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MULTIPLIERS OF VARIOUS CLASSES OF DERIVATIVES

(Lecture presented at Real Analysis Symposium in Waterloo.)

Let f be a function (= mapping to (-=,%)) on the interval
J = [0,1] and let & be a system of functions on J. We say
that £ 1is a multiplier of ¢ if and only if f®€¢ for each
®€%. The system of all multipliers of & wiil be denoted by
M(¢). If, e.g., & is closed under multiplication and if the func-
tion ®(x) = 1(x€J) Dbelongs to &, then, obviously, M(3) = §. It
is well known, however, that derivatives behave badly with respect
to multiplication. It is therefore of some interest to investigate

the system M(%), if ¢ 1is a "reasonable" class of derivatives.

Let D [C,A,Cép] be the system of all finite derivatives
[continuous functions, differentiable £., approximately continu-
ous f.] on J. For each system & of functions on J let
$* [b?] be the system of all nonnegative [bounded] elements of
5.

R.J. Fleissner characterized in [1] and [2] the system M(D).
For this purpose he introduced the notion of a function of diétant
bounded variation. This notion can bé definéd in various ways.
It seems that the simplest way is the following: Let £ be a
function on J. We say that f 1is of distant bounded variation
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lim suph_’o+var(x+h,x+2h.f) < » for each x€[0,1)

and

lim SUp o+var (x-2h,x~-h,f) < ® for each x€ (0,1].

The first of these two conditions is, of course, equivalent to

2

: 1 2
lim sup _, _var (x + SeX + 5, f) ¢ » for each x€[0,1)

where n 1is an integer; similarly for the second.

If we denote by Y the system of all functions of distant

bounded variation, we may express Fleissner's result by
M(D) = DNY.

Fleissner posed in (1] the problem of characterizing thea system
M(SD), where SD is the class of all summable (Lebesgue integrable)
derivatives. This problem has been solved in [3]. Here I will

formulate the corresponding result in a slightly different way.

If f is a function on an interval [a,b] and if n is a
natural number, let v(n,a,b,f) be the least upper bound of all
sums Zl‘r::l (f(yk) -f(xk) | where a = Xy <y, ¥ X, < Yo £ ...S
X, < Y, b. Let V be the system of all functions £ on J

such that

2

(1) 1lim supn_mv(n.x +-l]_'-1-.x+-5, f) < » for each x€[0,1)

and

(2) 1lim supn_mv(n.x—%.x-i-,f) < » for each x€ (0,1].
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It is obvious that YcV. A solution of the mentioned problem

is now given by the relation
M(SD) = DNV,

Another "natural" class of derivatives is DY. The vector
space E generated by it is, obviously, the system of all
functions f€D such that |f! s g for some g€D (so
that, e.qg., 'bD.CE). To describe M(E) we need the following
notation. If £ is a bounded nonnegative function on an inter-

val [a,b] and if r is a natural number, we set
A(r,a,b,f) = D £([ %, 1)
+ 8020 k=1 SUP FilXg_qe¥p )

where x, = a+k(b-a)/r. Then M(E) is the system of all

bounded functions f on J such that

; 1
llmr,n-mA(r'x'x"’};v |£-£(x)]) = 0 for each x€[0,1)
and
limr'n_'oA(r,x-%ox,‘f-f(x) \) = 0 for each x€ (0,1].

It is not difficult to prove that M(D+) = (M(E))+ and that

(3) M(D) <M (SD) cM(E) Cbcap

with proper inclusions. Further we have M(D)\C ¥ d,
MM(D) # g, C\M(SD) ¥ #. Some elements of CNM(SD) are

nowhere differentiable. These facts show that the role of
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continuity or differentiability in the investigation of multi-
pliers is smaller than we might expect. We have, however,

AcM(SD) and CCM(E).

Let febcap and let T be the set of all points of dis-
continuity of f. If f£€éM(D), then T is finite. If f€M(SD),
then T is countable and each nonempty subset of T has an
isolated point; in particular, T is nowhere dense. If f € M(E),
then T has measure zero (so that £ 1is Riemann integrable).

We see that the set of points of discontinuity of a function be-
longing to some of the first three systems in (3) is, in some
sense, small. There is, however, a function f €M(D*) such that

TNI is uncountable for each interval Ic¢J.

Let Z De the system of all continuous functions of bounded
variation on J. Since Z<M(D) and CW(SD) ¥ &, we see that
neither of the first two systems in (3) is closed under uniform
convergence. It can be shown, however, that the third is. More-
over, if f€E€M(E) and if ¢ is a function continuous on (-e,a),

then the composite function ¢ o f belongs again to M(E).
I would like to illustrate the situation by a few examples.

It is easy to construct a function febcap such that
£(0) = 0, f 1is continuous on (0,1] and that f(Z-n) = 1,

-n+1

var (271, 2 ,f) =2 for n=1,2,.... Then f£€M(D)\C.

It is also eésy to construct a function f€C for which (1)

does not hold; then, of course, f € C\M(SD).

Let S be the Cantor set. Let f be a function on J

with the following properties: f =0 on §S; if I = (a,b)
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is a component of J\S, b-a = 3-n‘ let £f=0 on (a,alU

[Bsb), £(c) =1 and let £ be linear on [a,e] and on [c,8],
where c = (a+b)/2 = (a+B)/2, P~-a = 9™, Then feM(p*) ana

f is discontinuous at each point of" S.

Let 1> a; > a, > ..., a *0, an/an+l*

such that f£(0) = 0, f 1is continuous on

1. There is a

function f€C ap
(0,17, f(an) = 2 for each n and 0 s £f=2 on J. It is
easy to construct a function g €D' such that g(0) = 1 and
that fg2zg on (0,1]. (Such a g may be continuous on
(0,1].) Since (fg) (0) = 0, we cannot have fg€D. We see

that the function £ Dbelongs to bCap and is Riemann integrable,

but does not belong to M(E).

Proofs of the above results will appear in Real Analysis

Exchange.
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