Václav Kelar, matematicko-fyzikálni fakulta Karlovy university, 18600 Praha 8, Sokolovská 83, Czechoslovakia

ON THE FIRST AND THE FIFTH CLASS OF ZAHORSKI

Introduction. For a real-valued function of a real variable f, the associated sets of f are the sets $E^{r}(f)=\{x: f(x)<r\}$ and $E_{r}(f)=\{X: f(x)>x\}$ where x is real. It is well-known that f is in the first Baire class (θ_{1}) if and only if every associated set of f is of type F_{σ}. In [8], Zahorski considered a hierarchy $\left\{m_{i}\right\}{ }_{i=0}^{5}$ of subclasses of $B_{1}\left(\pi_{i-1} \supset m_{i}\right)$. Each of these classes is defined in terms of associated sets: f is in m_{i} if and only if every associated set of i is in M_{i} where M_{i} is a certain family of F_{σ} sets. Zahorski showed that $m_{0}=m_{1}=D B_{1}$ (the class of all Darboux-Baire 1 functions) and $m_{5}=A$ (the class of all approximately continuous functions).

Let il denote the class of all homeomorphisms of the real line R onto itself. A theorem of Maximoff [5] asserts that for any function $f \in \mathcal{M}_{1}$ there exists $h \in \mathcal{H}$ such that $f \circ h \in \mathbb{T}_{5}$. Gorman [2] showed that a set analogue of this theorem holds: If $E \in M_{1}$, then there exists $h \in \mathscr{H}$ such that $h(E)=M_{5}$.

In Theorem 1 of this paper we characterize all countable collections $S \subset \mathbb{M}_{1}$ for which there exists $h \in \mathbb{X}$ such that $\{h(E): E \in S\} \subset M_{5}$. The idea is based on a lemma due to Preiss [7] ([7] contains a proof of Maximoff's
theorem). Maximofe's theorem is then stated as a simple corollery of Theorem 1.

It is known that $A=m_{5}$ is exactly the class of contimous functions relative to a certain topology (the density topology) in the domain space. Thus a number of results concerning m_{5} functions can be obtained by topological methods. No such topology exists for $D B_{1}=m_{1}$. Applying Thecrem 1, we show that some of these reaults (two lemmas of Zahorski [8], extension theorems [6], [4]) have valid analogues in M_{4}.

Notations. In what follows, all sets dealt with are subsets of R and all functions, unless otherwise specified, have R as domain. N denotes the set of all natural numbers, λ the Lebesgue measure on R, \bar{E} and E° the closure and interior of the set $E, U(F, E)$ the ε-neighbourhood of the set $F, f / E$ the reatriction of the function I to the domain E, and (x, y) the open interval from x to y where $x<y$ or $x>y$. For $h \in \mathcal{H}_{,} h^{-1}$ denotes the inverse of $h . F_{\sigma}$ and G_{δ} denotes the collection of all sets of type F_{σ} and G_{δ}, respectively.

Homeomorphic transformation of M-sets into M_{5}-sets.
In this section, by a measure we mean a nonnegative locally finite non-atomic Borel regular measure on R. A measure μ is called positive if $\mu(I)>0$ for evexy open interval I.

Definition. Let $E \in F_{\sigma} \backslash\{\varnothing\}$ and let μ be a positive measure. We shall say that E belongs to class MH_{0} if $\mathrm{E} \cap \mathrm{I}$ is infinite whenever I is a closed interval intersecting E (i.e., E is bilaterally dense-in-itself)
M_{1} if $E \cap I$ is uncountable whenever I is a closed interval intersecting E (i.e., E is bilaterally c-dense-in-itself)
M_{2}^{μ} if $\mu(E \cap I)>0$ whenever I is a closed interval intersecting E
M_{5}^{μ} if every point of E is a point of density of E relative to μ (i.e., $d_{\mu}(E, x) \equiv \lim _{y \rightarrow x} \frac{\mu(E \cap(x, y))}{\mu(x, y)}=1$ for every $x \in F$).

The empty set is considered to belong to each of these classes.

Femark 1. It is easy to verify that the following assertions are vaild for any positive measure μ.
(a) $M_{0} \supset M_{1} \supset M_{2}^{\mu} \supset M_{5}^{*}$. Any open set E belongs to M_{5}^{μ}.
(b) If $E \in M_{1}, \quad h \in \mathcal{F}$, then $h(E) \in M_{1}$.
(c) Each of the defined classes is closed under the formation of countable unions. M_{5}^{4} is closed under the formation of finite intersections, but none of the other classes is. To see this, put
$A=(-1,0] \cup \bigcup_{n=1}^{\infty}\left(\frac{1}{2 n+1}, \frac{1}{2 n}\right), \quad B=(-1,0] \cup \bigcup_{n=1}^{\infty}\left(\frac{1}{2 n}, \frac{1}{2 n-1}\right)$. Then A and B are in M_{2}^{μ}, but $A \cap B=(-1,0] \notin M_{0}$.

Lemma 1. Let $\left\{G_{m}\right\}_{m \in N} \subset W_{1}$. Then there exists a positive measure μ such that $\mu(-\infty, 0)=\mu(0, \infty)=\infty$ and $\left\{G_{m}\right\}_{m \in N} \subset M_{2}^{\mu}$.

Proof. For any uncountable Borel set B there exists a Ifinite measure γ such that $\gamma(B)>0$ (see [7, p. 101]).

Let $\left\{I_{n}\right\}$ be a sequence of all closed intervals with rational endpoints. Put $M=\left\{(m, n): G_{m} \cap I_{n} \neq \varnothing\right\}$. If $(m, n) \in M$, then $G_{m} \cap I_{n}$ is uncountable, and we may find a measure $\gamma_{m, n}$ such that $\gamma_{m, n}\left(G_{m} \cap I_{n}\right)>0$ and $\gamma_{m, n}(R)=2^{-m-n}$. We set $\mu=\lambda+\sum_{(m, n) \in M} \gamma_{m, n}$.

Lemme 2. Suppose that
(a) $\varepsilon>0, \eta$ is a positive measure
(b) F is a nonempty compact nowhere dense set
(c) $E \in M_{2}^{\eta}, \quad F \subset E$.

Then there exists a measure γ such that
(1) $\gamma(R \backslash(E \cap U(F, \varepsilon)))=0$
(2) $\gamma(R)<\varepsilon$
(3) if $x \in F$, then $\lim _{y \rightarrow x} \frac{\eta((x, y) \backslash E)}{\gamma(x, y)}=0$.

Proof. This is a corollary of [7, Lemme 2]: Under the hypotheses (a), (b), (c) there exists a Borel measurable nonnegative function g such that
$\left(1^{\prime}\right)\{x: g(x) \neq 0\} \subset(E \backslash F) \cap U(F, \varepsilon)$
(2') $\int_{R} g d \eta<\varepsilon$
(3') if $x \in F$, then $\lim _{y \rightarrow x} \eta((x, y) \backslash F) \cdot\left(\int_{(x, y)} g d \eta\right)^{-1}=0$. It suffices to put $\gamma(B)=\int_{B} g$ d η for every Borel set B.

Lemma 3. Suppose that

(a) $\varepsilon>0, \mu$ and η are positive measures
(b) A and B are compact nowhere dense sets
(c) $E \in M_{2}^{\eta}, A \subset E$.

Then there exists a measure γ such that
(4) $\gamma(R \backslash E)=0$
(5) $\gamma(R)<\varepsilon$
(6) if $x \in A \backslash B$, then $\lim _{y \rightarrow x} \frac{\eta((x, y) \backslash E)}{\gamma(x, y)}=0$
(7) if $x \in B$ and $y \neq x$, then $\gamma(x, y)<\varepsilon(\mu(x, y))^{2}$.

Proof. If $A \backslash B=\varnothing$, put $\gamma=0$. If $A \neq \varnothing, B=\varnothing$, apply Lemma 2 with $F=A$. Now, let $A \backslash B$ and B be nonempty. We can write $A \backslash B=\bigcup_{n=1}^{\infty} A_{n}$ where A_{n} are nonempty compact nowhere dense sets. For each n find $\delta_{n}>0$ such that $B \cap \bar{U}\left(A_{n}, \delta_{n}\right)=\varnothing$ and put
$\left.\varepsilon_{n}=\min \left\{\varepsilon 2^{-n}, \delta_{n}, \varepsilon 2^{-n}\left(\inf \left\{\mu(x, y): x \in B, y \in \overline{U\left(A_{n}, \delta_{n}\right.}\right)\right\}\right)^{2}\right\}$. Apply Lemma 2 with $\varepsilon=\varepsilon_{n}, F=A_{n}$ to obtain a measure γ_{n} with properties (1), (2), (3). Set $\gamma=\sum_{n=1}^{\infty} \gamma_{n}$.

Statements (4), (5) are easy consequences of (1), (2). Let $x \in A_{m} \subset A \backslash B$. Since $\gamma(x, y) \geqq \gamma_{m}(x, y)$ for any $y \neq x$, (6) follows from (3). To prove (7), let $x \in B, y \neq x$.

If $\gamma_{n}(x, y)>0$ for some n, then (1) implies $(x, y) \cap U\left(A_{n}, \varepsilon_{n}\right) \neq \emptyset$. Pick $z \in(x, y) \cap U\left(A_{n}, \varepsilon_{n}\right)$. We have $\gamma_{n}(x, y) \leqq \gamma_{n}(R)<\varepsilon_{n} \leqq \varepsilon 2^{-n}(\mu(x, z))^{2}<\varepsilon 2^{-n}(\mu(x, y))^{2}$ which implies (7).

Theorem 1. Let $\left\{E_{n}\right\}_{n \in N}$ be a countable collection of sets. Then the following conditions are equivalent.
$\bigcap_{j \in M} E_{j} \in M_{1}$ whenever $M \subset N$ is finite.
(ii) There exists a positive measure v such that

$$
\nu(-\infty, 0)=v(0, \infty)=\infty \text { and }\left\{E_{n}\right\}_{n \in \mathbb{N}} \subset M_{5}^{\nu}
$$

(iii) There exists $h \in \mathcal{H}$ such that $\left\{h\left(E_{n}\right)\right\}_{n \in N} \subset M_{5}^{\lambda}$.

Proof. (i) \Rightarrow (ii). By Lemma 1, we may find a positive measure μ such that $\mu(-\infty, 0)=\mu(0, \infty)=\infty$ and $E_{M} \equiv \bigcap_{j \in M} E_{j} \in M_{2}^{\mu}$ whenever $M \subset N$ is finite.

We shall suppose that all the sets $H_{n}=E_{n} \backslash E_{n}^{o}$ are nonempty (if $H_{n}=\varnothing$, then E_{n}, being open, is in M_{5}^{ν} for any positive measure ν). Since for each $n, H_{n} \in F_{\sigma}$ and $H_{n}^{0}=\emptyset$, we may write $H_{n}=\bigcup_{k=n}^{\infty} H_{n}^{k}$ where $\left\{H_{n}^{k}\right\}_{k=n}^{\infty}$ is a sequence of compact nowhere dense sets such that $\emptyset \neq H_{n}^{k} \subset H_{n}^{k+1}$ for every $k \geqq n$.

Let P_{n} denote the collection of all nonempty subsets of $N_{n}=\{1,2, \ldots, n\}$. For each $n \in N$ and each $N \in P_{n}$ put

$$
\varepsilon_{n}=2^{-(2 n-1)}, \quad A_{M}^{n}=\bigcap_{j \in M} H_{j}^{n}, \quad B_{M}^{n}=\bigcup_{j \in N_{n} \backslash M} H_{j}^{n}
$$

(if $M=N_{n}$, then $B_{M}^{n}=\varnothing$). Note that $A_{M}^{n} \subset E_{M}$.

We shall construct a sequence $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ of measures. We set $\gamma_{0}=\mu$. Assume that $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n-1}$ have already been defined. Put

$$
\nu_{n-1}=\gamma_{0}+\gamma_{1}+\cdots+\gamma_{n-1}
$$

For each set $M \in P_{n}$ apply Lemma 3 with $\varepsilon=\varepsilon_{n}, \eta=\nu_{n-1}$, $A=A_{M}^{n}, B=B_{M}^{n}, E=E_{M}$ to obtain a measure γ_{M}^{n} such that (4') $\gamma_{M}^{n}\left(R \backslash E_{M}\right)=0$
(5') $\gamma_{M}^{n}(R)<\varepsilon_{n}$
(6') if $x \in A_{M}^{n} \backslash B_{M}^{n}$, then $\lim _{\bar{y} \rightarrow x} \frac{\nu_{n-1}\left((x, y) \backslash E_{M}\right)}{\gamma \gamma_{M}^{n}(x, y)}=0$
(7') if $x \in B_{M}^{n}, \quad y \neq x$, then $\gamma_{M}^{n}(x, y)<\varepsilon_{n}(\mu(x, y))^{2}$. Put

$$
\gamma_{n}=\sum_{M \in P_{n}} \gamma_{M}^{n}
$$

Having defined the sequence $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$, set

$$
\nu=\sum_{n=0}^{\infty} \gamma_{n} .
$$

Fix $m \in N, x \in E_{m}$. We need to show that $d_{\nu}\left(E_{m}, x\right)=1$. If $x \in E_{m}^{o}$, then $i t$ is obvious. Suppose that $x \in H_{m}$. Choose $i \geqq m$ so that $x \in H_{m}^{i}$. For $y \neq x$ we can write

$$
\nu\left((x, y) \backslash E_{m}\right)=\nu_{i-1}\left((x, y) \backslash E_{m}\right)+\sum_{n=i}^{\infty} \gamma_{n}\left((x, y) \backslash E_{m}\right) .
$$

Let $n \geqq i, M \in P_{n}$. If $m \in M$, then $E_{M} \subset E_{m}$, and (4^{\prime}) Fields $\gamma_{M}^{n}\left(R \backslash E_{m}\right)=0$. If $m \notin M$, then $x \in H_{m}^{i} \subset H_{m}^{n} \subset B_{M}^{n}$, hence $\gamma_{M}^{n}\left((x, y) \backslash E_{m}\right) \leqq \gamma_{M}^{n}(x, y)<\varepsilon_{n}(\mu(x, y))^{2}$, by ($\left.7^{\prime}\right)$.

Putting $P_{n}^{*}=\left\{M \in P_{n}:\right.$ 四 $\left.\& M\right\}$, we obtain $\gamma_{n}\left((x, y) \backslash F_{m}\right)=$ $=\sum_{M \in P_{n}^{*}} \gamma \frac{n}{n}\left((x, y) \backslash E_{m}\right)<2^{n-1} \varepsilon_{n}(\mu(x, y))^{2}=2^{-n}(\mu(x, y))^{2}$, consequently

$$
\sum_{n=i}^{\infty} \gamma_{n}\left((x, y) \backslash E_{m}\right)<(\mu(x, y))^{2} \leqq \mu(x, y) \nu(x, y) .
$$

Put $Q=\left\{j: x \in \mathbb{E}_{j}^{i}\right\}$. Then $m \in Q$ and $x \in A_{Q}^{i} \backslash B_{Q}^{i}$. Since $E_{Q} \subset E_{m}$, we have

$$
\nu_{i-1}\left((x, y) \backslash E_{m}\right) \leqq \nu_{i-1}\left((x, y) \backslash E_{Q}\right) \leqq \frac{\nu_{i-1}\left((x, y) \backslash E_{Q}\right)}{\gamma_{Q}^{i}(x, y)} \nu(x, y) .
$$

Thus

$$
\nu\left((x, y) \backslash E_{m}\right) \leqq\left(\frac{\nu_{i-1}\left((x, y) \backslash E_{Q}\right)}{\gamma_{Q}^{i}(x, y)}+\mu(x, y)\right) \nu(x, y)
$$

and (6') proves that $d_{\nu}\left(E_{m}, x\right)=1-\lim _{y \rightarrow x} \frac{\nu\left((x, y) \backslash E_{m}\right)}{\nu(x, y)}=1$.
(ii) \Rightarrow (iii). Define a function h by

$$
h(x)=\left\{\begin{array}{rl}
\nu(0, x) & \text { if } x>0 \\
-\nu(x, 0) & \text { if } x<0
\end{array}, h(0)=0 .\right.
$$

Then $h \in \mathcal{H}$. Since $\nu(I)=\lambda(h(I))$ for every open interval I, we have $\nu(B)=\lambda(h(B))$ for every Bored set B.

Let $a=h(u), u \in E_{n}=E$. Then

$$
\begin{aligned}
d_{\lambda}(h(E), a) & =\lim _{b \rightarrow a} \frac{\lambda(h(E) \cap(a, b))}{\lambda(a, b)}= \\
& =\lim _{\nabla \rightarrow u} \frac{\lambda(h(E) \cap(h(u), h(v)))}{\lambda(h(u), h(v))}= \\
& =\lim _{\nabla \rightarrow u} \frac{\nu(E \cap(u, \nabla))}{\nu(u, v)}=d_{\nu}(E, u)=1 .
\end{aligned}
$$

(iii) \Rightarrow (i). We have $\bigcap_{j \in \mathbb{M}} E_{j}=h^{-1}\left(\bigcap_{j \in \mathbb{M}} h\left(E_{j}\right)\right)$ for every finite set $M C N$. Apply Remark 1.

Classes m_{1} and m_{5}. The only measure which will be used throughout the rest of this paper is the Lebesgue measure λ. So we shall write simply $M_{5}, \mathrm{~d}(E, X)$ instead of $M_{5}^{\lambda}, d_{\lambda}(E, x)$.

Definition. A function f is said to be in class m_{i} ($1=1,5$) if every associated set of f is in M_{i}. (The associated sets of f are the sets $\mathrm{E}^{r}(f)=\{x: f(x)<r\}$ and $E_{r}(f)=\{x: f(x)>r\}$ where $\left.r \in R_{0}\right)$

Remark 2. Referring to Remark 1, we immediately derive the following facts.
(a) $m_{5} \subset m_{1}$.
(b) If $f \in M_{1}, h \in \mathcal{H}$, then $f \circ h \in \mathbb{M}_{1}$.
(c) For a function f and $p, q \in R$ put
$E_{p}^{q}(f)=E_{p}(f) \cap E^{q}(f)=\left\{\begin{array}{cc}\{x: p<f(x)<q\} & \text { if } p<q \\ \emptyset & \text { if } p \geqq q\end{array}\right.$.
If $f \in M_{5}$, then $E_{p}^{q}(\hat{i}) \in M_{5}$ for all $p, q \in R$. Conversely, if $\left\{E_{p}^{q}(f): p, q\right.$ rational $\} \subset M_{5}$, then $f \in \mathbb{M}_{5}$.

If $i \in M_{1}$, it is not immediately clear whether or not $\mathrm{E}_{\mathrm{p}}^{q}(\mathrm{f}) \in \mathrm{M}_{1}$ for all $p, q \in R$ (see Remaris 1.c). To give an affirmative answer to this question, we need the following

Lemma 4. Suppose that A and B are in $M_{1} \backslash\{\emptyset\}$, $A \cup B=R$. Then $A \cap B \in M_{1} \backslash\{\varnothing\}$.

Proof (cf. [3, Lemma 3.2.1]). By [8, Lemma 7], no open interval $I \subset R$ can be expressed as the union of two nonempty disjoint M_{0}-sets. Therefore $A \cap B \neq \varnothing$.

Let I be an open interval such that $A \cap B \cap \bar{I} \neq \varnothing$. Then $A \cap I$ and $B \cap I$ are uncountable. We show that $A \cap B \cap I$ is uncountable. If $I \subset A$ or $I \subset B$, then it is obvious. Suppose $I \backslash A \neq \varnothing, I \backslash B \neq \varnothing$. Since $R \backslash A \subset B$, $R \backslash A \in G_{\delta}, B \in F_{\sigma}$, there is a set $E \in F_{\sigma} \cap G_{\delta}$ such that $\mathrm{R} \backslash \mathrm{A} \subset \mathrm{E} \subset \mathrm{B}$. Using [8, Lemma 7] again, wo obtain $\{E \cap I, I \backslash E\} \notin M_{O}$. Assume $E \cap I \notin M_{0}$, the other case being similar. Then there is an open interval JCI with $E \cap \bar{J} \neq \emptyset$ and $E \cap J=\emptyset$. Since $E \subset B$, we have $B \cap \bar{J} \neq \emptyset$, so $B \cap J$ is uncountable. Furthermore, $J \subset R \backslash E \subset A$. Thus $A \cap B \cap I \supset A \cap B \cap J=B \cap J$ which implies the result.

Corollary. If $f \in M_{1}$, then $E_{p}^{q}(f) \leqslant M_{1}$ for all $\ddot{p}, q \in R$. (Proof: If $p<q$, then $E_{p}(f) \cup E^{q}(f)=R$.)

Definition. A function f is said to be approximately continuous ($f \in A$) if for each $x \in R$ there exists a measurable set E_{x} such that $x \in E_{x}, d\left(E_{x}, x\right)=1$ and $1 / E_{x}$ is continuous at x.

A measurable set E is said to be D-open provided that $d(E, x)=1$ for every $x \in E$.

Remark 3. The collection D of all D-open sets forms a topology (see e.g. [1, p. 20]). A function f belongs to A if and only if every associated set of i belongs to D (see e.g. [1, Chap. II, Theorem 5.6]). Thus A is exactly the class of all D-continuous functions. Consequentiy, if f, g, h are in $A, h(x) \neq 0$ for all $x \in R$, then $1+g, f . g$, $\frac{f}{h}$ are in A.

The class $2 B_{1}$ of all Darboux Bare 1 functions does not behave veil with respect to the algebraic operations. To see this, put $f(x)=\sin \frac{1}{x}, g(x)=-\sin \frac{1}{x}$ if $x \neq 0$, $f(0)=g(0)=1$. Then f, g are in $D B_{1}$, but neither $\mathrm{f}+\mathrm{g}$ nor $\mathrm{f} . \mathrm{g}$ is. So, for any topology τ on $\mathrm{R}, \mathrm{LB}_{1}$ cannot coincide with the class of all τ-continuous functions. Hence there is no topology τ on R for which DB, is the class of all τ-continuous functions.

Remark 4. Since $M_{5}=F_{\sigma} \cap D$ and since $A \subset B_{1}$ (see e.g. [1, Chap. II, Theorem 5.5]), we conclude that $m_{5}=A$.

Zahorski proved that $m_{1}=A_{1}$ ([8, Theorem 1]).

Maximoff's theorem.

Theorem 2 (Maximoff [5], Preiss [7]). For any function f, the following conditions are equivalent. (i) $\quad i \in \mathbb{M}_{1}$.
(ii) There exists $h \in \mathscr{H}$ such that $f \circ h \in \mathbb{M}_{5}$.

Proof. (i) \Rightarrow (ii). Put $S=\left\{E_{p}^{q}(f): p, q\right.$ rational $\}$. By the corollary of Lemma $4, S \subset M_{1}$. The intersection of any collection of finitely many sets from S belongs to S. Applying Theorem 1, we construct a homeomorphism $g \in \mathscr{H}$ such that $\{g(E): E \in S\} \subset M_{5}$. Put $h=g^{-1}$.

Let p, q be rational numbers. Then

$$
E_{p}^{q}(f \cdot h)=h^{-1}\left(E_{p}^{q}(f)\right)=g\left(E_{p}^{q}(f)\right) \in M_{5}
$$

Hence $f \cdot h \in M_{5}$, by Remark 2.c.
(ii) \Rightarrow (i). This follows from the equality
$f=(f \cdot h) \cdot h^{-1}$ and from Remark 2.a,b.

Zero sets and separation properties of π_{1} and $m_{5}{ }^{\circ}$ First we state two well-known lemmas of Zahorski concerning m_{5}-functions and their analogues for m_{1}-iunctions.

Theorem 3.i $(i=1,5)$. If $E \in M_{i}$, then there exists an upper-semicontinuous function $f \in T_{i}$ such that

$$
0<f(x) \leqq 1 \text { if } x \in E, \quad f(x)=0 \text { if } x \in R \backslash E
$$

Theoren 3.5 is due to Zahorski ([8, Lemma 11]). Theorem 3.1 is due to Agronsky (see Bruckner [1, p. 28-31]).

Proof of Theorem 3.1. Let $E \in M_{1}$. By Theorem 1 (or by [2]), there exiats $h \in \mathcal{H}$ such that $h(E) \in M_{5}$. Using Theorem 3.5, we find a function $g \in m_{5}$ such that $0<g(y) \leqq 1$ if $y \in h(E), g(y)=0$ if $y \in R \backslash h(E)$. We put $f=g \circ h$.

Theorem 4.i $(i=1,5)$. Let H_{1} and H_{2} be nonempty disjoint sets such that $R \backslash H_{1}$ and $R \backslash H_{2}$ are in M_{1}. Then there exists a function $f \in \mathbb{m}_{i}$ such that

$$
\begin{aligned}
& f(x)=0 \text { if } x \in H_{1}, \quad f(x)=1 \text { if } x \in H_{2}, \\
& 0<f(x)<1 \text { if } x \in R \backslash\left(H_{1} \cup H_{2}\right) .
\end{aligned}
$$

Theorem 4.5 is due to Zahorski ([8, Lemma 12]). We give the original proof here in order to show that the same method fails to work in m_{1} (see Remark 3):

Suppose that $R \backslash H_{1}$ and $R \backslash H_{2}$ are in M_{5}. By Theorem 3.5, there are functions $f_{k} \in m_{5}(k=1,2)$ such that $0<f_{k}(x) \leqq 1$ if $x \in R \backslash H_{k}$ and $f_{k}(x)=0$ if $x \in H_{k}$. It sufices to put $f=\frac{\rho_{1}}{\rho_{1}+\rho_{2}}$.

Proof of Theorem 4.1. Let $\left\{R \backslash H_{1}, R \backslash H_{2}\right\} \subset M_{1}$. Since $\left(R \backslash H_{1}\right) \cup\left(R \backslash H_{2}\right)=R$, we have $\left(R \backslash H_{1}\right) \cap\left(R \backslash H_{2}\right) \in M_{1}$, by Lemma 4. According to Theorem 1, there exists $h \in \mathcal{H}$ such that $\left\{R \backslash h\left(H_{1}\right), R \backslash h\left(H_{2}\right)\right\} \subset M_{5}$. Now take a function $g \in \mathbb{T}_{5}$ from Theorem 4.5 applied to $h\left(H_{1}\right), h\left(H_{2}\right)$ and put $\mathrm{I}=\mathrm{g} \cdot \mathrm{h}$ 。

Definition (Laczkovich [3]). Let $i \in\{1,5\}$.
A set H is said to be an M_{1}-zero set if there exists a function $f \in M_{i}$ such that $H=\{x: f(x)=0\}$.

A set F is said to be m_{j}-closed if F coincides with the intersection of all π_{i}-zero sets which contain F.

A pair G_{1}, G_{2} of disjoint gets is said to be separated by m_{i} if there exists a function $f \in \mathbb{m}_{i}$ such that

$$
G_{1} \subset\{x: f(x)=0\}, \quad G_{2} \subset\{x: f(x)=1\}
$$

Remark 5. Let $i \in\{1,5\}$. If $f \in \Pi_{i}$ and $r \in R$, then $R \backslash\{x: f(x)=r\}=E_{r}(f) \cup E^{r}(f) \in M_{i}$. Combining this fact with Theorem 3.i and Theorem 4.i, we obtain the following characterizations:
(a) A set H is an m_{i}-zero set if and only if $R \backslash H \in M_{i}$.
(b) A pair G_{1}, G_{2} of disjoint sets is separated by M_{i} if and only if there is a pair of disjoint sets H_{1}, H_{2} such that $R \backslash H_{1}, R \backslash H_{2}$ are in H_{i} and $G_{1} \subset H_{1}, G_{2} \subset H_{2}$.

Remark 6. A set F is π_{5}-closed if and only if. F is D-closed (see [3, p. 408]).

It remains to characterize all M_{1}-closed sets.
Definition. The class of sets C is defined by $A \in C$ if and only if $A \cap I$ contains a nonempty perfect set whenever I is a closed interval intersecting A.

Remark 7. If $A \in C$, then obviously A is bilaterally c-dense-in-itself. If E is a Borel set, then E is in C if and only if E is bilaterally c-dense-in-itself (apply the fact that any uncountable Borel set contains a nonempty perfect set). Thus $M_{1}=F_{\sigma} \cap C$.

Lemma 5. Any set $A \in C$ contains a set E of type F_{σ} such that $E \cap I$ is uncountable whenever I is a closed interval intersecting A (i.e., E is bilaterally c-dense in A). (Observe that $E \in M$, .)

Proof. Let $\left\{I_{n}\right\}$ be a sequence of all closed intervals with rational endpoints. Put $M=\left\{n \in N: A \cap I_{n} \neq \emptyset\right\}$. If $n \in \mathbb{M}$, then $A \cap I_{n}$ contains a nonempty perfect set P_{n}. Define $E=\bigcup_{n \in M} P_{n}$.

Lemana. A set F is m_{1}-closed if and only if $R \backslash F \in C$.

Proof. Let F be an M_{1}-closed set, $F \neq R$. Choose a closed interval I intersecting $R \backslash F, \quad x \in I \backslash F$. There is an T_{1}-zero set H such that $F \subset H$ and $x \notin H$. We have $x \in I \backslash H \subset I \backslash F$. Since $R \backslash H \in M_{1}$ by Remark 5.a, there is a nonempty perfect set P such that $P \subset I \backslash H \subset I \backslash F$. Hence $R \backslash F \in C$.

Suppose that $R \backslash F \in C, F \neq R$. Choose $x \in R \backslash F$. By Lemma 5, $R \backslash F$ contains a set $G \in F_{\sigma}$ which is bilaterally c-dense in $R \backslash F$. Put $E=G U\{x\}$. Then $E \in \mathbb{N}_{1}$. Applying Theorem 3.1, we iind a function $f \in \pi_{1}$ such that $f(y)>0$ if $y \in E, f(y)=0$ if $y \in R \backslash E$. So, $f(x) \neq 0$ and f vanishes on $F \subset R \backslash E$. This proves that F is M-closed.

Clearly, if $F=R$, then F is T_{y}-closed and $R \backslash F=\varnothing \in C$.

Remark 8. Let $i \in\{1,5\}$. If H is an M_{i} ~closed get of type G_{δ}, then $R \backslash H \in M_{i}$ (see Lemme 6 and Remark 6). So, Theorem 4.1 implies that any pair of disjoint m_{i}-closed sets of type G_{δ} is separated by m_{i}. This fact with $i=1$ is due to Laczkovich (see [3, Theorem 3.2.2]).

Extension theorems for m_{5} and m_{1}. This section is devoted to modifications of the classical Tietze's theorem.

Theorem 5.5 (Petruska, Laczkovich [6, Theorem 3.2]). For any set H, the following conditions are equivalent. (1) $\lambda(H)=0$.
(ii) For each $g \in \mathcal{B}_{1}$ there exists $f \in \mathbb{M}_{5}$ such that

$$
f / \mathrm{H}=\mathrm{g} / \mathrm{H}
$$

Theorem 6.5 (Lukes [4, Theorem 4]). Let F be a D-closed set and let $g \in B_{1}$. Then the following conditions are equivalent.
(i) g / F is D-continuous on F.
(ii) There exists a function $f \in m_{5}$ such that $f / F=g / F^{\circ}$

Remark 9. Let g be a function, F a set, $p, q, r \in R$. We introduce the following notations:

$$
\begin{aligned}
& E^{r}(g, F)=E^{r}(g) U(R \backslash F), \quad E_{r}(g, F)=E_{r}(g) U(R \backslash F) \\
& E_{p}^{q}(g, F)=E_{p}^{q}(g) U(R \backslash F)
\end{aligned}
$$

Let F be D-closed. Then g / F is D-continuous on F if and only if $E^{P}(g, F) \in D$ and $E_{r}(g, F) \in D$ for all $r \in R$.

Remark 10. Suppose that $\lambda(H)=0$ and $g \in B_{1}$. Then H is D-closed and g / H is D-continuous on H . Thus the implication $(i) \Rightarrow$ (ii) of Theorem 5.5 is a corollary of Theorem 6.5.

Theorem 6.1 Let F be an m_{1}-closed set (i.e., $R \backslash F \in C$), and let $g \in B_{1}$. Then the following conditions are equivalent.
(i) $E^{r}(g, F) \in C$ and $E_{r}(g, F) \in C$ for all $r \in R$.
(ii) There exists a function $f \in m_{1}$ such that $f / F=g / F^{\circ}$ Proof. (i) \Rightarrow (ii). By Lemma 5, there is a set H such that $F \subset H, R \backslash H \in F_{\sigma}$ and $R \backslash H$ is bilaterally c-dense in $R \backslash F$ (hence $R \backslash H \in M_{1}$). It is easy to show that $E^{r}(g, H) \in M_{1}$ and $E_{r}(g, H) \in M_{1}$ for all $r \in R$. Hence $E_{p}^{q}(g, H) \in M_{1}$ for all $p, q \in R, \quad p<q$ (apply Lemma 4). If $p \geqq q$, then $E_{p}^{q}(g, H)=R \backslash H \in M_{1}$ 。

Fut $S=\left\{\mathrm{E}_{\mathrm{p}}^{q}(\mathrm{~g}, \mathrm{H}): \mathrm{p}, q\right.$ rational $\}$. Obviously, S is closed under the formation of finite intersections. Using Theorem 1, we construct a homeomorphism $h \in H$ such that $\{h(E): E \in S\} \subset M_{5}$. Since $R \backslash h(H) \in M_{5}, h(H)$ is D-ciosed.

Define $g^{*}=g \cdot h^{-1}$. Clearly, $g^{*} \in B_{1}$. For all rational p, q we have $E_{p}^{q}\left(g^{*}, h(H)\right)=h\left(E_{p}^{q}(g, H)\right) \in M_{5}$. Hence $g^{*} / h(H)$ is D-continuous on $h(H)$.

According to Theorem 6.5, there exists $f^{*} \in \mathbb{M}_{5}$ such that $f^{*} / h_{h(H)}=g^{*} / h(H)$. Put $f=f^{*}$ 。h. Then $f \in m_{1}$ and $I / H=g / H$ so a fortiori $f / F=g / F$.
(ii) \Rightarrow (i). This follows from the equalities
$E^{P}(g, F)=E^{P}(g) U(R \backslash F)=E^{P}(f) U(R \backslash F)$,
$E_{r}(g, F)=E_{r}(g) U(R \backslash F)=E_{r}(f) U(R \backslash F)$
and from the fact that $E^{r}(f), E_{r}(f), R \backslash F$ are in C.
Theorem 5.1 For any set H, the following conditions are equivalent.
(i) For any interval I, $I \backslash H$ contains a nonempty perfect set.
(ii) For each $g \in \mathcal{B}_{1}$ there exists $f \in \mathbb{M}_{1}$ such that $\mathrm{f} / \mathrm{H}=\mathrm{B} / \mathrm{H}^{\circ}$
Proof. (i) \Rightarrow (ii). It is clear that $E^{r}(g, H) \in C$ and $E_{r}(g, H) \in C$ for any $g \in B_{1}$ and $r \in R$. The result follows from Theorem 6.1.
not (i) \Rightarrow not (ii). Suppose that there is an interval I such that $I \backslash H$ does not contain any nonempty perfect set. Choose $x \in H \cap I$. Put $g(x)=1, g(y)=0$ for all $\quad y \neq x$. Obviously, $g \in \mathbb{B}_{1}$. Assume that there exists $f \in \mathbb{M}_{1}$ such that $1 / H_{H}=g /_{H}$. Then $E \equiv E_{0}(f) \in M_{1}$. Since $x \in E \cap I$, $E \cap I$ is uncountable. Therefore ($E \cap I$) $\backslash\{x\}$ contains some nonempty perfect set P. But $(E \cap I) \backslash\{x\} \subset I \backslash H$, hence $P \subset I \backslash H$ - a contradiction.

I am thankful for the advice I have received from Professor Luděk Zajíček.

References

[1] A. M. Bruckner, Differentiation of real functions, Springex, Berlin (1978).
[2] W. Gorman, The homeomorphic transformation of c-sets into d-sets, Proc. Amer. Math. Soc. 17 (1966), 825-830.
[3] M. Laczkovich, Separation properties of some subclasses of Baire 1 functions, Acta Math. Acad. Sci. Hung. 26 (1975), 405-412.
[4] J. Lukes̆, The Lusin-Henchoff property of ine topologies, Comment. Math. Univ. Carol. 18 (1977), 515-530.
[5] I. Meximoff, Sur la transformation continue de fonctions, Bull. Soc. Phys. Math. Kazan (3) 12 (1940), 9-41.
[6] G. Petruska and M. Laczkovich, Baire 1 functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hung. 25 (1974), 189-212.
[7] D. Preiss, Maximoff's theorem, Real Analysis Exchange 5 No. 1 (1979-80), 92-104.
[8] Z. Zahorski, Sur la premiěre dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54.

