Real Analysis Exchange Vol. 9 (1983-84)

Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

SOME PROPERTIES OF MULTIPLIERS OF SUMMABLE DERIVATIVES

Introduction. Let J = [0,1]. For every class § of functions on J let $M(\Phi)$ be the system of all functions f on J such that $f\phi \in \Phi$ for each $\phi \in \Phi$. The elements of $M(\Phi)$ are called multipliers of Φ . R.J. Fleissner posed in [1] the problem of characterization of the system M(SD), where SD is the class of all summable (= Lebesgue integrable) derivatives. This problem has been solved in [2]. In this note we prove that the set of points of discontinuity of a function in M(SD)is "small" (in particular, countable and nowhere dense) and that some continuous functions in M(SD) are nowhere differentiable.

<u>Notation</u>. The word function means a mapping to $(-\infty,\infty)$. If f is a function on an interval [a,b] and if n is a natural number, then v(n,a,b,f) denotes the least upper bound of all sums $\sum_{k=1}^{n} |f(y_k) - f(x_k)|$, where $a \leq x_1 < y_1 \leq \cdots \leq x_n < y_n \leq b$. Let V be the set of all functions f on J such that

$$\lim \sup_{n\to\infty} v(n, x + \frac{1}{n}, x + \frac{2}{n}, f) < \infty \text{ for each } x \in [0, 1]$$

251

 $\lim \sup_{n\to\infty} v(n, x - \frac{2}{n}, x - \frac{1}{n}, f) < \infty \quad \text{for each } x \in (0, 1].$ If f is a function on J and if $x \in J$, we set

and

$$w(x, f) = \lim_{h \to O+} (\sup\{|f(t) - f(x)|; t \in J, |t - x| < h\}).$$

<u>Remark</u>. It is obvious that f is continuous at x (with respect to J) if and only if w(x, f) = 0. Hence $\{x; w(x, f) > 0\}$ is the set of all points of discontinuity of f.

<u>1. Theorem</u>. A function belongs to M(SD) if and only if it is a derivative belonging to V.

<u>Proof</u>. Let W be the system defined in section 6 of [2]. It is easy to prove that W = V. Now we apply Theorem 8 of [2].

<u>2. Lemma</u>. Let f be a Darboux function on J and let n be a natural number. Let a, b, $x \in J$, a < x < b. Then $v(n,a,b,f) \ge nw(x,f)$.

<u>Proof.</u> We may suppose that w(x, f) > 0. Let $\varepsilon \in (0, w(x, f))$. There is a $y_1 \in (a, b)$ such that $|f(y_1) - f(x)| > \varepsilon$. Since f is a Darboux function, there is an $x_1 \in (a, b)$ such that $0 < |x - x_1| < |x - y_1|$ and that $|f(y_1) - f(x_1)| > \varepsilon$. There is a $y_2 \in (a, b)$ such that $|x - y_2| < |x - x_1|$ and $|f(y_2) - f(x)| > \varepsilon$ etc. In this way we construct disjoint intervals with endpoints $x_j, y_j \in (a,b)$ such that $|f(y_j) - f(x_j)| > \varepsilon$ for j = 1, ..., n. Hence $v(n, a, b, f) > n_\varepsilon$ which proves our assertion.

3. Lemma. Let f be a Darboux function on J and let $x \in [0,1)$. Then

(1) $\limsup_{y \to x^+} (y - x)^{-1} w(y, f) \leq \limsup_{n \to \infty} v(n, x + \frac{1}{n}, x + \frac{2}{n}, f).$

<u>Proof.</u> Let A be the right-hand side of the inequality (1). We may suppose that $A < \infty$. Let $B \in (A, \infty)$. There is a $p \in (1, \infty)$ such that $v(n, x + \frac{1}{n}, x + \frac{2}{n}, f) < B$ for each n > p. Let $y \in (x, x + \frac{1}{p})$ and let n be an integer such that 1/(y - x) < n < 2/(y - x). Obviously $x + \frac{1}{n} < y < x + \frac{2}{n}$ and n > p. Hence, by Lemma 2, $(y - x)^{-1} w(y, f) \le n w(y, f) \le v(n, x + \frac{1}{n}, x + \frac{2}{n}, f) < B$ which proves (1).

<u>4. Lemma</u>. Let $f \in V$ and let f be a Darboux function. tion. Let $\emptyset \neq T \subset \{x; w(x, f) > 0\}$. Then T has a left-isolated point.

<u>Proof.</u> Suppose that no point of T is left-isolated. Choose a $b_0 \in T$ and set $a_0 = b_0 - 1$. Suppose that n is a positive integer and that a_{n-1} , b_{n-1} are numbers such that $a_{n-1} < b_{n-1} \in T$. It is easy to see that there is a $b_n \in T$ and a number a_n such that $a_{n-1} < a_n < b_n < b_{n-1}$ and $n(b_n - a_n) < w(b_n, f)$. In this way we construct sequences a_0, a_1, \dots and b_0, b_1, \dots . Let $b_n \neq b$. Obviously $a_n < b < b_n$ and $n(b_n - b) < n(b_n - a_n) < w(b_n, f)$ for each n. This contradicts Lemma 3.

5. Proposition. Let $f \in V$ and let f be a Darboux function. Let $\emptyset \neq T \subset \{x; w(x, f) > 0\}$. Then T has an isolated point.

<u>Proof.</u> Suppose that no point of T is isolated. Let L be the set of all left-isolated points of T. By Lemma 4 there is an $a_0 \in L$. Set $b_0 = a_0 + 1$. Suppose that n is a positive integer and that a_{n-1} , b_{n-1} are numbers such that $b_{n-1} > a_{n-1} \in L$. Set $T_0 = (a_{n-1}, b_{n-1}) \cap T$. By assumption $T_0 \neq \emptyset$. By Lemma 4 T_0 has a left-isolated point, say a_n ; it is easy to see that $a_n \in L$. There is a $b_n \in (a_n, b_{n-1})$ such that $n(b_n - a_n) < \omega(a_n, f)$. In this way we construct sequences a_0 , a_1 , ..., b_0 , b_1 , Let $a_n \rightarrow a$. Obviously $a_n < a < b_n$ and $n(a - a_n) <$ $n(b_n - a_n) < \omega(a_n, f)$ for each n. This contradicts the "symmetrical version" of Lemma 3.

<u>6. Theorem</u>. Let $f \in M(SD)$ and let $\varepsilon \in (0, \infty)$. Then the set $\{x \in J; w(x, f) > \varepsilon\}$ is finite and each nonempty subset of $\{x; w(x, f) > 0\}$ has an isolated point.

<u>Proof</u>. According to Theorem 1 f is a Darboux function belonging to V. It follows from Lemma 3 that $w(y, f) \rightarrow 0$ ($y \rightarrow x, y \in J$) for each $x \in J$. This easily implies that the set $\{x; w(x, f) > c\}$ is finite. The second assertion follows at once from Proposition 5.

<u>Remark</u>. It is obvious that each function monotone on J belongs to V. However, such a function may be discontinuous at each point of a dense set. We see that in Theorem 6 the assumption $f \in M(SD)$ cannot be replaced by the requirement $f \in V$.

7. Lemma. Let A, B, a_1 , a_2 , ..., b_1 , b_2 , ... be positive numbers such that $\sum_{k>n} a_k \leq Aa_n$, $\sum_{k<n} b_k \leq Bb_n$ for each n and that $\sup_k a_k b_k < \infty$. Let f_1 , f_2 , ... be functions on J such that $|f_n| \leq a_n$ on J and that $|f_n(y) - f_n(x)| \leq b_n |y - x|$, whenever x, $y \in J$ (n = 1, 2, ...). Then $\sum_{n=1}^{\infty} f_n \in M(SD)$.

<u>Proof.</u> Let $Q = \sup_{k} a_{k} b_{k}$. Let n be an integer greater than b_{1} . It is obvious that $\sup_{k} b_{k} = \infty$. Let K be the smallest natural number such that $b_{K} > n$. Let α , $\beta \in J$, $\beta = \alpha + \frac{1}{n}$. Set $\varphi = \sum_{k < K} f_{k}$, $\psi = \sum_{k \ge K} f_{k}$, $f = \varphi + \psi$. It is easy to see that $v(n, \alpha, \beta, \varphi) \le \frac{1}{n} \sum_{k < K} b_{k} \le (B+1) b_{K-1}/n \le B+1$, $v(n, \alpha, \beta, \psi) \le 2n \sum_{k \ge K} a_{k} \le 2n (A+1) a_{K} \le 2(A+1) Qn/b_{K} \le 2Q(A+1)$ so that $v(n, \alpha, \beta, f) \le B+1+2Q(A+1)$. Hence $f \in V$. Since f is continuous, we have $f \in M(SD)$.

8. Lemma. Let A, B, a_1 , a_2 , ..., b_1 , b_2 , ... be positive numbers such that $\sum_{k>n} a_k \leq Aa_n$, $\sum_{k<n} b_k \leq Bb_n$ for each n and that 2A + 3B < 1. Let φ be a 2-periodic function such that $\varphi(x) = |x|$ for $|x| \leq 1$. Set f(x) = $\sum_{k=1}^{\infty} a_k \varphi(b_k a_k^{-1} x).$ Then for each real x we have $D^+ f(x) = \infty, \quad D_f(x) = -\infty \quad \text{or} \quad D_f(x) = -\infty, \quad D^- f(x) = \infty.$

<u>Proof.</u> Let $x \in (-\infty, \infty)$ and let n be a natural number. Set $d = a_n/b_n$. There is an integer j such that $|x-dj| \leq d/2$. Set y = (j+1)d, z = (j-1)d. Suppose first that j is even. For each k let $\varphi_k(t) =$ $a_k \varphi(b_k a_k^{-1}t)$ (t $\in (-\infty, \infty)$). We have f(y) - f(x) = $\sum_{\mathbf{k} < \mathbf{n}} \left(\varphi_{\mathbf{k}} \left(\mathbf{y} \right) - \varphi_{\mathbf{k}} \left(\mathbf{x} \right) \right) + \varphi_{\mathbf{n}} \left(\mathbf{y} \right) - \varphi_{\mathbf{n}} \left(\mathbf{x} \right) + \sum_{\mathbf{k} > \mathbf{n}} \varphi_{\mathbf{k}} \left(\mathbf{y} \right) - \sum_{\mathbf{k} > \mathbf{n}} \varphi_{\mathbf{k}} \left(\mathbf{x} \right) .$ It is easy to see that $|\phi_k(y) - \phi_k(x)| \leq b_k(y - x)$ for each k; moreover, $\varphi_n(y) = a_n \varphi(j+1) = a_n, 0 \le \varphi_n(x) \le a_n/2$. Since $y - x \leq \frac{3}{2}d$, we have $a_n/2 = db_n/2 \geq b_n (y - x)/3$ so that $f(y) - f(x) \ge -(y - x) \sum_{k \le n} b_k + a_n/2 - \sum_{k \ge n} a_k \ge$ $-(y - x) Bb_n + a_n/2 - Aa_n \ge -(y - x) Bb_n + (b_n(y - x)/3) (1 - 2A) =$ $(y-x)c_n$, where $c_n = b_n(1-2A-3B)/3$. In the same way it can be proved that $f(z) - f(x) \ge (x - z)c_n$. If j is odd, we proceed similarly. Set $j_n = j$, $y_n = y$, $z_n = z$. Then $z_n < x < y_n$, $z_n \rightarrow x$, $y_n \rightarrow x$; for j_n even we have

$$\frac{f(y_n) - f(x)}{y_n - x} \ge c_n, \quad \frac{f(z_n) - f(x)}{z_n - x} \le -c_n$$

for j_n odd we have

$$\frac{f(y_n) - f(x)}{y_n - x} \leq -c_n, \quad \frac{f(z_n) - f(x)}{z_n - x} \geq c_n.$$

Obviously $c_n \rightarrow \infty$. This completes the proof.

<u>9. Theorem</u>. Let $q \in (6, \infty)$. Let φ be as in Lemma 8. For each $x \in [0,1]$ set $f(x) = \sum_{k=1}^{\infty} q^{-k} \varphi(q^{2k}x)$. Then f is continuous, $f \in M(SD)$ and f is nowhere differentiable.

<u>Proof</u>. We apply 7 and 8 with $a_k = q^{-k}$, $b_k = q^k$, A = B = 1/(q-1).

REFERENCES

- [1] R.J. Fleissner, Multiplication and the fundamental theorem of calculus: A survey, Real Analysis Exchange, Vol. 2, No. 1-1976, 7-34.
- [2] J. Mařík, Multipliers of summable derivatives, Real Analysis Exchange, Vol. 8, No. 2-1982-83, 486-493.

Received September 13, 1983