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 SOME PROPERTIES OF MULTIPLIERS

 OF SUMMABLE DERIVATIVES

 Introduction. Let J = [0,1]. For every class $

 of functions on J let M($) be the system of all func-

 tions f on J such that f cp € § for each cp € $ . The

 elements of M(§) are called multipliers of $.

 R.J. Fleissner posed in [1] the problem of characterization

 of the system M (SD) , where SD is the class of all

 summable (= Lebesgue integrable) derivatives. This prob-

 lem has been solved in [2]. In this note we prove that

 the set of points of discontinuity of a function in M (SD)

 is "small" (in particular, countable and nowhere dense)

 and that some continuous functions in M (SD) are nowhere

 differentiable.

 Notation . The word function means a mapping to (-•»•) .

 If f is a function on an interval [a,b] and if n is

 a natural number, then v(n,a,b,f) denotes the least
 n

 upper bound of all sums ~ ^ 1» where

 a S X, < y, a S . . . S X < y „ž b. Let V be the set of 1 a 1 n n

 all functions f on J such that

 1 2
 lim sup ^ v (n,x + - ,x +- , f) < ® for each x€ [0,1)

 ii"T® ^ n n
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 and

 2 1
 lira sup v(n,x - ,x - , f) < ® for each x€ (0,1].

 n-*® n n

 If f is a function on J and if x € J, we set

 u>(x, f) = limh>+0+ (sup{ ļ f (t) - f (x) I ; tf J, lt-x| < h}) .

 Remark . It is obvious that f is continuous at x

 (with respect to J) if and only if ou (x, f ) = O. Hence

 {x;uu(x,f) > 0} is the set of all points of discontinuity

 of f.

 1. Theorem. A function belongs to M (SD) if and

 only if it is a derivative belonging to V.

 Proof. Let W be the system defined in section 6

 of [2]. It is easy to prove that w = V. Now we apply

 Theorem 8 of [2].

 2 . Lemma . Let f be a Darboux function on J and

 let n be a natural number. Let a, b, x€ J, a < x < b.

 Then v(n, a,b,f) 5 nuu (x, f) .

 Proof. We may suppose that tv (x, £) >0. Let e€

 (0,u>(x, f)). There is a y^ € (a,b) such that

 ļf(yļ) - f (x) ļ > e. Since f is a Darboux function#

 there is an x^ € (a,b) such that O < fx-x^ < jx-y^
 and that |f(y^) - f (x^) | > e. There is a y 2 ^ (a'k) such
 that (x-y2| < (x-x]Ll and |f(Y2) - f (x) ļ > e etc.
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 In this way we construct disjoint intervals with endpoints

 Xj,Yj € (a,b) such that 1 f (Yj) ~ f (xj) ! > e for j = lf.#n.
 Hence v(n,a,b, f) > ne which proves our assertion.

 3. Lemma. Let f be a Darboux function on J and

 let X € [0, 1) . Then

 -1 12
 (1) lim sup(y-x) ou(y#f) s lim sup v (n, x + - ,x + - , f) .

 y-»x+ n-»o9

 Proof. Let A be the right-hand side of the in-

 equality (1). We may suppose that A < <*>. Let B6 (A,®).
 1 2

 There is a p€ (1,®) such that v (n, x + - ,x + - , f) < B

 for each n > p. Let y€ (x,x+-~) and let n be an
 XT

 integer such that 1/ (y - x) < n < 2/(y-x). Obviously
 1 2

 x+- <y<x+- and n > p. Hence, by Lemma 2,
 n n

 (y - x) (y, f) ñ nuu (y, f) ś v (n, x + x + f) < B which

 proves (1) .

 4 . Lemma . Let f € V and let f be a Darboux func-

 tion. Let Ç& ^ Tc(x;u)(x, f) > 0}. Then T has a left-

 isolated point.

 Proof. Suppose that no point of T is left-isolated.

 Choose a b^ € T and set a^ = bQ - 1. Suppose that n is a
 positive integer and that an_ļ' ^n-l are num^ers such that
 a_ , < b , fT. It is easy to see that there is a b €T n- 1 n- , -L n

 and a number a„ such that a„ . < a < b < b , and n n-l n n n-1 ,

 n(bn~an) < uj(bn#f ) . In this way we construct sequences
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 a0' al' ' * * an(^ ^O' ^1' * ' ' * Le^ Obviously

 an < b < bn and n(bn~b) < n (bn - an) < uu (bR# f) for each
 n. This contradicts Lemma 3.

 5. Proposition. Let f € V and let f be a Darboux

 function. Let 0 4 Tc{x;ou(x, f) > 0}. Then T has an

 isolated point.

 Proof. Suppose that no point of T is isolated.

 Let L be the set of all left-isolated points of T.

 By Lemma 4 there is an aQ € L. Set bQ = aQ + 1. Suppose

 that n is a positive integer and that an_]/ ^n-l
 numbers such that b , > a_. € L. Set T_. = (a_ n#b ,) HT. n-1 n-i o n-i n-i

 By assumption TQ 4 By Lemma 4 TQ has a left-isolated
 point# say an; it is easy to see that aR € L. There is
 a b € (a #b ,) such that n (b - a) < u> (a . f) . In this
 n n n-i n n n

 way we construct sequences aQ, a^, . . . , bQ, b^, ... .

 Let a -»a. Obviously a„ < a < b and n (a - al n < n n n n

 n(bn~an) < u) (an# f) for each n. This contradicts the
 "symmetrical version" of Lemma 3.

 6. Theorem. Let f€M(SD) and let e€ (0,«) . Then

 the set {x € J; w (x, f) > e} is finite and each nonempty

 subset of {x; uu(x, f) >0} has an isolated point.

 Proof. According to Theorem 1 f is a Darboux func-

 tion belonging to V. It follows from Lemma 3 that

 u)(y, f) -*0 (y -» x, y € J) for each x 6 J. This easily
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 implies that the set {x; to (x, f ) > e} is finite. The

 second assertion follows at once from Proposition 5.

 Remark. It is obvious that each function monotone

 on J belongs to V. However, such a function may be

 discontinuous at each point of a dense set. We see that

 in Theorem 6 the assumption f € M (SD) cannot be replaced

 by the requirement f € V.

 i7jļ-ML6nffiļāi Let A, B# a^^# • * • / ^1' ^2' • • * be

 positive numbers such that a^ š AaR, ' s Bbn

 for each n and that SUP^ < "*• Let f2' " ' '
 be functions on J such that If | s a„ on J and that

 n n

 I f (y) - fn (x) ļ - bn ļ y - x ļ # whenever x, y € J (n = 1, 2, ...).

 Then ZT=1fn 6 M (SD) .

 Proof. Let Q = sup^a^b^. Let n be an integer

 greater than b^. It is obvious that sup^b^ = ®. Let

 K be the smallest natural number such that bR > n.

 Let a, ß € J# ß = a + J. Set cp = fk, ý = fk , f » V + ♦ .
 It is easy to see that v(n,a,ß,cp) s ¿ b^ S (B + l)bR_ļ/n S
 B + 1, v (n# et* ß# tļf) - 2n ak = 2n (A + 1) aR š 2 (A + 1) Qn/bK s

 2Q (A + 1) so that v (n, a# ß# f) =§ B + 1 + 2Q (A + 1) . Hence f € V .

 Since f is continuous# we have f€M(SD).

 8 « Letama » Let A# B| *^2' * * * ' ^2' * * * l^e

 positive numbers such that 2^^ s Aan# *>k ^ Bbn
 for each n and that 2A + 3B < 1. Let cp be a 2-periodic

 function such that cp(x) = ļxļ for 'x' 5 1. Set f (x) =
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 a^cp (b^ . Then for each real x we have

 D+f (x) = «, D_f (x) - -® or D+f (x) = -®, D~f (x) - ®.

 Proof. Let x€ (-»,«) and let n be a natural num-

 ber. Set d = a /b . There is an integer j such that
 n n

 ļx-djļ à d/2. Set y = (j f-l)d, z - (j-l)d. Suppose

 first that j is even. For each k let cp^(t) =

 ak«p (bfc a^t) (t € (-®, ®)). We have f(y) - f (x) =

 ^<1, (y) - ^ <x> > + <pn <y) - Kn (x) + ^>A <y) - <*> • "

 is easy to see that jcp^iy) -cp^(x)ļ S b^íy-x) for each
 k; moreover# cpR (y) = an<p(j + l) = aR, O 5 cpn(x) S an/^.

 o

 Since y - x ś -^d, we have an/2 = d bn/2 ^ bn (y - x) /3

 so that f (y) - f (x) è - (y - x) ^<n' + an/2 è
 - (y - x) Bbn + an/2 - Aan 5 - (y - x) Bbn + (bn (y - x) /3) (1 - 2A) =

 (y-x)cn# where cR = bn (1 - 2A - 3B) /3 . In the same way

 it can be proved that f(z) - f(x) S (x - z) cn« If j is
 odd, we proceed similarly. Set j = j, yR = y, zn = z.

 Then z < x < y » z„ -» x, y„-»x; n for j n even we have n n n n n

 f (y ) - f (x) f (z ) - f (x)

 yn-x n zn-x n

 for j odd we have
 n

 f(y ) - f (x) f (z ) -f(x)
 y J - x n z - x n y J n n

 Obviously cn -♦ ®. This completes the proof.
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 9. Theorem. Let q€ (6,«). Let cp be as in Lemma 8.
 , re ""le O lc

 For each x€ [0,1] set f(x) = 3 "Pfà x) • Then

 f is continuous, f 6 M (SD) and f is nowhere differen-

 tiate.

 ""k lc
 Proof. We apply 7 and 8 with a^ = q , = q ,

 A = B = l/(q-l).
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