Real Analysis Exchange Vol. 9 (1983-84)

Václav Kelar, matematicko-fyzikální fakulta Karlovy university, 186 00 Praha 8, Sokolovská 83, Czechoslovakia

ON THE FIRST AND THE FIFTH CLASS OF ZAHORSKI

<u>Introduction</u>. For a real-valued function of a real variable f, the associated sets of f are the sets $E^{r}(f) = \{x: f(x) < r\}$ and $E_{r}(f) = \{x: f(x) > r\}$ where r is real. It is well-known that f is in the first Baire class (\mathfrak{G}_{1}) if and only if every associated set of f is of type F_{σ} . In [8], Zahorski considered a hierarchy $\{\mathfrak{m}_{i}\}_{i=0}^{5}$ of subclasses of \mathfrak{G}_{1} ($\mathfrak{m}_{i-1} \supset \mathfrak{m}_{i}$). Each of these classes is defined in terms of associated set of f is in \mathfrak{m}_{i} if and only if every associated set of f is in \mathfrak{m}_{i} if and only if every associated set of f is in \mathfrak{m}_{i} if and only if every associated set of f is in \mathfrak{m}_{i} if and only if every associated set of f is in \mathfrak{m}_{i} if and only if every associated set of f is in \mathfrak{m}_{i} if and only if every associated set of f is in \mathfrak{m}_{i} if and only if every associated set of f is in \mathfrak{m}_{i} matrix if and only if every associated set of f is in \mathfrak{m}_{i} if and only if every associated set of f is in \mathfrak{m}_{i} if and $\mathfrak{m}_{i} = \mathfrak{M}_{i} = \mathfrak{M}_{i}$ (the class of all Darboux-Baire 1 functions) and $\mathfrak{m}_{5} = \mathcal{A}$ (the class of all approximately continuous functions).

Let \mathscr{X} denote the class of all homeomorphisms of the real line R onto itself. A theorem of Maximoff [5] asserts that for any function $f \in \mathfrak{M}_1$ there exists $h \in \mathscr{X}$ such that $f \circ h \in \mathfrak{M}_5$. Gorman [2] showed that a set analogue of this theorem holds: If $E \in \mathfrak{M}_1$, then there exists $h \in \mathscr{X}$ such that $h(E) \in \mathfrak{M}_5$.

In Theorem 1 of this paper we characterize all countable collections $S \subset M_1$ for which there exists $h \in \mathcal{X}$ such that $\{h(E): E \in S\} \subset M_5$. The idea is based on a lemma due to Preiss [7] ([7] contains a proof of Maximoff's

233

theorem). Maximoff's theorem is then stated as a simple corollary of Theorem 1.

It is known that $A = \mathbb{M}_5$ is exactly the class of continuous functions relative to a certain topology (the density topology) in the domain space. Thus a number of results concerning \mathbb{M}_5 -functions can be obtained by topological methods. No such topology exists for $\mathfrak{BB}_1 = \mathbb{M}_1$. Applying Theorem 1, we show that some of these results (two lemmas of Zahorski [8], extension theorems [6], [4]) have valid analogues in \mathbb{M}_1 .

<u>Notations</u>. In what follows, all sets dealt with are subsets of R and all functions, unless otherwise specified, have R as domain. N denotes the set of all natural numbers, λ the Lebesgue measure on R, \overline{E} and E° the closure and interior of the set E, $U(F,\varepsilon)$ the ε -neighbourhood of the set F, $f/_E$ the restriction of the function f to the domain E, and (x,y) the open interval from x to y where x < y or x > y. For $h \in \mathcal{X}$, h^{-1} denotes the inverse of h. F_{σ} and G_{δ} denotes the collection of all sets of type F_{σ} and G_{δ} , respectively.

<u>Homeomorphic transformation of M₁-sets into M₅-sets</u>. In this section, by a measure we mean a nonnegative locally finite non-atomic Borel regular measure on R. A measure μ is called positive if $\mu(I) > 0$ for every open interval I.

234

<u>Definition</u>. Let $E \in F_{\sigma} \setminus \{\emptyset\}$ and let μ be a positive measure. We shall say that E belongs to class

- M₀ if EOI is infinite whenever I is a closed interval intersecting E (i.e., E is bilaterally dense-in-itself)
- M1 if E ∩ I is uncountable whenever I is a closed interval intersecting E (i.e., E is bilaterally c-dense-in-itself)
- M_2^{μ} if $\mu(E \cap I) > 0$ whenever I is a closed interval intersecting E

$$M_5^{\prime}$$
 if every point of E is a point of density of E
relative to μ (i.e., $d_{\mu}(E,x) \equiv \lim_{y \to x} \frac{\mu(E \cap (x,y))}{\mu(x,y)} = 1$
for every $x \in E$).

The empty set is considered to belong to each of these classes.

<u>Remark 1</u>. It is easy to verify that the following assertions are valid for any positive measure μ . (a) $M_0 \supset M_1 \supset M_2^{\mu} \supset M_5^{\mu}$. Any open set E belongs to M_5^{μ} . (b) If $E \in M_1$, $h \in \mathcal{X}$, then $h(E) \in M_1$. (c) Each of the defined classes is closed under the formation of countable unions. M_5^{μ} is closed under the formation of finite intersections, but none of the other classes is. To see this, put

A = (-1,0]
$$\bigcup_{n=1}^{\infty} (\frac{1}{2n+1}, \frac{1}{2n})$$
, B = (-1,0] $\bigcup_{n=1}^{\infty} (\frac{1}{2n}, \frac{1}{2n-1})$.
Then A and B are in \mathbb{M}_{2}^{μ} , but A \cap B = (-1,0] \notin M₀.

Lemma 1. Let $\{G_m\}_{m \in \mathbb{N}} \subset \mathbb{M}_1$. Then there exists a positive measure μ such that $\mu(-\infty,0) = \mu(0,\infty) = \infty$ and $\{G_m\}_{m \in \mathbb{N}} \subset \mathbb{M}_2^{\mu}$.

<u>Proof</u>. For any uncountable Borel set B there exists a finite measure χ such that $\chi(B) > 0$ (see [7, p. 101]).

Let $\{I_n\}$ be a sequence of all closed intervals with rational endpoints. Put $M = \{(m,n): G_m \cap I_n \neq \emptyset\}$. If $(m,n) \in M$, then $G_m \cap I_n$ is uncountable, and we may find a measure $\chi_{m,n}$ such that $\chi_{m,n}(G_m \cap I_n) > 0$ and $\chi_{m,n}(R) = 2^{-m-n}$. We set $\mu = \lambda + \sum_{(m,n) \in M} \chi_{m,n}$.

Lemma 2. Suppose that

(a) $\varepsilon > 0$, η is a positive measure

(b) F is a nonempty compact nowhere dense set

(c) $E \in M_2^{\eta}$, $F \subset E$.

Then there exists a measure χ such that

- (1) $\chi(\mathbb{R} \setminus (\mathbb{E} \cap \mathbb{U}(\mathbb{F}, \varepsilon))) = 0$
- (2) $\chi(\mathbf{R}) < \varepsilon$
- (3) if $x \in F$, then $\lim_{y \to x} \frac{\eta((x,y) \setminus E)}{\gamma(x,y)} = 0$.

<u>Proof</u>. This is a corollary of [7, Lemma 2]: Under the hypotheses (a), (b), (c) there exists a Borel measurable nonnegative function g such that (1') $\{x: g(x) \neq 0\} \subset (E \setminus F) \cap U(F, \epsilon)$

(3') if $x \in F$, then $\lim_{y \to x} \eta((x,y) \setminus F) \cdot (\int_{(x,y)} g \, d\eta)^{-1} = 0$. It suffices to put $g(B) = \int_{B} g \, d\eta$ for every Borel set B.

Lemma 3. Suppose that

(a) $\varepsilon > 0$, μ and η are positive measures (b) A and B are compact nowhere dense sets (c) $E \in M_2^{\eta}$, $A \subset E$. Then there exists a measure γ such that (4) $\gamma(R \setminus E) = 0$ (5) $\gamma(R) < \varepsilon$ (6) if $x \in A \setminus B$, then $\lim_{y \to x} \frac{\eta((x,y) \setminus E)}{\gamma(x,y)} = 0$ (7) if $x \in B$ and $y \neq x$, then $\gamma(x,y) < \varepsilon(\mu(x,y))^2$.

<u>Proof.</u> If $A \setminus B = \emptyset$, put $\gamma = 0$. If $A \neq \emptyset$, $B = \emptyset$, apply Lemma 2 with F = A. Now, let $A \setminus B$ and B be nonempty. We can write $A \setminus B = \bigcup_{n=1}^{\infty} A_n$ where A_n are nonempty compact nowhere dense sets. For each n find $\delta_n > 0$ such that $B \cap \overline{U(A_n, \delta_n)} = \emptyset$ and put $\varepsilon_n = \min\{\varepsilon 2^{-n}, \delta_n, \varepsilon 2^{-n}(\inf\{\mu(x, y) : x \in B, y \in \overline{U(A_n, \delta_n)}\})^2\}$. Apply Lemma 2 with $\varepsilon = \varepsilon_n$, $F = A_n$ to obtain a measure δ_n with properties (1), (2), (3). Set $\gamma = \sum_{n=1}^{\infty} \gamma_n$.

Statements (4), (5) are easy consequences of (1), (2). Let $x \in A_m \subset A \setminus B$. Since $\gamma(x,y) \geq \gamma_m(x,y)$ for any $y \neq x$, (6) follows from (3). To prove (7), let $x \in B$, $y \neq x$. If $\gamma_n(x,y) > 0$ for some n, then (1) implies $(x,y) \cap U(A_n, \varepsilon_n) \neq \emptyset$. Pick $z \in (x,y) \cap U(A_n, \varepsilon_n)$. We have $\gamma_n(x,y) \leq \gamma_n(R) < \varepsilon_n \leq \varepsilon 2^{-n} (\mu(x,z))^2 < \varepsilon 2^{-n} (\mu(x,y))^2$ which implies (7).

<u>Theorem 1</u>. Let $\{E_n\}_{n \in \mathbb{N}}$ be a countable collection of sets. Then the following conditions are equivalent. (i) $\bigcap_{j \in \mathbb{M}} E_j \in \mathbb{M}_1$ whenever $\mathbb{M} \subset \mathbb{N}$ is finite. (ii) There exists a positive measure ν such that $\nu(-\infty, 0) = \nu(0, \infty) = \infty$ and $\{E_n\}_{n \in \mathbb{N}} \subset \mathbb{M}_5^{\nu}$. (iii) There exists $h \in \mathcal{X}$ such that $\{h(E_n)\}_{n \in \mathbb{N}} \subset \mathbb{M}_5^{\nu}$.

<u>Proof.</u> (i) \Rightarrow (ii). By Lemma 1, we may find a positive measure μ such that $\mu(-\infty,0) = \mu(0,\infty) = \infty$ and $E_{M} = \bigcap_{j \in M} E_{j} \in M_{2}^{\mu}$ whenever $M \subset N$ is finite.

We shall suppose that all the sets $H_n = E_n \setminus E_n^0$ are nonempty (if $H_n = \emptyset$, then E_n , being open, is in M_5^{\vee} for any positive measure \vee). Since for each n, $H_n \in F_{\sigma}$ and $H_n^0 = \emptyset$, we may write $H_n = \bigcup_{k=n}^{\infty} H_n^k$ where $\{H_n^k\}_{k=n}^{\infty}$ is a sequence of compact nowhere dense sets such that $\emptyset \neq H_n^k \subset H_n^{k+1}$ for every $k \ge n$.

Let P_n denote the collection of all nonempty subsets of $N_n = \{1, 2, ..., n\}$. For each $n \in \mathbb{N}$ and each $M \in P_n$ put

$$\varepsilon_n = 2^{-(2n-1)}, \quad A_M^n = \bigcap_{j \in M} H_j^n, \quad B_M^n = \bigcup_{j \in N_n \setminus M} H_j^n$$

(if $M = N_n$, then $B_M^n = \emptyset$). Note that $A_M^n \subset E_M$.

We shall construct a sequence $\{\gamma_n\}_{n=0}^{\infty}$ of measures. We set $\gamma_0 = \mu$. Assume that $\gamma_0, \gamma_1, \dots, \gamma_{n-1}$ have already been defined. Put

 $\begin{array}{l} & \gamma_{n-1} = \chi_0 + \chi_1 + \cdots + \chi_{n-1} \end{array} .$ For each set $M \in \mathbb{P}_n$ apply Lemma 3 with $\mathcal{E} = \mathcal{E}_n, \eta = \gamma_{n-1}$; $A = A_M^n, B = B_M^n, E = E_M$ to obtain a measure χ_M^n such that $(4^{\prime}) \quad \chi_M^n(\mathbb{R} \setminus \mathbb{E}_M) = 0$ $(5^{\prime}) \quad \chi_M^n(\mathbb{R}) < \mathcal{E}_n$ $(6^{\prime}) \quad \text{if } \mathbf{x} \in A_M^n \setminus B_M^n$, then $\lim_{y \to \infty} \frac{\gamma_{n-1}((\mathbf{x}, y) \setminus \mathbb{E}_M)}{\chi_M^n(\mathbf{x}, y)} = 0$ $(7^{\prime}) \quad \text{if } \mathbf{x} \in B_M^n, y \neq \mathbf{x}$, then $\chi_M^n(\mathbf{x}, y) < \mathcal{E}_n(\mu(\mathbf{x}, y))^2$. Put

$$\gamma_n = \sum_{M \in P_n} \gamma_M^n \, .$$

Having defined the sequence $\{\gamma_n\}_{n=0}^{\infty}$, set

$$v = \sum_{n=0}^{\infty} g_n$$

Fix $m \in N$, $x \in E_m$. We need to show that $d_y(E_m, x) = 1$. If $x \in E_m^0$, then it is obvious. Suppose that $x \in H_m$. Choose $i \ge m$ so that $x \in H_m^i$. For $y \ne x$ we can write

$$v((\mathbf{x},\mathbf{y}) \setminus \mathbf{E}_{\mathbf{m}}) = v_{\mathbf{i}-1}((\mathbf{x},\mathbf{y}) \setminus \mathbf{E}_{\mathbf{m}}) + \sum_{\mathbf{n}=\mathbf{i}}^{\mathbf{n}} \zeta_{\mathbf{n}}((\mathbf{x},\mathbf{y}) \setminus \mathbf{E}_{\mathbf{m}})$$

Let $n \ge i$, $M \in P_n$. If $m \in M$, then $E_M \subset E_m$, and (4') yields $\gamma_M^n(R \setminus E_m) = 0$. If $m \notin M$, then $x \in H_m^i \subset H_m^n \subset B_M^n$, hence $\gamma_M^n((x,y) \setminus E_m) \le \gamma_M^n(x,y) < \varepsilon_n(\mu(x,y))^2$, by (7').

Putting
$$P_n^* = \{ M \in P_n : m \notin M \}$$
, we obtain $\mathcal{Y}_n((x,y) \setminus E_m) =$
= $\sum_{M \in P_n^*} \mathcal{Y}_M^n((x,y) \setminus E_m) < 2^{n-1} \varepsilon_n(\mu(x,y))^2 = 2^{-n}(\mu(x,y))^2$,

consequently

$$\sum_{n=1}^{\infty} \gamma_n((x,y) \setminus E_m) < (\mu(x,y))^2 \leq \mu(x,y)\gamma(x,y) .$$

Put Q = {j: x $\in H_j^i$ }. Then m $\in Q$ and x $\in A_Q^i \setminus B_Q^i$. Since $E_Q \subset E_m$, we have

$$v_{i-1}((x,y) \setminus E_m) \leq v_{i-1}((x,y) \setminus E_Q) \leq \frac{v_{i-1}((x,y) \setminus E_Q)}{y_Q^i(x,y)} v(x,y)$$
.

Thus

$$\nu((\mathbf{x},\mathbf{y}) \setminus \mathbf{E}_{\mathbf{m}}) \leq \left(\frac{\nu_{i-1}((\mathbf{x},\mathbf{y}) \setminus \mathbf{E}_{\mathbf{Q}})}{\gamma_{\mathbf{Q}}^{i}(\mathbf{x},\mathbf{y})} + \mu(\mathbf{x},\mathbf{y})\right) \nu(\mathbf{x},\mathbf{y})$$

and (6') proves that $d_y(E_m, x) = 1 - \lim_{y \to x} \frac{y((x,y) \setminus E_m)}{y(x,y)} = 1$.

(ii)
$$\Rightarrow$$
 (iii). Define a function h by

$$h(x) = \begin{cases} v(0,x) & \text{if } x > 0 \\ -v(x,0) & \text{if } x < 0 \end{cases}, \quad h(0) = 0.$$

Then $h \in \mathcal{X}$. Since $v(I) = \lambda(h(I))$ for every open interval I, we have $v(B) = \lambda(h(B))$ for every Borel set B.

Let a = h(u), $u \in E_n = E$. Then

$$d_{\lambda}(h(E),a) = \lim_{b \to a} \frac{\lambda(h(E) \cap (a,b))}{\lambda(a,b)} =$$

$$= \lim_{v \to u} \frac{\lambda(h(E) \cap (h(u),h(v)))}{\lambda(h(u),h(v))} =$$

$$= \lim_{v \to u} \frac{\nu(E \cap (u,v))}{\nu(u,v)} = d_{\nu}(E,u) = 1.$$
(iii) \Rightarrow (i). We have $\bigcap_{j \in M} E_j = h^{-1}(\bigcap_{j \in M} h(E_j))$ for every finite set $M \subset N$. Apply Remark 1.

<u>Classes \mathbb{M}_1 and \mathbb{M}_5 </u>. The only measure which will be used throughout the rest of this paper is the Lebesgue measure λ . So we shall write simply \mathbb{M}_5 , d(E,x) instead of \mathbb{M}_5^{λ} , d_{λ}(E,x).

<u>Definition</u>. A function f is said to be in class $\mathfrak{M}_{\underline{i}}$ (i = 1,5) if every associated set of f is in $M_{\underline{i}}$. (The associated sets of f are the sets $E^{\mathbf{r}}(f) = \{\mathbf{x}: f(\mathbf{x}) < \mathbf{r}\}$ and $E_{\mathbf{r}}(f) = \{\mathbf{x}: f(\mathbf{x}) > \mathbf{r}\}$ where $\mathbf{r} \in \mathbb{R}$.)

<u>Remark 2</u>. Referring to Remark 1, we immediately derive the following facts.

(a)
$$\mathbb{M}_{5} \subset \mathbb{M}_{1}$$
.
(b) If $f \in \mathbb{M}_{1}$, $h \in \mathcal{X}$, then $f \circ h \in \mathbb{M}_{1}$.
(c) For a function f and $p, q \in \mathbb{R}$ put
 $\mathbb{E}_{p}^{q}(f) = \mathbb{E}_{p}(f) \cap \mathbb{E}^{q}(f) = \begin{cases} \{x: p < f(x) < q\} & \text{if } p < q \\ \emptyset & \text{if } p \geq q \end{cases}$
If $f \in \mathbb{M}_{5}$, then $\mathbb{E}_{p}^{q}(f) \in \mathbb{M}_{5}$ for all $p, q \in \mathbb{R}$. Conversely,
if $\{\mathbb{E}_{p}^{q}(f): p, q \text{ rational}\} \subset \mathbb{M}_{5}$, then $f \in \mathbb{M}_{5}$.

If $f \in M_1$, it is not immediately clear whether or not $E_p^q(f) \in M_1$ for all $p, q \in R$ (see Remark 1.c). To give an affirmative answer to this question, we need the following

Lemma 4. Suppose that A and B are in $M_1 \setminus \{\emptyset\}$, AUB = R. Then AAB $\in M_1 \setminus \{\emptyset\}$.

<u>Proof</u> (cf. [3, Lemma 3.2.1]). By [8, Lemma 7], no open interval $I \subseteq \mathbb{R}$ can be expressed as the union of two nonempty disjoint M_0 -sets. Therefore $A \cap B \neq \emptyset$. Let I be an open interval such that $A \cap B \cap \overline{I} \neq \emptyset$. Then $A \cap I$ and $B \cap I$ are uncountable. We show that $A \cap B \cap I$ is uncountable. If $I \subset A$ or $I \subset B$, then it is obvious. Suppose $I \setminus A \neq \emptyset$, $I \setminus B \neq \emptyset$. Since $R \setminus A \subset B$, $R \setminus A \in G_{\delta}$, $B \in F_{\sigma}$, there is a set $E \in F_{\sigma} \cap G_{\delta}$ such that $R \setminus A \subset E \subset B$. Using [8, Lemma 7] again, we obtain $\{E \cap I, I \setminus E\} \notin M_{0}$. Assume $E \cap I \notin M_{0}$, the other case being similar. Then there is an open interval $J \subset I$ with $E \cap \overline{J} \neq \emptyset$ and $E \cap J = \emptyset$. Since $B \subset B$, we have $B \cap \overline{J} \neq \emptyset$, so $B \cap J$ is uncountable. Furthermore, $J \subset R \setminus E \subset A$. Thus $A \cap B \cap I \supset A \cap B \cap J = B \cap J$ which implies the result.

<u>Corollary</u>. If $f \in \mathbb{M}_1$, then $E_p^q(f) \in \mathbb{M}_1$ for all $p, q \in \mathbb{R}$. (Proof: If p < q, then $E_p(f) \cup E^q(f) = \mathbb{R}$.)

<u>Definition</u>. A function f is said to be approximately continuous ($f \in A$) if for each $x \in R$ there exists a measurable set E_x such that $x \in E_x$, $d(E_x, x) = 1$ and $f/_{E_x}$ is continuous at x.

A measurable set E is said to be D-open provided that d(E,x) = 1 for every $x \in E$.

<u>Remark 3</u>. The collection D of all D-open sets forms a topology (see e.g. [1, p. 20]). A function f belongs to A if and only if every associated set of f belongs to D (see e.g. [1, Chap. II, Theorem 5.6]). Thus A is exactly the class of all D-continuous functions. Consequently, if f, g, h are in A, $h(x) \neq 0$ for all $x \in \mathbb{R}$, then f+g, f.g, $\frac{f}{h}$ are in A. The class \mathfrak{M}_1 of all Darboux Baire 1 functions does not behave well with respect to the algebraic operations. To see this, put $f(x) = \sin \frac{1}{x}$, $g(x) = -\sin \frac{1}{x}$ if $x \neq 0$, f(0) = g(0) = 1. Then f, g are in \mathfrak{M}_1 , but neither f+g nor f.g is. So, for any topology τ on R, \mathfrak{M}_1 cannot coincide with the class of all τ -continuous functions. Hence there is no topology τ on R for which \mathfrak{M}_3 , is the class of all τ -continuous functions.

<u>Remark 4</u>. Since $M_5 = F_{\sigma} \cap D$ and since $A \subset B_1$ (see e.g. [1, Chap. II, Theorem 5.5]), we conclude that $m_5 = A$. Zahorski proved that $m_1 = BB_1$ ([8, Theorem 1]).

Maximoff's theorem.

<u>Theorem 2</u> (Maximoff [5], Preiss [7]). For any function f, the following conditions are equivalent. (i) $f \in \mathbb{M}_{1}$.

(ii) There exists $h \in \mathcal{X}$ such that $f \circ h \in \mathbb{M}_5$.

<u>Proof.</u> (i) \Rightarrow (ii). Put $S = \{E_p^q(f): p, q \text{ rational}\}$. By the corollary of Lemma 4, $S \subset M_1$. The intersection of any collection of finitely many sets from S belongs to S. Applying Theorem 1, we construct a homeomorphism $g \in \mathcal{X}$ such that $\{g(E): E \in S\} \subset M_5$. Put $h = g^{-1}$.

Let p, q be rational numbers. Then

$$\mathbf{E}_{p}^{q}(\mathbf{f} \cdot \mathbf{h}) = \mathbf{h}^{-1}(\mathbf{E}_{p}^{q}(\mathbf{f})) = \mathbf{g}(\mathbf{E}_{p}^{q}(\mathbf{f})) \in \mathbb{M}_{5}.$$

Hence $f \cdot h \in \mathbb{M}_5$, by Remark 2.c.

(ii) \Rightarrow (i). This follows from the equality $f = (f \cdot h) \cdot h^{-1}$ and from Remark 2.a, b.

Zero sets and separation properties of M_1 and M_5 . First we state two well-known lemmas of Zahorski concerning M_5 -functions and their analogues for M_1 -functions.

<u>Theorem 3.1</u> (i = 1,5). If $E \in M_i$, then there exists an upper-semicontinuous function $f \in M_i$ such that

 $0 < f(x) \leq 1$ if $x \in E$, f(x) = 0 if $x \in R \setminus E$.

Theorem 3.5 is due to Zahorski ([8, Lemma 11]). Theorem 3.1 is due to Agronsky (see Bruckner [1, p. 28-31]).

<u>Proof of Theorem 3.1</u>. Let $E \in M_1$. By Theorem 1 (or by [2]), there exists $h \in \mathcal{X}$ such that $h(E) \in M_5$. Using Theorem 3.5, we find a function $g \in \mathbb{M}_5$ such that $0 < g(y) \leq 1$ if $y \in h(E)$, g(y) = 0 if $y \in R \setminus h(E)$. We put $f = g \circ h$.

<u>Theorem 4.1</u> (i = 1,5). Let H_1 and H_2 be nonempty disjoint sets such that $R \setminus H_1$ and $R \setminus H_2$ are in M_1 . Then there exists a function $f \in M_1$ such that

> f(x) = 0 if $x \in H_1$, f(x) = 1 if $x \in H_2$, 0 < f(x) < 1 if $x \in R \setminus (H_1 \cup H_2)$.

Theorem 4.5 is due to Zahorski ([8, Lemma 12]). We give the original proof here in order to show that the same method fails to work in \mathbb{M}_1 (see Remark 3):

Suppose that $\mathbb{R} \setminus \mathbb{H}_1$ and $\mathbb{R} \setminus \mathbb{H}_2$ are in \mathbb{M}_5 . By Theorem 3.5, there are functions $f_k \in \mathbb{M}_5$ (k = 1,2) such that $0 < f_k(x) \leq 1$ if $x \in \mathbb{R} \setminus \mathbb{H}_k$ and $f_k(x) = 0$ if $x \in \mathbb{H}_k$. It suffices to put $f = \frac{f_1}{f_1 + f_2}$. <u>Proof of Theorem 4.1</u>. Let $\{R \setminus H_1, R \setminus H_2\} \subset M_1$. Since $(R \setminus H_1) \cup (R \setminus H_2) = R$, we have $(R \setminus H_1) \cap (R \setminus H_2) \in M_1$, by Lemma 4. According to Theorem 1, there exists $h \in \mathcal{X}$ such that $\{R \setminus h(H_1), R \setminus h(H_2)\} \subset M_5$. Now take a function $g \in \mathbb{M}_5$ from Theorem 4.5 applied to $h(H_1)$, $h(H_2)$ and put $f = g \circ h$.

<u>Definition</u> (Laczkovich [3]). Let $i \in \{1, 5\}$.

A set H is said to be an M_i -zero set if there exists a function $f \in M_i$ such that $H = \{x: f(x) = 0\}$.

A set F is said to be M_i -closed if F coincides with the intersection of all M_i -zero sets which contain F.

A pair G_1 , G_2 of disjoint sets is said to be separated by \mathfrak{M}_i if there exists a function $f \in \mathfrak{M}_i$ such that $G_1 \subset \{x: f(x) = 0\}, \quad G_2 \subset \{x: f(x) = 1\}.$

<u>Remark 5</u>. Let $i \in \{1,5\}$. If $f \in \mathbb{M}_i$ and $r \in \mathbb{R}$, then $\mathbb{R} \setminus \{x: f(x) = r\} = \mathbb{E}_r(f) \cup \mathbb{E}^r(f) \in \mathbb{M}_i$. Combining this fact with Theorem 3.i and Theorem 4.i, we obtain the following characterizations:

(a) A set H is an \mathbb{M}_i -zero set if and only if $\mathbb{R} \setminus \mathbb{H} \in \mathbb{M}_i$. (b) A pair G_1 , G_2 of disjoint sets is separated by \mathbb{M}_i if and only if there is a pair of disjoint sets H_1 , H_2 such that $\mathbb{R} \setminus H_1$, $\mathbb{R} \setminus H_2$ are in \mathbb{M}_i and $G_1 \subset H_1$, $G_2 \subset H_2$.

<u>Remark 6</u>. A set F is \mathbb{T}_5 -closed if and only if F is D-closed (see [3, p. 408]). It remains to characterize all M_1 -closed sets.

<u>Definition</u>. The class of sets C is defined by $A \in C$ if and only if $A \cap I$ contains a nonempty perfect set whenever I is a closed interval intersecting A.

<u>Remark 7.</u> If $A \in C$, then obviously A is bilaterally c-dense-in-itself. If E is a Borel set, then E is in C if and only if E is bilaterally c-dense-in-itself (apply the fact that any uncountable Borel set contains a nonempty perfect set). Thus $M_1 = F_{\sigma} \cap C$.

Lemma 5. Any set $A \in C$ contains a set E of type F_{σ} such that $E \cap I$ is uncountable whenever I is a closed interval intersecting A (i.e., E is bilaterally c-dense in A). (Observe that $E \in M_{1*}$)

<u>Proof.</u> Let $\{I_n\}$ be a sequence of all closed intervals with rational endpoints. Put $M = \{n \in N: A \cap I_n \neq \emptyset\}$. If $n \in M$, then $A \cap I_n$ contains a nonempty perfect set P_n . Define $E = \bigcup_{n \in M} P_n$.

Lemma 6. A set F is \mathfrak{M}_1 -closed if and only if $R \setminus F \in \mathbb{C}$.

<u>Proof.</u> Let F be an \mathfrak{M}_1 -closed set, $F \neq R$. Choose a closed interval I intersecting $R \setminus F$, $x \in I \setminus F$. There is an \mathfrak{M}_1 -zero set H such that $F \subset H$ and $x \notin H$. We have $x \in I \setminus H \subset I \setminus F$. Since $R \setminus H \in \mathfrak{M}_1$ by Remark 5.a, there is a nonempty perfect set P such that $P \subset I \setminus H \subset I \setminus F$. Hence $R \setminus F \in C$. Suppose that $\mathbb{R} \setminus \mathbb{F} \in \mathbb{C}$, $\mathbb{F} \neq \mathbb{R}$. Choose $x \in \mathbb{R} \setminus \mathbb{F}$. By Lemma 5, $\mathbb{R} \setminus \mathbb{F}$ contains a set $\mathbb{G} \in \mathbb{F}_{\sigma}$ which is bilaterally c-dense in $\mathbb{R} \setminus \mathbb{F}$. Put $\mathbb{E} = \mathbb{G} \cup \{x\}$. Then $\mathbb{E} \in \mathbb{M}_1$. Applying Theorem 3.1, we find a function $\mathbb{f} \in \mathbb{M}_1$ such that $\mathbb{f}(y) > 0$ if $y \in \mathbb{E}$, $\mathbb{f}(y) = 0$ if $y \in \mathbb{R} \setminus \mathbb{E}$. So, $\mathbb{f}(x) \neq 0$ and \mathbb{f} vanishes on $\mathbb{F} \subset \mathbb{R} \setminus \mathbb{E}$. This proves that \mathbb{F} is \mathbb{M}_1 -closed.

Clearly, if F = R, then F is \mathfrak{M}_1 -closed and $R \setminus F = \emptyset \in \mathbb{C}$.

<u>Remark 8</u>. Let $i \in \{1,5\}$. If H is an M_i -closed set of type G_{δ} , then $R \setminus H \in M_i$ (see Lemma 6 and Remark 6). So, Theorem 4.1 implies that any pair of disjoint M_i -closed sets of type G_{δ} is separated by M_i . This fact with i = 1 is due to Laczkovich (see [3, Theorem 3.2.2]).

Extension theorems for M_5 and M_1 . This section is devoted to modifications of the classical Tietze's theorem.

<u>Theorem 5.5</u> (Petruska, Laczkovich [6, Theorem 3.2]). For any set H, the following conditions are equivalent. (1) $\lambda(H) = 0$.

(ii) For each $g \in B_1$ there exists $f \in \mathbb{M}_5$ such that $f/_H = g/_{H^*}$

<u>Theorem 6.5</u> (Lukeš [4, Theorem 4]). Let F be a D-closed set and let $g \in \beta_1$. Then the following conditions are equivalent.

(i) $g/_F$ is D-continuous on F. (ii) There exists a function $f \in \mathbb{M}_5$ such that $f/_F = g/_F$. <u>Remark 9</u>. Let g be a function, F a set, $p,q,r \in \mathbb{R}$. We introduce the following notations:

 $E^{\mathbf{r}}(g,F) = E^{\mathbf{r}}(g) \cup (\mathbb{R} \setminus F), \quad E_{\mathbf{r}}(g,F) = E_{\mathbf{r}}(g) \cup (\mathbb{R} \setminus F),$ $E^{\mathbf{q}}_{\mathbf{n}}(g,F) = E^{\mathbf{q}}_{\mathbf{n}}(g) \cup (\mathbb{R} \setminus F).$

Let F be D-closed. Then g'_F is D-continuous on F if and only if $E^{r}(g,F) \in D$ and $E_{r}(g,F) \in D$ for all $r \in \mathbb{R}$.

<u>Remark 10</u>. Suppose that $\lambda(H) = 0$ and $g \in \beta_1$. Then H is D-closed and $g/_H$ is D-continuous on H. Thus the implication (i) \Rightarrow (ii) of Theorem 5.5 is a corollary of Theorem 6.5.

<u>Theorem 6.1</u> Let F be an \mathbb{M}_1 -closed set (i.e., $\mathbb{R} \setminus F \in \mathbb{C}$), and let $g \in \mathbb{B}_1$. Then the following conditions are equivalent.

(i) $E^{r}(g,F) \in C$ and $E_{r}(g,F) \in C$ for all $r \in R$. (ii) There exists a function $f \in M_{1}$ such that $f/_{F} = g/_{F}$.

<u>Proof</u>. (i) \Rightarrow (ii). By Lemma 5, there is a set H such that $F \subset H$, $R \setminus H \in F_{\sigma}$ and $R \setminus H$ is bilaterally c-dense in $R \setminus F$ (hence $R \setminus H \in M_{1}$). It is easy to show that $E^{r}(g,H) \in M_{1}$ and $E_{r}(g,H) \in M_{1}$ for all $r \in R$. Hence $E_{p}^{q}(g,H) \in M_{1}$ for all $p,q \in R$, p < q (apply Lemma 4). If $p \ge q$, then $E_{p}^{q}(g,H) = R \setminus H \in M_{1}$.

Put $S = \{E_p^q(g,H): p,q \text{ rational}\}$. Obviously, S is closed under the formation of finite intersections. Using Theorem 1, we construct a homeomorphism $h \in \mathcal{X}$ such that $\{h(E): E \in S\} \subset M_5$. Since $R \setminus h(H) \in M_5$, h(H) is D-closed. Define $g^* = g \cdot h^{-1}$. Clearly, $g^* \in \mathcal{B}_1$. For all rational p, q we have $\mathbb{E}_p^q(g^*, h(H)) = h(\mathbb{E}_p^q(g, H)) \in \mathbb{M}_5$. Hence $g^*/_{h(H)}$ is D-continuous on h(H).

According to Theorem 6.5, there exists $f^* \in \mathbb{M}_5$ such that $f^*/_{h(H)} = g^*/_{h(H)}$. Put $f = f^* \cdot h$. Then $f \in \mathbb{M}_1$ and $f/_H = g/_H$, so a fortiori $f/_F = g/_F$.

(ii) \Rightarrow (i). This follows from the equalities $E^{r}(g,F) = E^{r}(g) \bigcup (R \setminus F) = E^{r}(f) \bigcup (R \setminus F),$ $E_{r}(g,F) = E_{r}(g) \bigcup (R \setminus F) = E_{r}(f) \bigcup (R \setminus F)$

and from the fact that $E^{r}(f)$, $E_{r}(f)$, $R \setminus F$ are in C.

<u>Theorem 5.1</u> For any set H, the following conditions are equivalent.

- (i) For any interval I, INH contains a nonempty perfect set.
- (ii) For each $g \in B_1$ there exists $f \in M_1$ such that $f_H = g_{H^*}$.

<u>Proof</u>. (i) \Rightarrow (ii). It is clear that $E^{r}(g,H) \in C$ and $E_{r}(g,H) \in C$ for any $g \in \mathfrak{B}_{1}$ and $r \in \mathbb{R}$. The result follows from Theorem 6.1.

not(i) \Rightarrow not(ii). Suppose that there is an interval I such that I \ H does not contain any nonempty perfect set. Choose $x \in H \cap I$. Put g(x) = 1, g(y) = 0 for all $y \neq x$. Obviously, $g \in B_1$. Assume that there exists $f \in M_1$ such that $f/_H = g/_H$. Then $E \equiv E_0(f) \in M_1$. Since $x \in E \cap I$, $E \cap I$ is uncountable. Therefore $(E \cap I) \setminus \{x\}$ contains some nonempty perfect set P. But $(E \cap I) \setminus \{x\} \subset I \setminus H$, hence $P \subset I \setminus H$ - a contradiction. I am thankful for the advice I have received from Professor Luděk Zajíček.

References

- [1] A. M. Bruckner, Differentiation of real functions, Springer, Berlin (1978).
- [2] W. Gorman, The homeomorphic transformation of c-sets into d-sets, Proc. Amer. Math. Soc. 17 (1966), 825-830.
- [3] M. Laczkovich, Separation properties of some subclasses of Baire 1 functions, Acta Math. Acad. Sci. Hung. 26 (1975), 405-412.
- [4] J. Lukeš, The Lusin-Menchoff property of fine topologies, Comment. Math. Univ. Carol. 18 (1977), 515-530.
- [5] I. Maximoff, Sur la transformation continue de fonctions, Bull. Soc. Phys. Math. Kazan (3) 12 (1940), 9-41.
- [6] G. Petruska and M. Laczkovich, Baire 1 functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hung. 25 (1974), 189-212.
- [7] D. Preiss, Maximoff's theorem, Real Analysis Exchange5 No. 1 (1979-80), 92-104.
- [8] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54.

Received August 5, 1983

250