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 VARIATIONS ON BLUMBERG' S THEOREM

 I. Introduction and Survey.

 A "variant of Blumberg's theorem" is any theorem about

 relatively nice restrictions to relatively large sets for

 arbitrary functions from one space to another. In this paper we

 present some new results related to several variants of

 Blumberg's theorem, where the resulting restriction is either

 continuous or else "pointwise discontinuous" (abbreviated PWD).

 A function is PWD if it is continuous at each element of some

 dense subset of the domain of the function.

 First we survey the history of four such variants of

 Blumberg's theorem, listed as Propositions A, B, C, and D below.

 (Ay) For every f: X + Y, there exists OCX, D dense in

 £ such that f ļ D is continuous.
 The case where Y » the reals, R, will be called Proposition

 (A). This is the original "Blumberg's theorem". H. Blumberg

 showed [5] that (A) holds for X = R2, and he stated that his

 argument could be used to prove (A) holds for X » any complete

 metric space. Later [6], he proved (Ay) holds for X and Y

 Euclidean spaces. Block and Carga! [4] showed that (Ay) holds

 when X is a 2nd countable Hausdorff Bai re space and Y is a

 2nd countable Hausdorff space. Bradford and Goffman [8] showed

 that for metric spaces X, (A) holds if and only if X is a

 Balre space. White [32] extended this from metric X to
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 topological spaces X which have o-disjoint pseudobases

 (abbreviated "cnr-spaces"). This Included a result of Bennett

 [2], [3], who showed that (A) holds when X is a regular serai -

 metrlzable Baire space. Alas [1] showed that 1f X is a an

 Bai re space, then (Ay) holds for every 2nd countable space Y

 (also see [22]). One advantage of knowing that (Ay) holds for

 more general spaces Y (even if we are primarily interested in

 real valued functions) is that 1t then follows that 1f fļ, f2,...

 is a sequence of real valued functions with domain such a space

 X, then there is a set D C X, D dense 1n X, such that for each

 1, f^ |d is continuous. This result was proved by Haworth and
 McCoy in [19], and attributed to H. M. Schaerf. These results

 were also discussed and extended in [34], where White raised the

 question of whether 1t Is true that if X is a space for which

 (A) holds, 1t necessarily follows that (Ay) holds for every

 2nd countable space Y. This question has been answered 1n the

 affirmative by Piotrowski and Szymański [26].

 The question of when (Ay) holds for larger (non-2nd-

 countable) spaces has been studied. Letting the weight, <pY of

 a space Y be the minimum cardinality of a basis for Y,

 Bradford showed in [7] that if X and Y are metric spaces,

 then (Ay) holds If and only 1f no open subset of X 1s the

 union of coY or fewer nowhere dense sets (spaces with this

 latter property are called uY-Baire spaces). We now know from

 the theorem of Stepanek and Vopenka [28] (also see [21]) that

 this places restrictions on the size of the range space in
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 Blumberg's theorem in the metric case because every open set in

 every metric space without isolated points is the union of c or

 fewer nowhere dense sets (c 1s the cardinality of R).

 However» these ideas have more general application In the

 topological case, as was shown by Szymański 1n [29] (more results

 along this line should be forthcoming in [14]).

 As for negative results, Blumberg pointed out in [6] that

 the set D cannot be made to have cardinality c even for

 f: R * R because of the function of Sierpiński and Zymund [27]

 which has no continuous restriction of cardinality c. Goffman

 [18] showed that even for 1-1 f: R ♦ R, the set D cannot

 necessarily be chosen so that fļD is a homeomorphism, and Ceder

 showed [16] that even for f: R ♦ R, the set 0 cannot

 necessarily be chosen so as to make fļD differentiate or mono-
 tonic.

 There have been a number of papers Investigating the

 difference between the Bai re property and (non-metr1c) spaces for

 which (A) holds (of course, (A) «fr Bai re, even for general

 spaces). Levy [24] showed that (X Hausdorff Bai re, linearly

 ordered) ^ (A). White [32] showed (assuming the continuum

 hypothesis CH) that (X completely regular Hausdorff Balre) Ą&

 (A), levy [25] showed that (X compact Tj,) (A), and

 assuming c » 2n, where ß ■ «ļ) that (X compact Hausdorff) &

 (A). Finally, Weiss [30], [31] showed (under ZFC) that (X

 compact Hausdorff) # (A), thus settling what had come to be

 known as "the Blumberg problem''. See [33] for other examples of

 Balre spaces in which (A) falls.
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 Although the set D of Proposition (A) cannot be made to

 have large cardinality, this can be achei ved if the property

 placed on fjD is relaxed from continuity to pointwise discon-

 tinuity. To avoid double subscripts* we adopt the notati onal

 convention w » wq aî^o» ß' «i s ^i» and c ® 2W. Consider

 the following proposition:

 (Bň) For every f : X R, there exists WCY, M ß-dense

 in

 There will be corresponding propositions (B ) and (B ) for
 U Ił

 every cardinal n, where the statement that W is n-dense in X

 means that every open subset of X intersects W 1n a set of

 cardinality at least n. The present author showed in [9] that

 (Bc) holds for X « R or any complete separable metric space

 without isolated points (notice that this strengthens Blumberg's

 original theorem for these spaces), and an attempt was made to

 characterize the metric spaces in which (Bfi) and (Bc) hold.
 The notion of a "tusin set" is central in this investigation. A

 Lusin set is a set which has no uncountable nowhere dense 1n X

 subset, we also say such sets have property L(rel X). For a

 given cardinal n, we say that a space has property Tn If no

 open subset of X can be written as a union FUG, where F is

 first category 1n X and every nowhere dense in X subset of G

 is of cardinality < n. We say X has property T+ if no open

 subset of X can be written as a union FUG, where F is

 first category 1n X and every nowhere dense 1n X subset of G

 can be written as a countable union H1UN2 U..., where each
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 is of local cardinality < n. It is shown in [9] that for

 metric spaces X, Tfl =► (B^) and (®c)» so» assuming CH,

 we have a characterization of the metric spaces in which (Bft) =

 (B ) holds. Then, it is shown that. for metric spaces X,
 V

 Tc ^c) and tłlat implication is reversible if X is also
 separable. So we have a characterization of the separable metric

 spaces in which (Bc) holds. H. E. White substantially improved

 this situation in [35], where he characterized (under ZFC) the

 spaces in which (Bn) holds for n = ç and many other cardinals

 larger than n (of course for these larger cardinals, the spaces

 will necessarily be non-separable). A space X has property

 (oBn if no open subset of X can be written as a countable union

 FļU F2 U ..., where each has the property that for every

 every open set U, there exists an open V CU such that every

 nowhere dense 1n X subset of F. Ov has cardinality < n.

 White pointed out that for metric spaces X, T+ =► uBfi ^ Tß and

 T + «s» wBc =* Tc (all implications are reversible in separable

 metric spaces). White shows that for Hausdorff spaces,

 wBn (Bn) for every cardinal n > fi, and that <uBn «■* (Bn)

 if (1) n = c, (2) cf(n) > c, (3) n > c and cf(n) = w, or (4)

 (assuming Martin's axiom) if cf(n) * c. "cf(n)M denotes the

 cofinality of n (see [17]).

 As for negative results, it was shown (under CH) in [9] that

 even for f: R * R, you can't necessarily make W 2nd category

 in R and have fjw be PWD. It was shown (under CH) in [11]
 that even for f:R + R, you can't necessarily make W (non-Ao)-

 denśe in R and have f|W be PWD, where property Xn is the
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 property of having Lebesgue measure zero, and the statement that

 W is (non-Xp)-dense in X means that every open subset of X

 intersects W in a non-A<) set.

 We now consider two propositions analagous to Propositions

 (A) and (Bn), where the requirement that the set D (or W) have

 the stated density relative to X is relaxed to require that it

 only have the stated density relative to itself.

 (C) for every f: X + R, there exists DC X, D adense in

 D, such that f | D is continuous.

 This proposition has not been stated previously in this

 form, but it holds for a separable metric space X if and only

 if X is uncountable. Ceder proved a much stronger version of

 (C) in [16], where he showed that if X is an uncountable subset

 of R, then

 (C+) for every f: X R, there exists D C X,

 D bilaterally dense in D, such that f ļ D is
 monotonie and "differentiate".

 The quotation marks on "differentiate" indicate that +® and

 are allowed values of the derivative. There was an error in

 the monotoni ci city part of his proof, but this was corrected in

 [20] and [10].

 Finally, we consider the following PWD-variant of (C), where

 n is an arbitrary cardinal,

 (Dn) for every f: X + R, there exists W C X,

 W n-dense in W, such that fļW is PWD.
 This proposition has not been studied in general settings, but it

 was shown in [11] that if X is a subset of R, then the

 following proposition:
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 (D +) for every f: X + R, there exists WCX,
 V

 W bilaterally c-dense 1n W, such that f|w 1s
 "differenti able" at each element of a dense in W

 subset D of W,

 holds for X If and only 1f X is non-ov^ (defined below).
 We say that a set M has (1) property c- if it has cardinality

 less than c, (2) property L. (rei X) 1f every nowhere dense in
 V "

 X subset of M has property c-, (3) property v if it has

 property L (rei M), and (4) property ov If It is a countable
 u" U **

 union of vc_sets. It is not possible to pick the set W of

 (Dc+) so that fjw is also monotonie, and the question of

 whether W and D can be picked so that f ļ D is monotonie is
 unanswered. In [11] it 1s shown that 1f X C R, then X is non-

 Aq if and only if it is true that for every f: X + R, there

 exists WCX, W ( non- x0) -dense in W, suchthat fjw 1s
 "differenti able" at each element of a dense subset D of W.

 II. Some New Results.

 It 1s the primary purpose of this paper to present some

 results which represent progress 1n the direction of making the

 set W of propositions (B) and (D) large in some measure-

 theoretic or Bai re-categoric sense. We have already pointed out

 that even for f: R ♦ R, the set W of (B) cannot be made

 (non- Xo)-dense or (non-FC)-dense in R (assuming CH).

 Property FC 1s the property of being first category relative to
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 the space X. Nevertheless, 1t is possible to make some progress

 in this direction.

 The notions "V, "l.( rei X)", and MFC", of smallness of

 sets, fit into a hierarchy of "singularity properties" of subsets

 of separable metric spaces such as those discussed 1n Section 40

 of Kuratowski's Topology Vol. I, and discussed in more detail in

 [12]. Of particular interest in this paper are those singularity

 properties listed below:

 /¿7 X°
 L(rel X) U0tT

 (I) m*! "r s°=> TI
 S (rei X) AFC ^

 ^ FC
 These properties are all notions of "small ness" defined for

 subsets of separable metric spaces which are generalizations of

 the notion of countability = property w. For X » R, the sets

 with property S(rel R) are the so-called "Sierpiński sets", a

 set, every x0 subset of which 1s countable. M is "always

 first category" or has property AFC if 1t is true that for every

 perfect subset P of X, P O M 1s first category relative to

 P. M is a "universal null set" or has property llņ (sometimes

 called "property ß") if it is true that for every continuous

 Borei measure, y, on X, the outer measure of M y*(M) ■ 0.

 Note: The AFC »»-FC implication requires that X have no

 isolated points, and the U<j =■*• *o implication only has meaning

 if X is R or Rn for some n. M is a "Marczewski singular

 set" or has property s° if it is true that for every perfect.

 subset P of X, there exists a perfect subset Q of P such

 that Q H M = 0. M is "totally imperfect" or has property TI 1f
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 M has no compact uncountable subset. There are many equivalent

 definitions of the above properties, as well as many related

 properties (e.g. "concentrated sets", "rarifled sets", Borel's

 sets of "strong measure zero", etc.). which fit into the above

 diagram of implications and which are discussed in great detail

 1n [12].

 It 1s clear from the proof that Tß (Bß) given in [9]
 and the approach taken by White 1n [35] that the resulting set W

 is not only fl-dense or (non-w)-dense 1n X, it Is actually (non-

 L(rel X))-dense in X. However, the set W is not necessarily

 (non-Uo)-dense in X. One might ask whether the set W of

 Proposition (B) can be made to be (non-Uo)-dense in X, or

 perhaps (non-AFC)-dense in X, provided the requirement placed on

 the space X is the proper strengthened version of property Tß?

 We will 1n fact see that for X * R, or any complete separable

 metric space without isolated points, the set W of Proposition

 (Bjj) can actually be made to be (non-s°)-dense in X. It will

 not be possible on the other hand to go so far as to make even

 the set W of Proposition (0ß) (non-TI)-dense in X because

 of the existence of functions f: R -► R which transform every

 perfect set into R (see Ex. 3.3 of [15]).

 We have already pointed out that CH implies that even for

 f: R + R, you cannot make the set W of Proposition (Bfl) either

 (non-X0)-dense or (non-FC)-dense in R, nor is it possible to make

 the set W of Proposition (Dfl) (non-FC)-dense in W.

 In order to obtain the desired variations on Propositions

 (Bß) and (0fl), we let "property P" represent an undefined
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 singularity property which prescribes a a-1dea1 of subsets of a

 space X (as do properties w, Uo» AFC, Xo, s°, and FC of (I)).

 We say a set M has property Lp(rel x) if every nowhere dense

 1n X subset of M has property P. M has property vp 1 f it

 1s Lp(rel M), and property ovp 1f It Is the countable union of

 sets with property vp. Using arguments similar to those of [9],

 [10], and [11] we obtain the following two theorems.

 Theorem 1: If X Is a separable metric space, then

 (B) for every f : X R, there exists W CX,

 W (non-P)-dense 1n X such that fļw 1s PWD
 holds 1f and (under CH) only if

 (B') no open subset of X is the union of an FC set and an

 Lp(rel X) set.

 Theorem 2: If X 1s a separable metric space, then

 (D) for every f: X R, there exists W C X,

 W (non-P) -dense in W such that fļw 1s PWD
 holds if and (under CH) only if

 (O') W 1s non-ovp.

 If P » u, then Lp(rel X) is just l(rel X), vp 1s just

 property v (of [23]), and <ivp is the property referred to as

 "property Li" in [10] and [13]. For P = w, Theorem 1 includes

 the main theorems of [9], and Theorem 2 is a new theorem.

 Theorems 1 and 2 have separate interpretations when property P

 is taken to be either Uo, AFC, Xo, s°, or FC.

 The idea of starting with a singularity property P (other

 than P » as) and then considering the "Lusin generalizations",

 13 2



 Lp (rei X), Vp, and 0vp, of that property was Investigated in

 some detail 1n [13]. The cases where P » Uo. AFC, Xq, s°, or FC

 were not considered 1n [13] and are discussed briefly below. Let

 us say that a set has property (FC), v (Lp) 1 f It 1s the union

 of an FC set and an Lp(rel X) set.

 For P c Un, properties Lp(rel X), vp, and ovp are

 all the same as Uq. Property (FC) v (Lp) 1s more general than

 either property Uq or FC, but restrictive enough that no open

 set 1n a perfect Polish space has property (FC) v (Lp). Thus,

 Theorems 1 and 2 would have applications for P ■ Uo.

 2. For P = AFC, properties Lp(rel X), vp, ovp, and

 (FC) (Lp) are successively more and more general, each

 implying the next, and (under CH) are all different. No

 open set in a perfect Polish space has property (FC) v (Lp), so

 both Theorems 1 and 2 have applications for P » AFC.

 3* For P * *o> properties Lp(rel X), vp, and avp are
 all the same as x0, and Theorem 2 has application to subsets X

 of Euclidean spaces. But every subset of any subspace of a

 Euclidean space would have property (FC) v (Lp), so Theorem 1

 would have no application for P = x0.

 4. For P » s°, properties Lp(rel X), vp, and ovp are

 all the same as s°. Property (FC) v (Lp) is more general, but

 no open set In a perfect Polish space has this property. Thus,

 both Theorems 1 and 2 have application for P » s°. The fact

 that (B) holds for X = R and P » s° yields a strong

 improvement of Blumberg's original theorem.
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 5. For P « FC, 1t follows that every subset of any space

 would have property Lp(rel X), so neither Theorem 1 nor Theorem

 2 have application for P » FC.

 As a final comment, we remark that while it 1s not possible

 to get a "homeomorphism variant" of Proposition (A), 1t is

 possible to get one for Proposition (C).

 Theorem 3: If X and Y are uncountable separable metric

 spaces and f: X Y is 1-1, then there exists OCX, £

 dense in D, such that f ļ D 1sa homeomorphism.
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