Real Analysis Exchange Vol. 9 (1983-84)

Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

SOME PROPERTIES OF MULTIPLIERS
 OF SUMMABLE DERIVATIVES

Introduction. Let $J=[0,1]$. For every class Φ of functions on J let $M(\Phi)$ be the system of all functions f on J such that $f \varphi \in \Phi$ for each $\varphi \in \Phi$. The elements of $M(\Phi)$ are called multipliers of Φ. R.J. Fleissner posed in [l] the problem of characterization of the system $M(S D)$, where $S D$ is the class of all summable (= Lebesgue integrable) derivatives. This problem has been solved in [2]. In this note we prove that the set of points of discontinuity of a function in M (SD) is "small" (in particular, countable and nowhere dense) and that some continuous functions in $M(S D)$ are nowhere differentiable.

Notation. The word function means a mapping to $(-\infty, \infty)$. If f is a function on interval $[a, b]$ and if n is a natural number, then $v(n, a, b, f)$ denotes the least upper bound of all sums $\sum_{k=1}^{n}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|$, where $\mathrm{a} \leqq \mathrm{x}_{1}<\mathrm{y}_{1} \leqq \ldots \leqq \mathrm{x}_{\mathrm{n}}<\mathrm{y}_{\mathrm{n}} \leqq \mathrm{b}$. Let V be the set of all functions f on J such that

$$
\lim \sup _{n \rightarrow \infty} v\left(n, x+\frac{1}{n}, x+\frac{2}{n}, f\right)<\infty \text { for each } x \in[0,1)
$$

and
$\lim \sup _{n \rightarrow \infty} v\left(n, x-\frac{2}{n}, x-\frac{1}{n}, f\right)<\infty$ for each $x \in(0,1]$.

If f is a function on J and if $x \in J$, we set
$w(x, f)=\lim _{h \rightarrow 0_{+}}(\sup \{|f(t)-f(x)| ; t \in J,|t-x|<h\})$.

Remark. It is obvious that f is continuous at x (with respect to J) if and only if $\omega(x, f)=0$. Hence $\{x ; w(x, f)>0\}$ is the set of all points of discontinuity of f.

1. Theorem. A function belongs to $M(S D)$ if and only if it is a derivative belonging to v.

Proof. Let W be the system defined in section 6 of [2]. It is easy to prove that $W=V$. Now we apply Theorem 8 of [2].
2. Lemma. Let f be a Darboux function on J and let n be a natural number. Let $a, b, x \in J$, $a<x<b$. Then $v(n, a, b, f) \geqq n w(x, f)$.

Proof. We may suppose that $\omega(x, f)>0$. Let $\varepsilon \in$ $(0, w(x, f))$. There is a $y_{1} \in(a, b)$ such that $\left|f\left(y_{1}\right)-f(x)\right|>\varepsilon$. Since f is a Darboux function, there is an $x_{1} \in(a, b)$ such that $0<\left|x-x_{1}\right|<\left|x-y_{1}\right|$ and that $\left|f\left(y_{1}\right)-f\left(x_{1}\right)\right|>\varepsilon$. There is a $Y_{2} \in(a, b)$ such that $\left|x-y_{2}\right|<\left|x-x_{1}\right|$ and $\left|f\left(y_{2}\right)-f(x)\right|>\varepsilon$ etc.

In this way we construct disjoint intervals with endpoints $x_{j}, y_{j} \in(a, b)$ such that $\left|f\left(y_{j}\right)-f\left(x_{j}\right)\right|>e$ for $j=1, \ldots, n$. Hence $v(n, a, b, f)>n \in$ which proves our assertion.
3. Lemma. Let f be a Darboux function on J and let $x \in[0,1)$. Then
(1) $\lim _{y \rightarrow x^{+}} \sup (y-x)^{-1} w(y, f) \leqq \lim _{n \rightarrow \infty} \sup v\left(n, x+\frac{1}{n^{\prime}} x+\frac{2}{n^{\prime}} f\right)$.

Proof. Let A be the right-hand side of the inequality (1). We may suppose that $A<\infty$. Let $B \in(A, \infty)$. There is a $p \in(1, \infty)$ such that $v\left(n, x+\frac{1}{n}, x+\frac{2}{n}, f\right)<B$ for each $n>p$. Let $y \in\left(x, x+\frac{1}{p}\right)$ and let n be an integer such that $1 /(y-x)<n<2 /(y-x)$. Obviously $x+\frac{1}{n}<y<x+\frac{2}{n}$ and $n>p$. Hence, by Lemma 2, $(y-x)^{-1} \omega(y, f) \leqq n \omega(y, f) \leqq v\left(n, x+\frac{1}{n}, x+\frac{2}{n}, f\right)<B$ which proves (1).
4. Lemma. Let $f \in V$ and let f be a Darboux function. Let $\varnothing \neq T \subset\{x ; w(x, f)>0\}$. Then T has a leftisolated point.

Proof. Suppose that no point of T is left-isolated. Choose $a b_{0} \in T$ and set $a_{0}=b_{0}-1$. Suppose that n is a positive integer and that a_{n-1}, b_{n-1} are numbers such that $a_{n-1}<b_{n-1} \in T$. It is easy to see that there is $a b_{n} \in T$ and a number a_{n} such that $a_{n-1}<a_{n}<b_{n}<b_{n-1}$ and $n\left(b_{n}-a_{n}\right)<\omega\left(b_{n}, f\right)$. In this way we construct sequences
a_{0}, a_{1}, \ldots and b_{0}, b_{1}, \ldots. Let $b_{n} \rightarrow b$. Obviously $a_{n}<b<b_{n}$ and $n\left(b_{n}-b\right)<n\left(b_{n}-a_{n}\right)<\omega\left(b_{n}, f\right)$ for each n. This contradicts Lemma 3.
5. Proposition. Let $f \in V$ and let f be a Darboux function. Let $\varnothing \neq \mathrm{P} \subset\{\mathrm{x} ; \boldsymbol{w}(\mathrm{x}, \mathrm{f})>0\}$. Then T has an isolated point.

Proof. Suppose that no point of T is isolated.
Let L be the set of all left-isolated points of T. By Lemma 4 there is an $a_{0} \in L$. Set $b_{0}=a_{0}+1$. Suppose that n is a positive integer and that a_{n-1}, b_{n-1} are numbers such that $b_{n-1}>a_{n-1} \in L$. Set $T_{0}=\left(a_{n-1}, b_{n-1}\right) \cap T$. By assumption $T_{O} \neq \varnothing$. By Lemma $4 T_{O}$ has a left-isolated point, say a_{n}; it is easy to see that $a_{n} \in L$. There is a $b_{n} \in\left(a_{n}, b_{n-1}\right)$ such that $n\left(b_{n}-a_{n}\right)<\omega\left(a_{n}, f\right)$. In this way we construct sequences $a_{0}, a_{1}, \ldots, b_{0}, b_{1}, \ldots$. Let $a_{n} \rightarrow a$. Obviously $a_{n}<a<b_{n}$ and $n\left(a-a_{n}\right)<$ $n\left(b_{n}-a_{n}\right)<\omega\left(a_{n}, f\right)$ for each n. This contradicts the "symmetrical version" of Lemma 3 .
6. Theorem. Let $f \in M(S D)$ and let $\varepsilon \in(0, \infty)$. Then the set $\{x \in J ; w(x, f)>\varepsilon\}$ is finite and each nonempty subset of $\{x ; w(x, f)>0\}$ has an isolated point.

Proof. According to Theorem 1 f is a Darboux function belonging to V. It follows from Lemma 3 that $w(y, f) \rightarrow 0 \quad(y \rightarrow x, y \in J)$ for each $x \in J$. This easily
implies that the set $\{x ; \omega(x, f)>\varepsilon\}$ is finite. The second assertion follows at once from Proposition 5.

Remark. It is obvious that each function monotone on J belongs to V. However, such a function may be discontinuous at each point of a dense set. We see that in Theorem 6 the assumption $f \in M$ (SD) cannot be replaced by the requirement $f \in V$.
7. Lemma. Let $A, B, a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots$ be positive numbers such that $\sum_{k>n} a_{k} \leqq A a_{n}, \sum_{k<n} b_{k} \leqq B_{n}$ for each n and that $\sup _{k} a_{k} b_{k}<\infty$. Let f_{1}, f_{2}, \ldots be functions on J such that $\left|f_{n}\right| \leqq a_{n}$ on J and that $\left|f_{n}(y)-f_{n}(x)\right| \leqq b_{n}|y-x|$, whenever $x, y \in J \quad(n=1,2, \ldots)$. Then $\sum_{n=1}^{\infty} f_{n} \in M(S D)$.

Proof. Let $Q=\sup _{k} a_{k} b_{k}$. Let n be an integer greater than b_{1}. It is obvious that $\sup _{k} b_{k}=\infty$. Let K be the smallest natural number such that $b_{K}>n$. Let $\quad \alpha, \beta \in J, \beta=\alpha+\frac{1}{n}$. Set $\varphi=\sum_{k<K} f_{k}, \psi=\sum_{k \geqq K} f_{k}, f=\varphi+\psi$. It is easy to see that $v(n, \alpha, \beta, \varphi) \leqq \frac{1}{n} \sum_{k<K} b_{k} \leqq(B+1) b_{K-1} / n \leqq$ $B+1, v(n, \alpha, \beta, \psi) \leqq 2 n \sum_{k \geqq K} a_{k} \leqq 2 n(A+1) a_{K} \leqq 2(A+1) Q n / b_{K} \leqq$ $2 Q(A+1)$ so that $v(n, \alpha, \beta, f) \leqq B+1+2 Q(A+1)$. Hence $f \in V$. since f is continuous, we have $f \in M(S D)$.
8. Lemma. Let $A, B, a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots$ be positive numbers such that $\sum_{k>n} a_{k} \leqq A a_{n^{\prime}} \sum_{k<n} b_{k} \leqq B b_{n}$ for each n and that $2 A+3 B<1$. Let φ be a 2-periodic function such that $\varphi(x)=|x|$ for $|x| \leqq 1$. Set $f(x)=$
$\sum_{k=1}^{\infty} a_{k} \varphi\left(b_{k} a_{k}^{-1} x\right)$. Then for each real x we have $D^{+} f(x)=\infty, \quad D_{-} f(x)=-\infty \quad$ or $\quad D_{+} f(x)=-\infty, \quad D^{-} f(x)=\infty$.

Proof. Let $x \in(-\infty, \infty)$ and let n be a natural number. Set $d=a_{n} / b_{n}$. There is an integer j such that $|x-d j| \leqq d / 2$. Set $y=(j+1) d, z=(j-1) d$. suppose first that j is even. For each k let $\varphi_{k}(t)=$ $a_{k} \varphi\left(b_{k} a_{k}^{-1} t\right)(t \in(-\infty, \infty))$. We have $f(y)-f(x)=$ $\Sigma_{k<n}\left(\varphi_{k}(y)-\varphi_{k}(x)\right)+\varphi_{n}(y)-\varphi_{n}(x)+\Gamma_{k>n} \varphi_{k}(y)-\sum_{k>n} \varphi_{k}(x)$. It is easy to see that $\left|\varphi_{k}(y)-\varphi_{k}(x)\right| \leqq b_{k}(y-x)$ for each k; moreover, $\varphi_{n}(y)=a_{n} \varphi(j+1)=a_{n} \quad 0 \leqq \varphi_{n}(x) \leqq a_{n} / 2$. Since $y-x \leqq \frac{3}{2} d$, we have $a_{n} / 2=d b_{n} / 2 \geqq b_{n}(y-x) / 3$ so that $f(y)-f(x) \geqq-(y-x) \sum_{k<n} b_{k}+a_{n} / 2-\sum_{k>n} a_{k} \geqq$ $-(y-x) B b_{n}+a_{n} / 2-A a_{n} \geqq-(y-x) B b_{n}+\left(b_{n}(y-x) / 3\right)(1-2 A)=$ $(y-x) c_{n}$, where $c_{n}=b_{n}(1-2 A-3 B) / 3$. In the same way it can be proved that $f(z)-f(x) \geqq(x-z) C_{n}$. If j is odd, we proceed similarly. set $j_{n}=j, y_{n}=y, z_{n}=z$. Then $z_{n}<x<y_{n^{\prime}} z_{n} \rightarrow x, y_{n} \rightarrow x$; for j_{n} even we have

$$
\frac{f\left(y_{n}\right)-f(x)}{y_{n}-x} \geqq c_{n^{\prime}} \quad \frac{f\left(z_{n}\right)-f(x)}{z_{n}-x} \leqq-c_{n^{\prime}}
$$

for j_{n} odd we have

$$
\frac{f\left(y_{n}\right)-f(x)}{y_{n}-x} \leqq-c_{n^{\prime}} \quad \frac{f\left(z_{n}\right)-f(x)}{z_{n}-x} \geqq c_{n}
$$

Obviously $c_{n} \rightarrow \infty$. This completes the proof.
9. Theorem. Let $q \in(6, \infty)$. Let q be as in Lemma 8. For each $x \in[0,1]$ set $f(x)=\sum_{k=1}^{\infty} q^{-k} \varphi\left(q^{2 k} x\right)$. Then f is continuous, $f \in M(S D)$ and f is nowhere differentiable.

Proof. We apply 7 and 8 with $a_{k}=q^{-k}, b_{k}=q^{k}$, $A=B=1 /(q-1)$.

REFERENCES

[1] R.J. Fleissner, Multiplication and the fundamental theorem of calculus: A survey, Real Analysis Exchange, vol. 2, No. 1-1976, 7-34.
[2] J. Mařík, Multipliers of summable derivatives, Real Analysis Exchange, Vol. 8, No. 2-1982-83. 486-493.

