0$ on $[a, c-\delta] \cup[d+\delta, b], g_{1}=\alpha$ on $[c, d]$ and that g_{1} is linear on $[c-\delta, c]$ and on $[\alpha, d+\delta]$. Then
$\int_{I} g_{1}=\alpha(d-c+\delta)=|I|$. since $\left|\int_{c-\delta}^{c} f g_{1}+\int_{d}^{d+\delta} f g_{1}\right|<$ $\alpha \varepsilon(d-c)<\varepsilon|I|$ and $\int_{c}^{d} f g_{1}=\alpha \int_{c}^{d} f>\alpha v(d-c)=$ $|I| V(d-c) /(d-c+\delta)>|I|(V-\epsilon)$, we have $\int_{I} f g_{1}>|I|(V-2 \varepsilon)$.

Let $P=I \backslash(c-\delta, d+\delta), \beta=|I| /(|I|-3 n)$. Since $|P|>|I|-3 n$, we have $\beta|P|>|I|$. It follows that there is a piecewise linear function g_{2} on I such that $g_{2}=0$ on $\{a, b\} \cup[c-\delta, a+\delta], 0 \leqq g_{2} \leqq \beta$ on I and $\int_{I} g_{2}=|I|$. Therefore (see (2)) $\int_{I} \mathrm{fg}_{2} \leqq \beta \int_{I}|f|=$ $(1+3 n /(|I|-3 n)) \int_{I}|f|<\int_{I}|f|+\varepsilon|I|$. Since $\int_{I} f \cdot\left(g_{1}-g_{2}\right)>|I|(V-2 \varepsilon)-\int_{I}|f|-\epsilon|I|=|I| T-\int_{I}|f|$. we may choose $g=g_{1}-g_{2}$.
2.5. Lemma. Let $f \in M, f(0)=0$. Then

$$
A\left(r, 2^{-n}, 2^{-n+1},|f|\right) \rightarrow 0 \quad(r, n \in N ; r, n \rightarrow \infty) .
$$

Proof. According to $1.4, \mathrm{f}$ is bounded. Let. $r_{1}, r_{2} \ldots \in N, r_{n} \rightarrow \infty$. Set $z_{n}=2^{-n}$. Fix an $n \in N$ and set $x_{k}=z_{n}\left(1+k / r_{n}\right) \quad\left(k=0, \ldots, r_{n}\right), I_{k}=\left[x_{k-1}, x_{k}\right]$, $\sigma_{k}=\sup \left\{|f(x)| ; x \in I_{k}\right\}\left(k=1, \ldots, r_{n}\right)$. It follows from 2.4 that there is a function g_{n} piecewise linear on J
such that $g_{n}=0$ on $\left[0, z_{n}\right]$ and on $\left[2 z_{n}, 1\right], \int_{I_{k}} g_{n}=$ $g_{n}\left(x_{k-1}\right)=g_{n}\left(x_{k}\right)=0, \int_{I_{k}}\left|g_{n}\right|=2 z_{n} / r_{n}$ and $\left(\sigma_{k}-\frac{1}{n}\right) z_{n} / r_{n}<$ $\int_{I_{k}}\left(f g_{n}+|f|\right)$ for $k=1, \ldots, \dot{r}_{n}$. Then

$$
\begin{equation*}
A\left(r_{n}, z_{n}, 2 z_{n},|f|\right)<\frac{1}{n}+z_{n}^{-1} \int_{z_{n}}^{2 z_{n}}\left(f g_{n}+|f|\right) . \tag{3}
\end{equation*}
$$

Set $g=\sum_{n=1}^{\infty} g_{n}$. Let G be a function on J such that $G=\sum_{n=1}^{\infty}\left|g_{n}\right|$ on $(0,1]$ and $G(0)=2$. It is easy to see that $g, G \in D$; obviously $G \pm g \in D^{+}$. Since $2 g=(G+g)-(G-g)$, we have $f g \in D$. Since $f \in b C_{a p}$, we have also $|f| \in D$. Hence

$$
z_{n}^{-1} \int_{z_{n}}^{2 z_{n}}(f g+|f|) \rightarrow 0 \quad(n \rightarrow \infty)
$$

This together with (3) easily implies our assertion.
2.6. Lemma. Let f be a bounded nonnegative measurable function on J such that $x^{-1} B(r, 0, x, f) \rightarrow 0$ $(x \rightarrow 0+, r \in N, r \rightarrow \infty)$. Let $g \in D^{+}$. Then

$$
x^{-1} \int_{0}^{x} f g \rightarrow 0 \quad(x \rightarrow 0+)
$$

Proof. Let $S=\sup f(J)$ and let $\epsilon \in(0, \infty)$. There is a $\delta \in(0,1)$ and an $r \in N$ such that $2 g(0) B(r, O, X, f)<\varepsilon x$ for each $x \in(0, \delta)$. Set $\alpha=\epsilon /(4(S+1) r)$. There is an $n \in(0, \delta)$ such that $\left|\int_{0}^{x}(g-g(0))\right|<\alpha x$ for each $x \in(0, \eta)$. Choose such an x. There are x_{j} such that
$0=x_{0}<x_{1}<\ldots<x_{r}=x$ and that $2 g(0) \sum_{k=1}^{r} \sigma_{k}\left|I_{k}\right|<\varepsilon x$, where $I_{k}=\left[x_{k-1}, x_{k}\right]$ and $\sigma_{k}=\sup f\left(I_{k}\right)$. Obvious l_{y} $\left|\int_{I_{k}}(g-g(0))\right|<\alpha\left(x_{k-1}+x_{k}\right)<2 \alpha x, \int_{I_{k}} g<2 \alpha x+g(0)\left|I_{k}\right|$. $\int_{I_{k}} f g \leqq 2 \alpha S x+g(0) \sigma_{k}\left|I_{k}\right|$ for each k. Therefore $\int_{0}^{x} f g \leqq 2 \operatorname{arSx}+g(0) \sum_{k=1}^{r} \sigma_{k}\left|I_{k}\right|<\varepsilon x$. This completes the proof.
2.7. Theorem. Let f be a bounded measurable function on J. Then the following properties a) - d) are equivalent:
a) $f \in m$
b) $2^{n} B\left(x, x+2^{-n}, x+2^{-n+1},|f-f(x)|\right) \rightarrow 0$ for each $x \in[0,1)$ and $2^{n} B\left(r, x-2^{-n+1}, x-2^{-n},|f-f(x)|\right) \rightarrow 0$ for each $x \in(0,1]$
c) $(y-x)^{-1} B(r, x, y,|f-f(x)|) \rightarrow 0$ for each $x \in[0,1)$ and $(x-z)^{-1} B(x, z, x,|f-f(x)|) \rightarrow 0$ for each $x \in(0,1]$
d) $A\left(r, x, x+\frac{1}{n},|f-f(x)|\right) \rightarrow 0$ for each $x \in[0,1)$ and $A\left(r, x-\frac{1}{n}, x,|f-f(x)|\right) \rightarrow 0$ for each $x \in(0,1]$ $(n, r \in N ; n, r \rightarrow \infty, y \rightarrow x+, z \rightarrow x-)$.

Proof. If $f \in m$, then b) holds by 2.5 (see also .2.1). According to 2.3, conditions b) - d) are equivalent. Now suppose that c) holds. Let $g \in D^{+}$and let $x \in J$. By 2.6 we have $(y-x)^{-1} \int_{x}^{y}(f-f(x)) \cdot g \rightarrow 0$ so that
$(y-x)^{-1} \int_{x}^{y} f g \rightarrow f(x) g(x)(y \rightarrow x, y \in J)$. This shows that $f g \in D$ and that $f \in m$ which completes the proof.
3. Points of discontinuity of functions in m
3.1. Theorem. Let $f \in T$. Then f is Riemann integrable.

Proof. It follows from 1.4 that f is bounded. For each $x \in J$ let

$$
w(x)=\lim _{h \rightarrow 0+} \sup \{|f(t)-f(x)| ;|t-x|<h, t \in J\}
$$

Let $\alpha \in(0, \infty), T=\{x \in J ; \omega(x)>2 \alpha\}$. It suffices to prove that $|T|=0$. For each $x \in J$ set $\varphi(x)=|T \cap(0, x)|$. Choose an $x \in[0,1)$ and an $\varepsilon \in(0, \infty)$. By 2.7 there is an $r \in N$ and $a \quad \delta \in(0, \infty)$ such that $B(x, x, y,|f-f(x)|)<$ $\varepsilon \alpha(y-x)$ for each $y \in(x, x+\delta)$. Choose such a y. There are x_{j} such that $x=x_{0}<x_{1}<\cdots<x_{r}=y$ and that $\sum_{k=1}^{r} \sigma_{k}\left(x_{k}-x_{k-1}\right)<\varepsilon \alpha(y-x)$, where $\sigma_{k}=\sup | | f(t)-f(x) \mid$; $\left.x_{k-1} \leqq t \leqq x_{k}\right\}$. Let

$$
K=\left\{k ; T \cap\left(x_{k-1}, x_{k}\right) \neq \varnothing\right\}
$$

Obviously $\varphi(y)-\varphi(x)=|T \cap(x, y)| \leqq \sum_{k \in K}\left(x_{k}-x_{k-1}\right)$. If $\sigma_{k}<\alpha$ and $t \in\left(x_{k-1}, x_{k}\right)$, then for each $v \in\left(x_{k-1}, x_{k}\right)$ we have $|f(v)-f(t)|<2 \alpha$ so that $w(t) \leqq 2 \alpha, k \notin K$. Hence $\varphi(y)-\varphi(x) \leqq \sum_{k \in K} \sigma_{k} \alpha^{-1}\left(x_{k}-x_{k-1}\right)<\varepsilon(y-x)$, $\varphi^{\prime+}(x)=0$. Similarly can be proved that $\varphi^{\prime-}(x)=0$
for each $x \in(0,1]$. It follows that φ is constant which completes the proof.

Notation. For each function f on J let Δ_{f} be the set of all points of discontinuity of f. For each set $S \subset R$ let $c l S$ be its closure.

Remark. If $£ \in M_{\text {, }}$ then, by 3.1, $\left|\Delta_{f}\right|=0$. Now we shall construct a function $f \in m$ such that the set Δ_{f} is perfect and a function $g \in m$ such that $\Delta_{g} \cap I$ is uncountable for each interval I $\subset J$.
3.2. Construction of f. Let \mathbb{X}_{O} be the set whose only element is the interval J. If \mathscr{m}_{n} is a system of disjoint closed subintervals of J, let R_{n+1} be the system of all intervals $[a,(2 a+b) / 3]$ and $[(a+2 b) / 3, b]$, where $[a, b] \in m_{n}$. In this way we define, by induction, \mathfrak{M}_{n} for $n=0,1 \ldots$ Let \mathbb{P}_{n} be the system of all intervals $((2 a+b) / 3,(a+2 b) / 3)$, where $[a, b] \in M_{n-1}$ $(n=1,2, \ldots)$. For each $I=(a, b) \in P_{n}$ define a function λ_{I} as follows: set $c=(a+b) / 2, \delta=1 /\left(2 \cdot 9^{n}\right), a=c-\delta$, $\beta=c+\delta$. Let $\lambda_{I}=0$ on $(a, \alpha] \cup[\beta, b), \lambda_{I}(c)=1$ and let λ_{I} be linear on $[\alpha, c]$ and on $[c, \beta]$. Since $\beta-\alpha=(b-a) / 3^{n}$, we have $\lambda_{I}=0$ on $(a,(2 a+b) / 3) U$ $[(a+2 b) / 3, b)$. Now define a function f setting $f=\lambda_{I}$ on $I \in U_{n=1}^{\infty} P_{n}$ and $f=0$ elsewhere on J.

It is easy to see that Δ_{f} is the cantor set.
3.3. Lemma. Let $I \in P_{n}$. Then $B(3, C l I, f) \leqq 9^{-n}$. (Obvious.)
3.4. Lemma. Let $L \in \mathbb{P}_{n}$ and let $k \in N$. Then

$$
\begin{equation*}
B\left(2^{k+2}-3, L, \tilde{I}\right) \leqq|L|\left(\frac{|L|}{7}+\left(\frac{2}{3}\right)^{k}\right) . \tag{4}
\end{equation*}
$$

Proof. The number of elements of P_{n+j} contained in L is $2^{j-1}(j=1, \ldots, k)$ and the number of elements of \mathfrak{m}_{n+k} contained in L is 2^{k}. Since $3\left(1+\cdots+2^{k-1}\right)+2^{k}=$ $4 \cdot 2^{k}-3$, we have (see 2.1 and 3.3) $B\left(2^{k+2}-3, L, f\right) \leqq$ $\sum_{j=1}^{k} \sum_{I \in P_{n+j}} B(3, C l I, f)+\sum_{I \in m_{n+k}} B(I, I, f) \leqq$ $\sum_{j=1}^{k} 2^{j-1} / 9^{n+j}+2^{k} / 3^{n+k}<9^{-n} / 7+(2 / 3)^{k} / 3^{n}$ which proves (4).
3.5. Lemma. Let C be the Cantor set. Let L be a closed subinterval of J such that $I \cap \subset \neq \varnothing$ and let k be a natural number. Then

$$
B\left(2^{k+2}, L, f\right) \leqq|L|\left(11|L|+3(2 / 3)^{k}\right) .
$$

proof. We may suppose that $|L|<1 / 3$. There is an $n \in N$ such that $3^{-n-1} \leqq|L|<3^{-n}$. Set $h=3^{-n}$. There is an integer j such that $L \subset((j-1) h,(j+1) h)$. Since $I \cap C \neq \varnothing$, we have either $[(j-1) h, j h] \in \mathbb{R}_{n}$ or $[j h,(j+1) h] \in \mathbb{R}_{n}$. Let, e.g., $[(j-1) h, j h] \in \mathbb{R}_{n}$. Then either $(j h,(j+1) h) \in B_{n}$ or $f=0$ on $[j h,(j+1) h]$ so that, by 3.3 and $3.4, B\left(2^{k+2}, L, f\right) \leqq h\left(\frac{h}{7}+\left(\frac{2}{3}\right)^{k}\right)+h^{2}$. Since
$h \leqq 3|L|$, we have $B\left(2^{k+2}, L, f\right) \leqq|L|\left((72 / 7)|L|+3(2 / 3)^{k}\right)$ which proves our assertion.

3.6. Theorem. $£ \in \mathbb{M}$.

Proof. Let $x \in J$. If $x \notin C$, then $2.7, d)$ follows from the continuity of f at x. If $x \in C$, then $2.7, c$) follows from 3.5.
3.7. Theorem. Let f be as in 3.2. Extend f setting $f(x)=0$ for $x<0$ and $x>1$. Let $x_{n} \in(0,1)$ and let the set $\left\{x_{1}, x_{2}, \ldots\right\}$ be dense in J. For each $x \in J$ set $g(x)=\sum_{n=1}^{\infty} 4^{-n} f\left(x-x_{n}\right)$. Then $g \in m$ and $\Delta_{g} \cap I$ is uncountable for each interval $I \subset J$.

Proof. Let I be an open interval, I $\subset J$. There is an n such that $x_{n} \in I$. Let m be the smallest natural number such that $x_{n}-x_{m} \in C$. (Obviously $m \leqq n$.) since C is closed, there is an open interval $I_{1} \subset I$ such that $x_{n} \in I_{1}$ and that $x-x_{k} \notin C$ for $x \in I_{1}$ and $k=1, \ldots, m-1$. Since $x_{n}-x_{m} \in C$ and since C is perfect, the set $S=\left\{x \in I_{1} ; x-x_{m} \in C\right\}$ is uncountable. Set. $\alpha(x)=\sum_{k<m} 4^{-k} f\left(x-x_{k}\right), \quad \beta(x)=4^{-m} f\left(x-x_{m}\right)$, $Y(x)=\sum_{k>m} \cdots$. Let $s \in S$. It is easy to see that α is continuous at $s, \quad \lim \sup _{x \rightarrow s} \beta(x)=4^{-m}$,
$\lim _{\inf }^{x \rightarrow s}(x)=0,|y(x)| \leqq 1 /\left(3 \cdot 4^{m}\right)$ for each x. This easily implies that $g=\alpha+\beta+\gamma$ is not continuous at s. It follows from 3.6 and 1.7 that $g \in m$.

REFERENCES

[1] R.J. Fleissner, Distant bounded variation and products of derivatives, Fund. Math. XCIV (1977), 1-11.
[2] Jan Marík, Multipliers of summable derivatives, Real Analysis Exchange, Vol. 8, No. 2 (1982-83), 486-493.
[3] \qquad , Multipliers of various classes of derivatives
(Lecture presented at Real Analysis Symposium in Waterloo), Real Analysis Exchange, Vol. 9, No. 1 (1983-84). 141-145.
[4] \qquad - Some properties of multipliers of summable derivatives, Real Analysis Exchange, Vol. 9, No. 1 (1983-84), 251-257.

Received September 16, 1983

