Jan Marík, Department of Mathematics, Michigan State University, East Lansing. Michigan 48824

MULTIPLIERS OF VARIOUS CLASSES OF DERIVATIVES

(Lecture presented at Real Analysis Symposium in Waterloo.)

Let f be a function ($=$ mapping to $(-\infty, \infty)$ on the interval $J=[0,1]$ and let Φ be a system of functions on J. We say that f is a multiplier of Φ if and only if $f \varphi \in \Phi$ for each $\varphi \in \Phi . \quad$ The system of all multipliers of Φ will be denoted by $M(\Phi)$. If, e.g., Φ is closed under multiplication and if the function $\varphi(x)=1(x \in J)$ belongs to Φ, then, obviously, $M(\Phi)=\Phi$. It is well known, however, that derivatives behave badly with respect to multiplication. It is therefore of some interest to investigate the system $M(\Phi)$, if Φ is a "reasonable" class of derivatives.

Let $D\left[C, \Delta, C_{a p}\right]$ be the system of all finite derivatives [continuous functions, differentiable f., approximately continuous f.] on J. For each system Φ of functions on J let $\Phi^{+}[b \Phi]$ be the system of all nonnegative [bounded] elements of Φ.
R.J. Fleissner characterized in [1] and [2] the system $M(D)$. For this purpose he introduced the notion of a function of distant bounded variation. This notion can be defined in various ways. It seems that the simplest way is the following: Let f be a function on J. We say that f is of distant bounded variation if and only if

$$
\operatorname{Iim} \sup _{h \rightarrow 0^{+}} \operatorname{var}(x+h, x+2 h, f)<\infty \text { for each } x \in[0,1)
$$

and

$$
\lim \sup _{h \rightarrow 0^{+}} \operatorname{var}(x-2 h, x-h, f)<\dot{\infty} \text { for each } x \in(0,1]
$$

The first of these two conditions is, of course, equivalent to $\lim \sup _{n \rightarrow \infty} \operatorname{var}\left(x+\frac{1}{n}, x+\frac{2}{n}, f\right)<\infty$ for each $x \in[0,1)$
where n is an integer; similarly for the second.
If we denote by Y the system of all functions of distant bounded variation, we may express Fleissner's result by

$$
M(D)=D \cap Y
$$

Fleissner posed in [1] the problem of characterizing the system $M(S D)$, where $S D$ is the class of all summable (Lebesgue integrable) derivatives. This problem has been solved in [3]. Here I will formulate the corresponding result in a slightly different way. If f is a function on anterval [a,b] and if n is a natural number, let $v(n, a, b, f)$ be the least upper bound of all sums $\sum_{k=1}^{n}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|$, where $a \leqq x_{1}<y_{1} \leqq x_{2}<y_{2} \leqq \ldots \leqq$ $x_{n}<y_{n} \leqq b$. Let V be the system of all functions f on J such that
(1) $\lim \sup _{n \rightarrow \infty} v\left(n, x+\frac{1}{n}, x+\frac{2}{n}, f\right)<\infty$ for each $x \in[0,1)$ and
(2) $\lim \sup _{n \rightarrow \infty} v\left(n, x-\frac{2}{n}, x-\frac{1}{n}, f\right)<\infty$ for each $x \in(0,1]$.

It is obvious that $Y \subset V$. A solution of the mentioned problem is now given by the relation

$$
M(S D)=D \cap V .
$$

Another "natural" class of derivatives is D^{+}. The vector space E generated by it is, obviously, the system of all functions $f \in D$ such that $|f| \leqq g$ for some $g \in D$ (so that, e.g., $b D \subset E)$. To describe $M(E)$ we need the following notation. If f is a bounded nonnegative function on an interval $[a, b]$ and if r is a natural number, we set

$$
A(r, a, b, f)=r^{-1} \sum_{k=1}^{r} \sup f\left(\left[x_{k-1}, x_{k}\right]\right)
$$

where $x_{k}=a+k(b-a) / r$. Then $M(E)$ is the system of all bounded functions f on J such that

$$
\lim _{r, n \rightarrow \infty} A\left(r, x, x+\frac{1}{n^{\prime}}|f-f(x)|\right)=0 \quad \text { for each } x \in[0,1)
$$

and

$$
\lim _{r, n \rightarrow \infty} A\left(x, x-\frac{1}{n}, x,|f-f(x)|\right)=0 \text { for each } x \in(0,1] \text {. }
$$

It is not difficult to prove that $M\left(D^{+}\right)=(M(E))^{+}$and that

$$
\begin{equation*}
M(D) \subset M(S D) \subset M(E) \subset b C_{a p} \tag{3}
\end{equation*}
$$

with proper inclusions. Further we have $M(D) \backslash C \neq \varnothing$. $\Delta \backslash M(D) \neq \varnothing, \quad C \backslash M(S D) \neq \varnothing$. Some elements of $C \cap M(S D)$ are nowhere differentiable. These facts show that the role of
continuity or differentiability in the investigation of multipliers is smaller than we might expect. We have, however, $\triangle \subset M(S D)$ and $C \subset M(E)$.

Let $f \in b C_{a p}$ and let T be the set of all points of discontinuity of f. If $f \in M(D)$, then T is finite. If $f \in M$ (SD), then T is countable and each nonempty subset of T has an isolated point; in particular, T is nowhere dense. If $f \in M(E)$, then T has measure zero (so that f is Riemann integrable). We see that the set of points of discontinuity of a function belonging to some of the first three systems in (3) is, in some sense, small. There is, however, a function $f \in M\left(D^{+}\right)$such that $T \cap I$ is uncountable for each interval $I \in J$.

Let Z be the system of all continuous functions of bounded variation on J. since $Z \in M(D)$ and $C \backslash M(S D) \neq \varnothing$, we see that neither of the first two systems in (3) is closed under uniform convergence. It can be shown, however, that the third is. Moreover, if $f \in M(E)$ and if φ is a function continuous on $(-\infty, \infty)$, then the composite function $\varphi \circ f$ belongs again to $M(E)$.

I would like to illustrate the situation by a few examples.
It is easy to construct a function $f \in b C_{a p}$ such that
$f(0)=0, f$ is continuous on $(0,1]$ and that $f\left(2^{-n}\right)=1$, $\operatorname{var}\left(2^{-n}, 2^{-n+1}, f\right)=2$ for $n=1,2, \ldots$ Then $f \in M(D) \backslash C$.

It is also easy to construct a function $f \in C$ for which (1) does not hold; then, of course, $f \in C \backslash M(S D)$.

Let S be the Cantor set. Let f be a function on J with the following properties: $f=0$ on s; if $I=(a, b)$
is a component of $J \backslash S, b-a=3^{-n}$, let $f=0$ on $(a, \alpha] U$ $[\beta, b), f(c)=1$ and let f be linear on $[\alpha, c]$ and on $[c, \beta]$, where $c=(a+b) / 2=(\alpha+\beta) / 2, \beta-\alpha=9^{-n}$. Then $f \in M\left(D^{+}\right)$and f is discontinuous at each point of s.

Let $1>a_{1}>a_{2}>\ldots, a_{n} \rightarrow 0, a_{n} / a_{n+1} \rightarrow 1$. There is a function $f \in C_{a p}$ such that $f(0)=0, f$ is continuous on $(0,1]$, $f\left(a_{n}\right)=2$ for each n and $0 \leqq £ \leqq 2$ on J. It is easy to construct a function $g \in D^{+}$such that $g(0)=1$ and that $f g \geqq g$ on (0,1]. (Such a g may be continuous on $(0,1]$.) Since $(f g)(0)=0$, we cannot have fg $\in D$. We see that the function f belongs to $b c_{a p}$ and is Riemann integrable, but does not belong to $M(E)$.

Proofs of the above results will appear in Real Analysis Exchange.

REFERENCES

[1] R.J. Fleissner, Multiplication and the fundamental theorem of calculus: A survey, Real Analysis Exchange, Vol. 2. No. 1-1976, 7-34.
[2] \qquad , Distant bounded variation and products of derivatives, Fund. Math. XCIV(1977), 1-11.
[3] Jan Mařík, Multipliers of summable derivatives, Real
Analysis Exchange, Vol. 8, No. 2 (1982-83), 486-493.

