
 SYMMETRIC REAL ANALYSIS: A SURVEY

 by Lee Larson

 Section 1: Introduction

 This survey concerns what we call» for lacK of a better name» "symmetric real

 analysis." Under the heading of symmetric real analysis» we include such topics as symmetric

 differentiation» symmetric continuity, symmetric functions» smooth functions and locally

 symmetric sets. In short, this name is a catch-all phrase for any definition or property

 which is intrinsically based upon a symmetric difference of some order.

 All of the examples of symmetric real analysis mentioned above originate in the

 study of trigonometric series. For this reason, they play an important role in the classical

 worKs of Riemann CRi3, Lebesgue CLeD» Fatou CFa3 and others. Since their inception» however»

 they have been used in such areas as approximation theory and harmonic analysis. This

 survey will not be concerned with these applications of symmetry. Rather» we will examine

 the behavior of functions satisfying certain symmetry properties which have proved useful,

 mostly in the study of the pointwise convergence of trigonometric series. Any reader

 interested in the application of these ideas to Fourier series may refer to Hobson CHo»

 Vol. 2» Ch. 83 and Zygmund CZy » Vol. 2» Ch. i i 3.

 For a function f:R-»R» we define the n'th symmetric difference of f at x to be

 (1) Anf<x»h) » iJi.Qt-D^ffa + (n - 2i)h).

 Of particular importance are the first and second symmetric differences of f ,

 ûf(x,h) « A*f(x,h) » f(x + h) - f(x - h)

 and

 ¿2f<x,h) . f (>; + h) + f(>: - h) - 2f(x>.

 A function f is symmetrically continuous at ;; if+

 limh_»0^f(x'^ =

 It is a -smooth (a > 0) iff limpļ_>QA^f(x»h)/ha - 0. In the special cases when a * 0 or
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 a * I? the function is usually said to be symmetric or smooth at x» respectively.

 The upper (lower) first symmetric derivative of f at x is defined to be

 f«>(x) * lim 5uph _#0ûf<x»h)/2h (f a)(x) = lim infh_+0Af(x,h)/2h).

 When these two are equal» finite or infinite» their common value is the first symmetric

 derivative of f at x, denoted fťl)(x>. It is easy to see that when f exists» then

 the ordinary derivative» f'(x)» also exists and the two are equal. The converse is not true

 as can be seen by considering f(x) = lx I.

 The second symmetric derivative of f is defined similarly as

 f<2>(x> » limh_>0Ä2f(x»h)/(2h)2.

 The second symmetric derivates of f are defined analogously.

 Various authors use different names for the first and second symmetric derivatives.

 The most common alternate names are the Schwarz derivative and the Riemann derivative.

 (Also rarely used are the Lebesgue derivative CWe3 and de la Vallée-Poisson derivative

 CWeD This confusion is further enhanced by the fact that there are two non-equivalent»

 common ways to extend the symmetric derivative to higher orders.

 The first way* usually called the Riemann derivative» is the most natural extension

 of the definitions given above. It is defined as

 f<n><x) - lłmh_>0ńnf(x,h)/(2h)n.

 The corresponding upper and lower derivates are defined as usual.

 The second method» due to de la Vallée-Poisson» is reminiscent of the Peano

 derivative and is usually called the n'th symmetric derivative. To define it» we say that

 f has a symmetric derivative of order n at x0 iff there exists a polynomial Pit) of degree
 n such that

 Cf(x0 + t) + <-i)nf(x0 - t)]/2 = Pit) + o(tn)

 as t-»0. This derivative is an if an/n! is the leading coefficient of P(t).

 The ambiguity created by having two definitions will cause little difficulty because
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 both definitions agree for n » 1 and n *2* and because we shall rarely need symmetric

 derivatives of orders higher than 2.

 If A is an arbitrary subset of R then its complement is denoted Ac. The inner

 (outer) measure of A is written IA fj ( IA l0). If A is measurable» then its measure is IA I.

 For any real valued function f defined on a subset of R» C(f) is the set of points

 at which f is continuous. D(f) is the set of points at which the ordinary derivative of

 ft denoted f'» exists and is finite. SC<f) is the set of points where f is symmetrically
 continuous. 5+f> 5~f» D+f and D~f are the Dini derivates of f.

 The remaining sections are concerned with the following topics:

 Section 2 deals with the relationship between ordinary continuity and
 symmetric continuity.

 Section 3 is concerned with the relationship between ordinary and
 symmetric differentiability.

 Section 4 examines the relationship between ordinary continuity and
 symmetric differentiation.

 Section 5 presents symmetric analogues to the standard theorems of
 ordinary differentiation such as monotonicity theorems.

 Section 6 deals with generalizations of the symmetric derivative such as

 approximate» Lp and qualitative versions.

 Section ? is concerned with symmetric» smooth and a-smooth functions.

 Finally» we would liKe to draw your attention to the bibliography, which we believe

 is the most complete ever assembled on this subject.
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 Stetion 2: Symmetric Continuity

 The study of symmetric continuity by itself, and not in the context of symmetric

 differentiability» apparently began in 1935» when F. Hausdorff CHa3 asked whether the set

 of points where a symmetrically continuous function is discontinuous can be of the second

 category. This question was answered in the negative two years later by H. Fried CFr3»

 who proved the following theorem.

 THEOREM 2.1. If SC<f) is residual in an interval I» then C(f> is residual in I.

 Of course» the following corollary is immediate from this theorem.

 COROLLARY 2.2. If f is symmetrically continuous everywhere on an interval I» then C(f)

 is residual in I.

 It is known that» in a sense» these are the strongest category statements which

 can be made about the relationship between C(f) and SC(f). P. Erdõs CEr3 has shown that

 if the continuum hypothesis is assumed» then there exists an additive subgroup G of R

 such that iGl « 0 and G fi I is a second category set for every interval, I. If f is the

 characteristic function of G» then f is symmetrically continuous at each point of G» but
 continuous nowhere.

 A comparison in the measure sense between C(f) and the set of points where f

 is symmetrically continuous is supplied by the following theorem.

 THEOREM 2.3. If f is symmetrically continuous everywhere on an interval I» then f is

 continuous almost everywhere on I.

 This theorem was first proved in i960 for measurable functions by E. M. Stein and

 A. Zygmund CSZ» Lemma 93. It was later extended by D. Preiss CPr] to the general case

 given above. In the same paper, Preiss also gives an example of a symmetrically continuous
 function f such that C(f)c is uncountable.

 C. Belna [Be 3 recently proved the following stronger version of Theorem 2.3.

 THEOREM 2.4. If f is an arbitrary function» then

 isc<f>nc<f>cij = o.

 As Belna points out» if we assume the continuum hypothesis, then this is the
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 strongest measure theoretic statement concerning the relationship between SC(f) and C(f)

 which can be made. P. Erdös CEr3 has shown the existence of an additive subgroup G of

 R that is of the first category and has full outer measure. If f is the characteristic function

 of such a group» then

 i<sc(f)nc(f)c)nn0= m

 for every interval I.

 It is unknown whether symmetrically continuous functions are in any Baire class.
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 Section 3: Symmetric and Ordinary Differentiability

 Any discussion of the relationship between symmetric and ordinary differentiability

 must begin with the following theorem which was proved in 192? by A. Khintchine CKhL

 THBOREM 3.i. If f is a measurable function, then f has a finite ordinary derivative almost

 everywhere on the set {x: f ťl)(x) < «o).

 This theorem has several immediate consequences.

 COROLLARY 3.2. If f is a measurable function which is symmetrically differentiable
 everywhere» then D(f) has full measure.

 Using Theorem 2.1» we have the following.

 COROLLARY 3.3. If f is an arbitrary function such that f<4) exists and is finite everywhere»

 then f is measurable and D(f) has full measure.

 In 1973 N. Kundu CKu43 pointed out that Theorem 3. i almost immediately implies

 a Denjoy-Young-SaKs theorem for symmetric derivates. (See also C. Ezzell and J. Nyman
 CNM3.)

 COROLLARY 3.4. If f is measurable» then the symmetric derivates of f must satisfy one

 of the following two conditions at almost every point:

 (i) f <ł)(x> « +«» and f <!)<x) » or»

 <ii) x € D(f) and consequently, f a)(x) = £(1>(x) « f < 1 ><x) is finite.

 Various refinements to Theorem 3.1 have appeared in recent years» the most important

 of which was contributed by J. Uher CUh3 in 1982. He defines f to be upper (lower)
 symmetrically semicontinuous at x iff

 lim suph_+0+Af(x,h) < O (lim infh_>0+Af(x»h) > 0).

 If f is either upper or lower symmetrically semicontinuous at x» then it is just called
 symmetrically semicontinuous at x.

 THEOREM 3.5. (Uher CUhD) For an arbitrary function f» define
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 A = ix: f <U(x) < «or £ > -«J»

 and

 B « ix: f is not symmetrically semicontinuous at x>.

 Then f exists almost everywhere on A - B.

 This theorem immediately implies Theorem 3.Í. It also has the following two

 important corollaries.

 COROLLARY 3.6. If a function f is symmetrically differentiable almost everywhere on a

 measurable set Er then IE - D(f) I = 0.

 COROLLARY 3.7. If f is symmetrically differentiable almost everywhere (finite or infinite)»

 then f is measurable.

 Another direction one might take in attempting to improve upon Theorem 3.1 is to

 strengthen the "almost everywhere" part of the theorem. One such change would be to prove

 a category analogue. But» the exceptional set of Theorem 3.1» although of measure zero»

 need not be small in the category sense. To see this» let Q be an additive subgroup of

 R which is of the second category in every interval. (For the existence of such an object»

 see P. Erdôs CErJ.) As in Section 2» let f be the characteristic function of G. Then fťl)(x)

 = 0 for »ach x € G» but f' exists nowhere. But» the situation can get even worse than

 this. It is pointed out by Belna» Evans and HumKe CBEH1J» that given any bounded» second

 category set Z of measure zero» there exists a function f with bounded symmetric derivates

 such that f exists nowhere on Z. (In fact» f may be chosen to be LipschitzJ From these

 examples» it is clear that further conditions must be placed upon f in order to prove a

 category analogue of Theorem 3.1. The following theorem was proved by Belna» Evans and

 HumKe CBEH13.

 THEOREM 3.8. If f is a function such that C(f) is dense» then for all but a o-porous. set

 of points» both of the following inequalities hold:

 (i) f = min {g+f(x)»D"f<x>}»

 (ii) f a)(x) = max {5+f(x)»5"f(x>>.
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 Note that since orporous sets are both of measure zero and of the -first category,

 the conclusion of this theorem is stronger than that of Theorem 3.i

 COROLLARY 3.9. (CBEHH) If C(f) is dense» then f exists at all but a o-porous set of

 points where f*** exists.

 Using Corollary 3.9 along with Corollary 3.2» we arrive at yet another corollary.

 COROLLARY 3.10. (EBEHÍ3) If f is symmetrically differentiable on R (finite or infinite)»

 then f*1* exists for all but a o-porous set of points.

 Corollary 3.10 was originally proved with the additional assumption that f is

 measurable. However» according to Corollary 3.7« this measurability assumption is redundant.

 It is not known whether the above results are sharp. In relation to this» S. N.

 Mukhopadhyay CHu33 constructed a continuous function with a finite symmetric derivative

 everywhere» but lacking an ordinary derivative on a countable dense set. J. F oran CFo23

 constructed a continuous» finitely symmetrically differentiable function which is not

 differentiable on a nonempty perfect set.

 Theorem 3. i was partially extended to higher order derivatives by J. Marcinkiewicz

 and A. Zygmund CMZ3.

 THEOREM 3.10. If f is a measurable function such that f<n> exists (in the de la

 Vallée-Poisson sense) everywhere on a set E» then f has an n'th Peano derivative a.e.

 in E.

 For more information about the relationship between n'th symmetric derivatives and

 Peano derivatives» see the survey by M. Evans and C. Weil CEWD or the two papers» CAsU

 and CAs23, by J. M. Ash.
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 Section 4: Continuity and Symmetric Differentiability

 As we shall see» the relationship between symmetric differentiability and continuity

 is far better understood than the relationship between symmetric and ordinary

 differentiability. From Theorem 3.1» we arrive at the following.

 THEOREM 4.1. If f is a measurable function, then f is continuous almost everywhere on

 the set

 {x: f > ~a> or f<1>(x) <«>.

 COROLLARY 4.2. If f is symmetrically differentiable (finite or infinite), then C(f> is residual

 and of full measure.

 Z. Charzynski CCh3 proved a stronger result in the case when f<*> is finite.

 THEOREM 4.3. If f is a function such that f<** exists everywhere and is finite, then C(f)c

 has no subset which is dense in itself.

 Any set which has the property that no subset of it is dense in itself has been

 called a "clairsemé" set EGo3 or a "scattered" set CHa23. It is known that such sets ar»

 countable and cannot be dense in any perfect set.

 A companion theorem was proved rigM on the heels of this one by E. Szpilrajn
 [SzL

 THEOREM 4.4. If A is any set which has no dense in itself subset, then there exists

 a function f such that f*1* exists everywhere and

 A - C(f)c.

 Thus, C(f) is completely characterized for finitely symmetrically differentiable

 functions. No such characterization is known, if we allow f to assume infinite values.

 A related topic which is best discussed at this point is that of locally symmetric

 sets. A set S is said to be locally symmetric iff its characteristic function has symmetric

 derivative 0 everywhere. It follows easily from Theorem 4.3 that every locally symmetric

 set has countable closure. (See R. Davies CDa3 or M. Foran CFoi].)

 It is well-known that a continuous function need not be differentiable anywhere.
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 That the same is true of the symmetric derivative was shown by L. Filipczak CFi43, C F i5 □ .

 In fact» the following theorems were proved by F. Filipczak C Fi3 3. (See also CFÍ13 and

 CFÍ2L)

 THEOREM 4.5. Let f be an approximately continuous function and S be the set of all points

 where f<** exists (finite or infinite). Then

 Sc = A U B»

 where A is a Gg set and B is a Gga set of measure zero. Furthermore» the same decomposition
 holds if S is the set where fťl) is finite.

 THEOREM 4.6. If A is a Gg set and B is a Ggff set of measure zero» then there exists
 a bounded continuous function f such that (A U B)c = D(f) and f(1* exists nowhere on

 AUB.

 We end this section with the following theorem of P. KostyrKo CKoD.

 THEOREM 4.7. Let C be the Banach space of all continuous functions on C0»i3 with the

 L norm and let M be the set of all f € C such that f<ł)(x) = -« and f (1><x) = « for
 <D -

 each X € (0»i). Then M is residual in C.
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 Section 5: Symmetrie Analogues to Ordinary Differentiation Theorems

 Much of the research on symmetric differentiation has been concerned with extending

 the theorems of ordinary differentiation to the more general case of the symmetric

 derivative. There are two obstacles which make this task more difficult than it seems

 at first glance: Direct one-to-one extensions of ordinary differentiation theorems are

 usually not true; and» the symmetric derivative is much harder to handle than the ordinary

 derivative. Nevertheless» much progress has been made, and it has been shown that, when

 certain natural conditions are satisfied, monotonicity theorems, mean value theorems, Baire

 classifications and ZahorsKi properties can all be shown to hold for the symmetric derivative.

 One of the first theorems of this type was proved by A. Khintchine CKh3 in 1928.

 He showed that a continuous function with a nonnegative symmetric derivative is

 nondecreasing. There was a lapse of almost forty years before this was improved upon.

 THEOREM 5.i. (S. Mukhopadhyay CMuH) If f is a function satisfying

 (i) lim supj^jj.fťa) < f(x) < lim sup4_łX+f(a) for all x,

 (ii) f > 0 a.e.» and

 (iii) f except for a countable set»

 then f is nondecreasing.

 (Actually, MuKhopadhyay's proof has a slight oversight in it, which was elegantly

 corrected by H. W. Pu and H. H. Pu CPP33.)

 The following improvement of Theorem 5.1 was proved by N. Kundu CKuóD.

 THEOREM 5.2. Let f satisfy conditions (i) and (iii) of Theorem 5.1 and replace condition

 (ii) by the following:

 (ii')fa>>0a.e..

 Then f is nondecreasing.

 By weakening condition (i) and strengthening condition (iii), M. Evans CEv33 proved

 the following. (See also C. Weil [We iL)

 THEOREM 5.3 If f is a measurable function satisfying
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 (i) lim in^a_>xf(a) < f (x) < lim supa_řXf(a>

 (ii) f > O i.e., and

 (iii) fił) > -«everywhere»

 ■then f is nondecreasing.

 It should be noted that requiring the function to be measurable in Theorem 5.3

 is not a new restriction, because measurability is implicit in condition (i) of the previous

 theorems. In fact, condition <i) implies that f is actually upper semicontinuous off of a

 countable set.

 Another strengthening of Theorem 5.1 was given in 1973 by H. W. Pu and H. H.

 Pu CPP33, who proved:

 THEOREM 5.4. If f is a function satisfying (i) of theorem 5.1 such that f(E) contains no

 non-degenerate interval, where

 E » ix: f(i>M < 0 >,

 then f is nondecreasing.

 They went on to show that Theorem 5.4 implies Theorem 5.1. (For other results

 similar to Theorem 5.4, see N. Kundu CKul3.)

 Another direction was taKen by L. Larson CLal3, who proved the following. (Although

 it was not stated with quite this generality.)

 THEOREM 5.5. If f is a measurable function such that fO) > o a. e. and f > _<» everywhere,

 then f Iq(^) is nondecreasing.

 This theorem may be proved through a clever covering argument developed by B.
 Thomson CTh3.

 Theorem 5.5 has the following interesting corollary.

 COROLLARY 5.6. (L. Larson CLa33) If f is a measurable, symmetrically differentiable function

 (allowing infinite values) such that f > 0 a.e. and f<ł) has the Darboux property, then

 f is nondecreasing.

 It is easy to see that no direct analogues for the ordinary mean value theorem
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 or the Darboux property hold with the symmetric derivative. A function as simple as f(x)

 = ix i provides counterexamples for both. But» the monotonicity theorems mentioned above

 do allow some generalized versions« which reduce to the usual theorems in the case of

 ordinary differentiability. The first of these so-called "quasi-mean value" theorems was

 apparently due to C. Aull CAI 3» who used Khintchine's monotonicity theorem to prove the

 following.

 THEOREM 5.7. If f is a continuous function such that f*1* exists and is finite everywhere

 and a < b» then there are numbers c»d € (a»b) such that

 fa>(c) < Cf(b) - f(a)3/(b - a) < f a>(d).

 It is easy to see that this reduces to the usual mean value theorem if f<l>has

 the Darboux property.

 Using Theorem 5.2» N. Kundu CKu63 proved

 THEOREM 5.8. Let f be a function satisfying

 (i) lim infÄ->x+f(a) < f(x) < lim supa_łX+f(a) everywhere»

 (ii) lim infa _f(a) » f(x) everywhere» and

 (iii) f and f are both finite off of a countable set.

 If a < b» then there are two sets of positive measure» C and 0» contained in <a»b> such

 that

 (i) ? ťl)(c) < Cf(b) - f(a)3/(b - a) < f <ł)(d)

 for all c € C and d € D.

 Another example» using Theorem 5.5» was proved in CLaiD.

 THEOREM 5.9. Let f be a such that f*ł) exists and is finite everywhere. If a»b € C(f)

 such that a < b> then there are two G§ sets of positive measure» C and D, such that
 (1) holds for every c € C and d € D.

 An application of Theorem 5.9 is the following quasi-Darboux property for symmetric

 derivatives CLalL
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 COROLLARY S. 10. If f is function such thai: fcl> exists and is finite everywhere» then

 for all x € R»

 lim infh-ł0Cf<ł>(x + h)+fa>(x -h>3/2 < fa><x> <

 < lim sup^^Cí^te + h) + f<*><x - h) 3/2.

 For other quasi-mean value theorems and applications of these theorems see CA13,

 CEv33, CKul3, [Lai 3 and CMul3.

 Another area where progress has been made recently is in the Baire classification

 of symmetric derivatives. The following was proved by L. Larson CLa'3.

 THEOREM 5.11. If f is a function such that fił> exists everywhere (finite or infinite)»

 then f(1) is in Baire class one.

 F. H. Filipczak CFÍ33, proved the existence of a measurable function f such that

 f and f are both nonmeasurable and the set whe* = f*1* exists is not Borei measurable.

 By putting restrictions on f» however, he was able to prove the following theorem.

 THEOREM 5.12. ÍCFÍ33) If f is an approximately continuous function, then f*** and f

 are in Baire class two.

 Various other analogous properties have been explored. For example; Analogues to

 Dini's theorem have been proved CKul3, CPP23; an analogue to the Denjoy-Young-Saks theorem

 has been proved CEN3, CKu43; the Zahorski properties have been extended CKu73, CLa33.

 We end this section by noting a few results which have been proved about the second

 symmetric derivative.

 It has long been Known that if f is a continuous function such that f<2> > 0

 everywhere, then f is convex CZy, Vol. 1, p. 223. C. Weil CW13 proved the following
 generalization to this theorem in 1976.

 THEOREM 5.13. If f is a function in Baire class one with the Darboux property such that

 f <2> > o everywhere, then f is convex.

 A recent variation on this thoarem is that if f is measurable and 0 < f(2> <

 everywhere, then f is convex CLa43. It is not known whether measurability can be substituted

 for the Eaire class one condition in Theorem 5.13.
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 Section 6: Generalized Symmetric Derivatives

 (A) Approximate symmetric derivatives. We denote the n'th approximate symmetric

 derivative of a function f by fļ£* and the corresponding derivate« by and ?j[p . For
 the definitions# see H. H. Pu and H. W, Pu [PP53.

 When one considers what is known about the ordinary symmetric derivative» it is

 surprising that so little is known about the approximate symmetric derivative. In the last

 ten years» however# some progress has been made. We begin by mentioning the following

 theorem, which we hope will prove useful in future investigations.

 THEOREM 6.1, (L. Larson Clai3»tLa43) If f is a measurable function» then and fit!

 are both in Baire class three. Further, if fļļj exists everywhere (finite or infinite)» then

 fļp is in Baire class one.

 Several authors have presented monotonicity theorems for the approximate symmetric

 derivative. Unfortunately» some of the proofs appear flawed CKb3»CHu63,CKu53. (See also

 CMR3.) The one we will state is due to H.H. Pu and H.W. Pu CPP53» and depends upon

 the following definitions.

 For an arbitrary function f» define

 E(f) = {>:: f assumes an approximate maximum at x>,

 Ea(f) = E(f>nrłU>»

 F » {x; f^p(x) £ 0>, and

 K(f) » {a: Ea<f) is uncountable).

 THEOREM 6.2. If f is a Baire one function satisfying

 (i) f(F) U K contains no non-degenerate interval» and

 (ii) app lim stph_^Q+f(x - h) < f(x) < app lim suph_,Q+f(x + h) for every x»

 then f is nondecreasing.

 Using this theorem» they were able to show that the extreme approximate derivates
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 and tf(x) - f(y)3/(x - y> have the same bounds in every interval when f is approximately

 continuous and satisfies the -following condition (which they call Tg):

 If T(f»c»a) « ix: f(x) » a - ex)» then there is a dense set R'cR such
 that whenever c € R

 Ka: T(f»c»a) is uncountable} I » 0.

 They additionally showed that if either of the two approximate symmetric derivates of

 this f is continuous at a point» then fy exists a.e. in some neighborhood of that point.

 Viewed in conjunction with Theorem 6.1 , this immediately implies the following theorem.

 THEOREM 6.3. If f is approximately continuouSf approximately symmetrically differentiable

 and satisfies condition Tg, then i' exists a.e. on a dense open set.

 It appears that no full approximate analogue to Khintchine's theorem (Section 3)

 has yet been proved. A proof presented by G. Russo and S. Valenti CRV3 seems to be

 incorrect.

 Several authors have investigated the relationship between the Dini derivates of

 a continuous function and the extreme approximate symmetric derivates. (See N. Kundu CKu33

 and H.H. Pu and H. W. Pu CPP43.)

 In relation to this» M. Evans CEvi3 has shown that the set of functions which have

 both approximate symmetric derivates infinite at every point is residual in the space of

 continuous functions.

 (B) Lp-symmetric Differentiation. The Lp-sy m metric derivative was introduced by
 H. Weiss CWe3. In that paper, a partial analogue to Khintchine's theorem (Section 3) is

 proved.

 THEOREM ¿.4. If f is a locally Lp function (p > i) which has an n'th Lp-symmetric derivative

 at each point of a set E» then f has an ordinary Lp-derivative a.e. in E.

 M. Evans CEv23 proved the following theorem.

 THEOREM 6.5. If f is an aproximately continuous function which has a nonnegative

 Lp-symmetric derivative (p > i) everywhere» then f is nondecreasing.

 (C) Qualitative symmetric differentiation. M. Evans and L. Larson CELI 3 have

 extensively studied qualitative symmetric differentiation. They established qualitative
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 analogues to most of the theorems in Sections 2-5.

 0) Parametric differentiation. In recent years there has been some investigation

 into the more general derivative which results when the variable h in the symmetric

 difference quotient is replaced by a more general function of h> called a parameter function.

 The resultant derivative» which is defined in the natural way» is called a parametric

 derivative. We mention these derivatives here because» so far» all of the results and proofs

 concerning them closely parallel well-known results and proofs for the symmetric derivative.

 M. Evans and P. Humte CEHU have proved monotonicity theorems for such derivatives.

 I. Larson CLa43 has proved that if the parameter functions satisfy rather general conditions»

 then the approximate parametric derivative of a measurable function is in Baire class one.

 A particular example of this type derivative is the k-pseudo-symmetric derivative introduced

 by S. Valenti CVai3»CVa23»CRV3»CGiD. (See the comments following Theorem 6.3.)
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 Sfiction 7: Symmetric and Smooth Functions

 The idea of a smooth function was introduced by Riemann CRi3 in his classical study

 of trigonometric series. Since then, it has found wide application in areas such as

 approximation theory and partial differential equations. (For example, see EC23 or CSZ23.)

 Because of this usefulness, symmetric and smooth functions have been widely studied,

 and are probably the best understood of all the function classes we have considered here.

 In this section we will have one standing hypothesis: Unless specifically mentioned

 otherwise, all symmetric and smooth functions are assumed to be measurable. The reason

 for this is that any solution of the functional equation f(x) + f(y) * f(x + y) is a-smooth

 for all a. and it is well-known that this equation has nonmeasurable solutions.

 We start with the following theorem.

 THEOREM 7.1. (L. Larson CLa43) If f is an approximately symmetric function, then f is
 in Baire class one.

 (For related results, see C. Neugebauer CNei3. CNe23. where it is proved that

 symmetric functions and Lp-symmetric functions (p > i) are in Baire class one.)

 Theorem 7. i implies that C(f) is residual in the domain of f. This is the best result

 possible because, according to Zahorski CZaJ. there exists a bounded approximately

 continuous function which is discontinuous almost everywhere.. E. Stein and A. Zygmund

 CSZ23 have shown that this is also the case when f is Lp-symmetric. p < «. However,
 in the case p » a» the result is different.

 THEOREM 7.2. (Neuqebauer CNei3) If f is a symmetric function, then C(f) has full measure.

 Of course, the existence of continuous nowhere differentiate functions shows that

 a symmetric function need not be differentiable anywhere. However, the following two
 theorems have been proved concerning the extreme dérivâtes of such a function.

 THEOREM 7.3. (C. Neugebauer [Nei 3) If f is a symmetric function, then

 5+f(x) » 5~f(x) and g+f(x> » ¡Tf(x»

 is a residual set.

 THEOREM 7.4. (H. H. Pu. H. W. Pu CPPi]) If f is a symmetric function, then
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 ix-- 5¡¿<x) < 5+f(xi>

 and

 <x: S^(x) < Ffíx»

 are both -first category sets.

 If f is smooth» it has long been known that D(-f) must be uncountable in every interval.

 (A. Zygmund attributes this result to Z. Zalcwasser CZy23# but gives no reference.) However,

 D(f) may have measure zero CSZ13. (C. Neugebauer CNe23 has extended these results to

 the case of Lp- smoothness.) But» if f is a-smooth for any a > i» then D(f) has full measure.

 This is a consequence of the following theorem.

 THEOREM 7.5. (E. Stein, A. Zygmund CSZÍ3) Suppose that f is defined on an interval I

 and that at each point of a set E c I we have

 ¿2f<x»h) « Oth V(h)),

 where V(h) is a function defined in a right-hand neighborhood of h » 0» decreases

 monotonically to 0 and V^(h)/h is integrable near zero. Then D(f) exists a.e. in E.

 A smooth function behaves rather strangely on the set where it is differentiate.

 It was shown by A. Zygmund CZy23 that if f is continuous and smooth» then f has the

 Darboux property when restricted to D(f>. If f is not continuous» this need not hold CNe23.

 But» if D(f) is thin in the sense that ID(f) nil < III for every interval I» then it is

 once again true CNe23.

 As for the continuity of smooth functions» C. Neugebauer CNe2D showed in 1964

 that if f is Lp-smooth (p > i)» then C(f) contains an open dense set. Recently» M. Evans

 and P. HumKe CEH43 constructed an Lp smooth (p > 1) function with an uncountable number
 of points at which it is approximately discontinuous. M. Evans and L. Larson CEL23 have

 characterized the set of points of discontinuity for any smooth function as exactly those

 sets which have no subset which is dense in itself (clairséme). Using this result» they

 were able to show that if f is smooth and 5+f<x) > 0 everywhere» then f is nondecreasing

 CEL3L This monotonicity theorem is false for symmetric functions» and no such

 characterization of Cif) is known for them.
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