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 On jł Décomposition of Co(lRn)

 Functions into Simple Component Pieces

 Suppose f(x) is continuous and tends to 0 at infinity.

 Then f may be expressed in a spedai way as the sum of a series:

 f » 2 ± h , where each h. is a "hump": i> >0 i for some c ^ ~

 h^ is non-decreasing on (~®,c) , non- increasing on (c,+®) , and

 '(x) -0 as |x{ - . The hk "fit together": if b f 0 , then
 they receive the same sign, and one of them is constant on the

 support of the other. This means that if f is integrable, then

 J|f(x)|dx = T. J|hk(x)ļdx , and, if f is of bounded variation,
 k

 then var(f) « S var (h.) . This latter is done in [B,pp 159-178].
 k

 The extension to continuous functions vas done simply by Humke

 and O'Malley (personal communication).

 What happens in n dimensions? The object is to express

 f € CQ(®n) (meaning f~»0 at ® and is continuous) as »

 where each b^ is some how" s imple", and the bffi "fit together"

 appropriately. I wish to take "simple" to mean that for each y ,

 [b > y} is connected if not empty. In one dimension, this means

 that b is a "hump". In n dimensions, it allows the radial

 function f(x) = r(l-r)+ (r«jxļ) to qualify as "simple". I
 would like to' know whether the space of continuous BV functions

 can be treated in this way. BV is the collection of "functions"

 f , locally integrable, with grad f (in the sense of distribua

 tions) a vector- valued locally totally finite signed Bore 1 measure.
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 At present I can only treat the case of Lips chits functions which

 tend to 0 at « . In this note I will first tàlk about CQ(]Kn),

 then about Lipschitz functions in C0 .

 A non-linear operation. Let f>0 be in CQ and suppose (f/o)

 is connected. Each function in CQ can be split into a (signed)

 sum of such functions. Let M = (x:f(x) = inax f] . For an open

 set $ , let comp & denote the component of & containing x
 X

 (comp & = i if x jé ô ). Set
 A

 Tf(x) = sup(y<f(x) : M 0 comp iî>y}/$ ,

 where sup fi = 0 by convention. In effect, the graph of Tf

 Í3 formed by cutting "small hills" off the graph of f . Note

 that Tf is constant on each component of (f-Tf/o) , and

 that the modùlus of uniform continuity of Tf is no greater than

 that of f . It is not necessarily true that ÍTf>y] is

 connected for each y , because the set M need, not be connected.

 However, h =Tf can be written as a suai of functions which do

 satisfy the connectivity condition.

 Leggila: Let h 0 , h>0 be in CQ(Bn) with £ b > o} connected,
 and, for each y>0 , suppose each component of Ch>y) meets

 CO

 M = {x:h(x) =max h] . Then h(x) = £ > where each b, is
 k=l k

 non-negative, in C , and ( b, > y] is connected (or empty) for O K

 each y .

 Proof: Let #(y) denote the number of components of {h>y) .

 Since M is compact, #(y) <eo for each y . Now #(y) is non-
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 decreasing, and #(y+0) = #(y) , (so that # is right-continuous

 on [0,max h)). The first statement is immediate; if the second

 were false, some component <& of {h>y} would contain at least

 two components of {h>y} for each ý , y<ý < max h . Then

 there are points x^/xg on & fi M such that for any arc Y

 lying in 6 , ¿joining x^ and Xg we have y<h(y(t)) , 0<t<l
 and h(y(t-)) < ý for seme t- in (0,1) , each ý € (y, max h) .

 y y

 Then h(v(tQ)) < y for seme t (a limit point of t-'s y }, which y

 is absurd. Let J = fy:#(y) >#(y-0)} . Then since # is integer

 valued, J has at most one limit point, namely max h , so J can

 be expressed as 0<y^<yg<... (0<y^, by right continuity).

 Note that #(y) = 1 for 0 <y <y^ . Now define

 b (x) = min(y^,h(x)) , and denote the components of Ch>y^} by

 »iKy^) . If y^Cmax h , set
 f min((h(x)-y )+,y ) , x a -,

 b. . (x) as < The definition of
 1 0 otherwise .

 »

 ^ki ' 1Si<*(yk) > *s 8i®il&r- By the construction each b^.
 satisfies the connected condition: Cb. . >y] is connected if non-

 #(yk)
 empty. It is clear that h = E S b. . . This completes the

 k i=l fcl
 proof of the lemma.

 Now suppose f is continuous and tends to 0 at « . Let

 denote the components of {f/o} , = ± 1 denote the sign

 of f on ^ , and set x ^ ®k '

 otherwise. Then f = E ejc^js • ~ ^ = •

 Note that h^ is constant on each component of { f ^ ļ o) . it
 now follows from the uniform continuity of f that if this

 process is indefinitely repeated - i.e., write
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 f kl = ekltfkU » hkl¿ = Tfklt ł fkl¿2= fklt"hklt ' etc* » that

 f can be expressed as 2 ± b , * where each b satisfies the m , * m
 m

 conditions of the Lemma. This yields .the following theorem.

 Theorem; If f is a continuous real-valued function on 3Rn and

 tends to 0 at infinity, then f can be represented by a series

 f = I ® 1 , in which each b. is continuous, non- . ix K n , K
 k .

 negative, tends to 0 at infinity, and which in addition .

 satisfies: { b^ > y} is, for each y , connected or else empty.

 Moreover, if b^b^ ý 0 , then , and one of b^,b^ is
 positive and constant on the support of the other.

 (the support of a function g is the closure of { g / o] ) •

 It is evident that J*ļf(x)|dx = S Jļbm(x)ļdx . If we had
 m

 supp(grad b^) 0 supp(grad b^) = fi for i ^ j it would be nearly
 evident that the variations would add, where

 var b s supCjb div cpdx: <p a C* vector field with compact

 support and ļcpļ = ( £ cp.) ' < l] . Since the supports of the
 3=1 3

 b are merely non- overlapping, scane extra conditions on the b
 m m

 seem to be needed.

 Proposition Suppose {fm3 is a sequence of functions in CQ(]Rn)
 which are equi-Lipschitz continuous (i.e. for some K ,

 lf™(u) m m <K|u-v| , all m ). If for each i,j f.f. i j " >0 , m m i j "

 and, if i / «3 , one of f.,f. is constant on the support of the 3. 3

 other, then, with f = Z f , if f is locally integrable, then
 m

 var f = S var f . As a corollary of the proposition and the
 m

 theorem, the decomposition described in the latter satisfies
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 Jļf(x){dx =• E jļb n (x)ļdx and var f = E var b . m n m

 Proof of the proposition: We have to show that var f > 2 var f .

 The idea is to find a smooth vector field cp , |<p I <1 , ' with m , ,xm' - , '

 support in (defined to be the interior of the support of

 grad f ) . such that o f f div cp_dx is close to var f . The m o m m m

 condition on f^f^. for i/j implies that grad f¿ , grad f ^ ,

 have non- overlapping supports. Thus if tpm is as above, then

 J f dlv (j^dx = S J* f k div 9mdx = J f^div cp^dx , because
 ** k

 supp tpm n<^ if k/m . Thus if Jfjdiv ip^dx > var f^-e/ž^ ,
 K

 we have var f > Jf div( E cp. )dx (since the cp. have pairwise
 k=l

 disjoint supports)

 K K

 « E J f. div cp. k dx > 2 var f. - e . fc=l * k fc=l *

 Now we let K tend to infinity, since « is arbitrary we

 have the desired result. Thus the problem is to show that we can

 approximate var f^ at closely as desired by Jf^div cp^dx , where

 cpķ has support in , is a C vector field and ļcp^j <1 • We
 may drop the subscript k . Thus, given e>0 ,

 J f div ♦ dx > var f - ~ e for scane C° vector field ♦ with

 compact support, j<Kx)| <1 for each x . At least this holds

 when var f < ® v var f =+ 00 > we make the right hand side

 N + ije for some large N . We wish to find a vector field cp

 like f , but with support inside Ô = interior of closure of

 {f /0} , so that J f div cp dx > var f - e (or > N) .

 To do this I need a partition of unity related to a Whitney

 decomposition of U* Int(supp f ) . This may be found on pages
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 I67-I7O of [S]. The Whitney decomposition of a bounded open set

 U expresses it as the union of a de nume rabie collection of non-

 overlapping closed cubes Q. , j > 1 , with
 J

 1 <dist(Q. ,óü) /diam Q.<^ • Let each cube Q, be expanded
 J 0

 g *
 about its center by a factor -g and call the new cubes .
 q * *

 Then -jj~ < dist(Qjļ,0U)/ diam < k , and each point of u
 *

 belongs to at most N of the cubes Q , -where N depends only
 J

 CO

 cai n . The partition of unity starts with a C function P ,

 0<P<1 , which is identically 1 on the cube of unit edge

 centered at 0 , and supported in (9/8)Q - Then P. is defined
 ^ tJ

 by P.(x) » P((x-c.)/e.) , where c. is the center of Q. and
 J 0 3 3 » «

 e . is its edge length. Finally, P.(x) = P.,(x) /2 p!,(x) gives
 J 1

 a partition of unity for U . We need to use: JóP^/bx^J <
 A(diam , where A depends only on n . This follows from

 the properties of the cubes, the construction of «

 Now suppose var f - - e < Jf div $ dx • We have

 Jf div ¿lx = lim J f(r^P^)div if dx , where E^P^ denotes the

 sum over those 3 (finite in number) such that dist(Qj}bU) > 6 .

 Now, J f(£fiPj)div ♦ te« Jf div((SßP3)t)dx - J* f ♦ • (Sagrad P^)dx ,
 since a div b «= div ab - grad a«b . The first term has the

 desired form. It remains to show that & can be chosen

 sufficiently small that the second term on the right-hand side

 is less than, say, e/k . Since 2^P^ =1 if dist(x,&U) >A& ,
 for some A>1 depending on n (by the geometric properties of

 *

 the cubes ) , and because of the estimate on the derivatives

 of the P. , gradXLP.=0 if dist(x,ÒU) >A6 , and so
 tJ o j
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 jgrad < C5 ^ , where C depends on n only. Thus since

 1<rj <1 and ļf(x)ļ <K dist(x,ÒU) ,

 (*) j Jf<t«(grad S&Pj)dx[ ^KA&CS^ • meas{x:5 <dist(x,ĎU) <Aô)

 which tends to O as 5 -» O . Thus if 6 is so small that
 o

 ļjf div ♦ dx - JfiEgP^div * dx| <*/h for all 8<5q , we can
 choose & so small that the right-hand side of (*) is < e/U .

 Since this is done for each , and the sum is locally

 integrable, and sum and integral can be interchanged because of

 the condition f ^f ^ > 0 , the proof of the proposition is complete.

 Remark: The estimate (*) shows that if we know a rate of decay

 for meas{x:6 <âist(x,ÒU) <Aô} , we can correspondingly weaken

 the condition on f . However, improvement in the result is more

 likely to come from a different approach.

 Acknowledgement; Humke and O'Malley thought of doing the

 decomposition for continuous functions, and made a clearer

 argument than that in [B].
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