Max Jodeit, Jr., Department of Mathematics, University of Minnesota, Minneapolis, MN 55455

On a Decomposition of $C_{0}(\mathbb{R}^{n})$

Functions into Simple Component Pieces

Suppose f(x) is continuous and tends to 0 at infinity. Then f may be expressed in a special way as the sum of a series: $f = \sum \pm h_k$, where each h_k is a "hump": $h_k \ge 0$; for some c h_k is non-decreasing on $(-\infty, c)$, non-increasing on $(c, +\infty)$, and $h_k(x) \rightarrow 0$ as $|x| \rightarrow \infty$. The h_k "fit together": if $h_k h_l \neq 0$, then they receive the same sign, and one of them is constant on the support of the other. This means that if f is integrable, then $\int |f(x)| dx = \sum_k \int |h_k(x)| dx$, and, if f is of bounded variation, then $var(f) = \sum_k var(h_k)$. This latter is done in [B,pp 159-178]. The extension to continuous functions was done simply by Humke and O'Malley (personal communication).

What happens in n dimensions? The object is to express $f \in C_0(\mathbb{R}^n)$ (meaning $f \to 0$ at ∞ and is continuous) as $\Sigma \pm b_k$, where each b_k is somehow"simple", and the b_m "fit together" appropriately. I wish to take "simple" to mean that for each y, $\{b > y\}$ is connected if not empty. In one dimension, this means that b is a "hump". In n dimensions, it allows the radial function $f(x) = r(1-r)_+$ (r = |x|) to qualify as "simple". I would like to know whether the space of continuous BV functions can be treated in this way. BV is the collection of "functions" f, locally integrable, with grad f (in the sense of distributions) a vector-valued locally totally finite signed Borel measure.

116

At present I can only treat the case of Lipschitz functions which tend to 0 at ∞ . In this note I will first talk about $C_0(\mathbb{R}^n)$, then about Lipschitz functions in C_0 .

A non-linear operation. Let $f \ge 0$ be in C_0 and suppose $\{f \ne 0\}$ is connected. Each function in C_0 can be split into a (signed) sum of such functions. Let $M = \{x: f(x) = \max f\}$. For an open set 0, let comp 0 denote the component of 0 containing x $(comp_x 0 = \beta \text{ if } x \ne 0)$. Set

$$Tf(x) = \sup\{y < f(x) : M \cap \operatorname{comp}_{X} \{f > y\} \neq \emptyset\},$$

where $\sup \not 0 = 0$ by convention. In effect, the graph of Tf is formed by cutting "small hills" off the graph of f. Note that Tf is constant on each component of $\{f - Tf \neq 0\}$, and that the modulus of uniform continuity of Tf is no greater than that of f. It is not necessarily true that $\{Tf > y\}$ is connected for each y, because the set M need not be connected. However, h=Tf can be written as a sum of functions which do satisfy the connectivity condition.

Lemma: Let $h \neq 0$, $h \ge 0$ be in $C_0(\mathbb{R}^n)$ with $\{h > 0\}$ connected, and, for each y > 0, suppose each component of $\{h > y\}$ meets $M = \{x: h(x) = \max h\}$. Then $h(x) = \sum_{\substack{k=1 \\ k=1}}^{\infty} b_k(x)$, where each b_k is non-negative, in C_0 , and $\{b_k > y\}$ is connected (or empty) for each y.

<u>Proof</u>: Let #(y) denote the number of components of $\{h > y\}$. Since M is compact, $\#(y) < \infty$ for each y. Now #(y) is non-

decreasing, and #(y+0) = #(y), (so that # is right-continuous on [0,max h)). The first statement is immediate; if the second were false, some component 0 of $\{h > y\}$ would contain at least two components of $\{h>\bar{y}\}$ for each \bar{y} , $y<\bar{y}<\text{max}\ h$. Then there are points $x_1 \neq x_2$ on $\otimes \cap M$ such that for any arc γ lying in 0, joining x_1 and x_2 we have $y < h(\gamma(t))$, $0 \le t \le 1$ and $h(\gamma(t_{\overline{y}})) \leq \overline{y}$ for some $t_{\overline{y}}$ in (0,1), each $\overline{y} \in (y, \max h)$. Then $h(y(t_0)) \le y$ for some t_0 (a limit point of t_y 's), which is absurd. Let $J = \{y: \#(y) > \#(y-0)\}$. Then since # is integer valued, J has at most one limit point, namely max h , so J can be expressed as $0 < y_1 < y_2 < \dots (0 < y_1$, by right continuity). Note that #(y) = 1 for $0 \le y \le y_1$. Now define $b_o(x) = min(y_1,h(x))$, and denote the components of $\{h > y_1\}$ by
$$\begin{split} \mathbf{0}_{\text{li}}, & \text{i=l,...,} \#(y_1) \text{. If } y_1 < \max \text{ h}, \text{ set} \\ \mathbf{b}_{\text{li}}(x) = \begin{cases} \min((h(x) - y_1)^+, y_2), & x \in \mathbf{0}_{\text{li}}; \\ 0 & \text{otherwise}. \end{cases} \end{split}$$
 The definition of b_{ki} , $1 \le i \le #(y_k)$, is similar. By the construction each b_{ki} satisfies the connected condition: $\{b_k > y\}$ is connected if non-# $(y_k)^k$ empty. It is clear that $h = \sum \sum b_{ki}$. This completes the k i=1 proof of the lemma.

Now suppose f is continuous and tends to 0 at ∞ . Let \mathfrak{S}_k denote the components of $\{f \neq 0\}$, $\mathfrak{e}_k = \pm 1$ denote the sign of f on \mathfrak{S}_k , and set $f_k(x) = \mathfrak{e}_k f(x)$ if $x \in \mathfrak{S}_k$, $f_k(x) = 0$ otherwise. Then $f = \sum \mathfrak{e}_k f_k$. Let $h_{kl} = \mathrm{Tf}_k$, $f_{kl} = f_k - \mathrm{Tf}_k$. Note that h_{kl} is constant on each component of $\{f_{kl} \neq 0\}$. It now follows from the uniform continuity of f that if this process is indefinitely repeated - i.e., write $f_{kl} = \sum_{l} e_{kll} f_{kll}$, $h_{kll} = Tf_{kll}$, $f_{kll2} = f_{kll} - h_{kll}$, etc., that f can be expressed as $\sum_{m} \pm b_{m}$, where each b_{m} satisfies the conditions of the Lemma. This yields the following theorem.

<u>Theorem</u>: If f is a continuous real-valued function on \mathbb{R}^n and tends to 0 at infinity, then f can be represented by a series $f = \sum \varepsilon_k b_k$, $\varepsilon_n = \pm 1$, in which each b_k is continuous, nonnegative, tends to 0 at infinity, and which in addition . satisfies: $\{b_k > y\}$ is, for each y, connected or else empty. Moreover, if $b_k b_k \neq 0$, then $\varepsilon_k = \varepsilon_k$, and one of b_k, b_k is positive and constant on the support of the other.

(the support of a function g is the closure of $\{g \neq 0\}$).

It is evident that $\int |f(x)| dx = \sum_{m} \int |b_m(x)| dx$. If we had $\supp(\operatorname{grad} b_j) \cap \operatorname{supp}(\operatorname{grad} b_j) = \emptyset$ for $i \neq j$ it would be nearly evident that the variations would add, where var $b \equiv \sup\{\int b \operatorname{div} \varphi dx; \varphi = c^{\infty} \operatorname{vector} field with compact$ $support and |\varphi| = (\sum_{j=1}^{n} \varphi_j^2)^{1/2} \leq 1\}$. Since the supports of the b_m are merely non-overlapping, some extra conditions on the b_m seem to be needed.

<u>Proposition</u> Suppose $\{f_m\}$ is a sequence of functions in $C_o(\mathbb{R}^n)$ which are equi-Lipschitz continuous (i.e. for some K, $|f_m(u) - f_m(v)| \leq K |u-v|$, all m). If for each i, j $f_i f_j \geq 0$, and, if $i \neq j$, one of f_i, f_j is constant on the support of the other, then, with $f = \sum f_m$, if f is locally integrable, then m theorem, the decomposition described in the latter satisfies

$$\int |f(x)| dx = \sum_{m} \int |b_{m}(x)| dx \text{ and } \operatorname{var} f = \sum_{m} \operatorname{var} b_{m}.$$

<u>Proof of the proposition</u>: We have to show that var $f \ge \Sigma$ var f_m . The idea is to find a smooth vector field φ_m , $|\varphi_m| \le 1$, with support in \mathfrak{G}_m (defined to be the interior of the support of grad f_m), such that $\int f_m \operatorname{div} \varphi_m dx$ is close to var f_m . The condition on f_i, f_j for $i \ne j$ implies that grad f_i , grad f_j , have non-overlapping supports. Thus if φ_m is as above, then $\int f \operatorname{div} \varphi_m dx = \sum_k \int f_k \operatorname{div} \varphi_m dx = \int f_m \operatorname{div} \varphi_m dx$, because $\operatorname{supp} \varphi_m \cap \widetilde{\mathfrak{G}}_k = \not o$ if $k \ne m$. Thus if $\int f_m \operatorname{div} \varphi_m dx \ge \operatorname{var} f_m - \varepsilon/2^m$, we have var $f \ge \int f \operatorname{div}(\sum_{k=1}^{K} \varphi_k) dx$ (since the φ_k have pairwise disjoint supports)

$$= \sum_{k=1}^{K} \int f_k \operatorname{div} \varphi_k \operatorname{dx} \geq \sum_{k=1}^{K} \operatorname{var} f_k - \epsilon .$$

Now we let K tend to infinity; since ϵ is arbitrary we have the desired result. Thus the problem is to show that we can approximate var f_k at closely as desired by $\int f_k \operatorname{div} \varphi_k dx$, where φ_k has support in \mathfrak{G}_k , is a \mathbb{C}^{∞} vector field and $|\varphi_k| \leq 1$. We may drop the subscript k. Thus, given $\epsilon > 0$, $\int f \operatorname{div} \mathbf{*} dx \geq \operatorname{var} f - \frac{1}{2} \epsilon$ for some \mathbb{C}^{∞} vector field $\mathbf{*}$ with compact support, $|\mathbf{*}(x)| \leq 1$ for each x. At least this holds when $\operatorname{var} f < \infty$; if $\operatorname{var} f = +\infty$, we make the right hand side $N + \frac{1}{2}\epsilon$ for some large N. We wish to find a vector field φ like $\mathbf{*}$, but with support inside $\mathbf{6} =$ interior of closure of $\{f \neq 0\}$, so that $\int f \operatorname{div} \varphi dx \geq \operatorname{var} f - \epsilon$ (or $\geq N$).

To do this I need a partition of unity related to a Whitney decomposition of $U = O \cap Int(supp \)$. This may be found on pages 167-170 of [S]. The Whitney decomposition of a bounded open set U expresses it as the union of a denumerable collection of nonoverlapping closed cubes Q_j , $j \ge 1$, with $1 \le dist(Q_j, \partial U) / diam Q_j \le 4$. Let each cube Q_j be expanded about its center by a factor $\frac{9}{8}$ and call the new cubes Q_j^* . Then $\frac{8}{11} < dist(Q_j^*, \partial U) / diam Q_j^* < 4$, and each point of U belongs to at most N of the cubes Q_j^* , where N depends only on n. The partition of unity starts with a C[°] function P, $0 \le P \le 1$, which is identically 1 on the cube Q_0 of unit edge centered at 0, and supported in $(9/8)Q_0$. Then P_j^* is defined by $P_j^*(x) = F((x-c_j)/e_j)$, where c_j is the center of Q_j and e_j is its edge length. Finally, $P_j(x) = P_j^*(x) / \sum_{1}^{\infty} P_k^*(x)$ gives a partition of unity for U. We need to use: $|\partial P_j / \partial x_i| \le$ $A(diam Q_j)^{-1}$, where A depends only on n. This follows from the properties of the cubes, the construction of P_i .

Now suppose var $f - \frac{1}{2} \epsilon \leq \int f \operatorname{div} \psi \, dx$. We have $\int f \operatorname{div} \psi \, dx = \lim_{\delta \to 0} \int f(\Sigma_{\delta} P_j) \operatorname{div} \psi \, dx , \text{ where } \Sigma_{\delta} P_j \text{ denotes the}$ sum over those j (finite in number) such that $\operatorname{dist}(Q_j^*, \delta U) \geq \delta$. Now, $\int f(\Sigma_{\delta} P_j) \operatorname{div} \psi \, dx = \int f \operatorname{div}((\Sigma_{\delta} P_j)\psi) dx - \int f \psi \cdot (\Sigma_{\delta} \operatorname{grad} P_j) dx$, since a div b = div ab - grad a·b. The first term has the desired form. It remains to show that δ can be chosen sufficiently small that the second term on the right-hand side is less than, say, $\epsilon/4$. Since $\Sigma_{\delta} P_j \equiv 1$ if $\operatorname{dist}(x, \delta U) \geq A\delta$, for some A>1 depending on n (by the geometric properties of the cubes Q_j^*), and because of the estimate on the derivatives of the P_j , $\operatorname{grad} \Sigma_{\delta} P_j = 0$ if $\operatorname{dist}(x, \delta U) > A\delta$, and so $|\operatorname{grad} \Sigma_{\delta} P_{j}| \leq C\delta^{-1}$, where C depends on n only. Thus since $|\psi| \leq 1$ and $|f(x)| \leq K \operatorname{dist}(x, \delta U)$,

(*)
$$|\int f \psi \cdot (\operatorname{grad} \Sigma_{\delta} P_j) dx| \leq K A \delta C \delta^{-1} \cdot \operatorname{meas} \{x: \delta < \operatorname{dist}(x, \delta U) < A \delta \}$$

which tends to 0 as $\delta \to 0$. Thus if δ_0 is so small that $\left|\int f \operatorname{div} \psi \, dx - \int f(\Sigma_{\delta} P_j) \operatorname{div} \psi \, dx\right| < \varepsilon/4$ for all $\delta < \delta_0$, we can choose δ so small that the right-hand side of (*) is $< \varepsilon/4$.

Since this is done for each f_k , and the sum is locally integrable, and sum and integral can be interchanged because of the condition $f_i f_j \ge 0$, the proof of the proposition is complete.

Remark: The estimate (*) shows that if we know a rate of decay for meas $\{x: \delta < dist(x, dU) < A\delta\}$, we can correspondingly weaken the condition on f. However, improvement in the result is more likely to come from a different approach.

Acknowledgement: Humke and O'Malley thought of doing the decomposition for continuous functions, and made a clearer argument than that in [B].

References

- [B] Wm. Beckner, et al, eds., Conference on harmonic analysis in honor of Antoni Zygmund, vol 1, pp 159-178: On the decomposition of L¹₁(IR) functions into humps, by Max Jodeit, Jr.
- [S] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, 1970.