Max Jodeit, Jr., Department of Mathematics, University of Minnesotas Minneapolis, $\mathbf{M N} 55455$

$$
\text { on a Decomposition of } C_{0}\left(\mathbb{F}^{n}\right)
$$

Functions into Simple Gomponent Pieces

Suppose $f(x)$ is continuous and tends to 0 at inpinity. Then f may be expressed in a special way as the sum of a series: $f=\sum_{k} \pm h_{k}$, where each h_{k} is a "himp": $h_{k} \geq 0$; for some c h_{k} is non-decreasing on $(-\infty, c)$, non-increasing on $(c,+\infty)$, and $h_{k}(x) \rightarrow 0$ as $|x| \rightarrow \infty$. The h_{k} "fit together": if $n_{k} h_{\ell} \neq 0$, then they receive the some sign, and one of them is constant on the support of the other. This means that if f is integrable, then $\int|f(x)| d x=\sum_{k} \int\left|h_{k}(x)\right| d x$, and, if f is of bouncled variation, then $\operatorname{var}(f)=\sum_{k} \operatorname{var}\left(h_{k}\right)$. This latter is done in [B, pp 159-178]. The extension to continuous functions was done simply by Humke and OMailey (personal communication).

What happens in n dimensions? The object is to express $f \in \mathcal{C}_{0}\left(\mathbb{R}^{n}\right)$ (meaning $f \rightarrow 0$ at ∞ and is continuous) as $\sum \pm b_{k}$, where each b_{k} is somehow"simple", and the b_{m} "fit together" appropriately. I wish to take "simple" to mean that for each y, $\{b>y\}$ is connected if not empty. Tr one dimension, this means that b is a "hump". In n dimensions, it sllows the radial function $f(x)=r(1-r)_{+}(r=|x|)$ to qualify as "simple". I would like to know whether the space of continucus $B V$ functions can be treated in this way. BV is the collection of "functions" f, locally integrable, with grad f (in the sense of distributions) a vector valued locally totally finite signed Borel measure.

At present I can only treat the case of Jipschitz functions which tend to 0 at ∞. In this note I will IIrst talk about $C_{0}\left(R^{n}\right)$, then about Lipschitz functions in C_{o}.

A non-linear operation. Iet $f \geq 0$ be in C_{0} and suppose $\{f \neq 0\}$ is connected. Each function in C_{0} can be split into \& (signed) sum of such functions. Let $M=\{x: f(x)=\max f\}$. For an open set θ, let $\operatorname{comp}_{x} \theta$ denote the component of θ containing x $\left(\operatorname{comp}_{x} \theta=\varnothing\right.$ if $\left.x \notin \theta\right)$. set

$$
T f(x)=\sup \left\{y<f(x): M \cap \operatorname{comp}_{x}\{\hat{x}>y\} \neq \varnothing\right\},
$$

where $\sup \phi=0$ by convention. In effect, the graph of $T f$ is formed by cutting "small hills" off the graph of f. Note that Tf is constant on each component of $\{f-T f \neq 0\}$, and that the modulus of uniform continuity of $T f$ is no greater than that of f. It is not necessarily true that $\{T f>y\}$ is connected for each y, because the set M need not be connected. However, $h=T f$ can be written as a sum of functions which do satisfy the connectivity condition.

Lemma: Let $h \neq 0, h \geq 0$ be in $C_{0}\left(\mathbb{R}^{n}\right)$ with $\{h>0\}$ connected, and, for each $y>0$, suppose each component of $\{h>y\}$ meets $M=\{x: h(x)=\max h\}$. Then $h(x)=\sum_{k=1}^{\infty} b_{k}(x)$, where each b_{k} is non-negative, in C_{0}, and $\left\{b_{k}>y\right\}$ is connected (or empty) for each y.

Proof: Let $\#(y)$ denote the number of components of $\{h>y\}$. Since M is compect, $\#(y)<\infty$ for each y. Now $\#(y)$ is non-
decreasing, and $\#(y+0)=\#(y)$, (so that \# is right-continuous on $[0, \max h)$). The first statement is immediate; if the second were false, some component O of $\{h>y\}$ would contain at least two components of $\{h>\bar{y}\}$ for each $\bar{y}, y<\bar{y}<\max h$. Then there are points $x_{1} \neq x_{2}$ on $\theta \cap M$ such that for any arc γ lying in θ, joining x_{1} and x_{2} we have $y<h(\gamma(t)), 0 \leq t \leq 1$ and $h\left(\gamma\left(t_{-}\right)\right) \leq \bar{y}$ for some $t_{\bar{y}}$ in $(0,1)$, each $\bar{y} \in(y, \max h)$.. Then $h\left(v\left(t_{0}\right)\right) \leq y$ for some t_{0} (a limit point of $t_{y}^{\prime \prime} s$), which is absurd. Let $J=\{y: \#(y)>\#(y-0)\}$. Then since \# is integer valued, J has at most one limit point, namely max h, so J can be expressed as $0<y_{1}<y_{2}<\ldots\left(0<y_{1}\right.$, by right continuity).
Note that $\#(y)=1$ for $0 \leq y<y_{I}$. Now define
$b_{0}(x)=\min \left(y_{1}, h(x)\right)$, and denote the components of $\left\{h>y_{1}\right\}$ by $\theta_{11}, i=1, \ldots, \#\left(y_{1}\right)$. If $y_{1}<\max h$, set $b_{l i}(x)=\left\{\begin{array}{l}\min \left(\left(h(x)-y_{1}\right)^{+}, y_{2}\right), x \in \theta_{1 i} ; \\ 0 \quad \text { otherwi.se } .\end{array}\right.$ The definition of $b_{k i}, 1 \leq i \leq \#\left(y_{k}\right)$, is similar. By the construction each $b_{k i}$ satisfies the connected condition: $\left\{b_{k i}>y\right\}$ is cornected if nonempty. It is clear that $h=\sum_{k} \sum_{i=1}^{\#\left(y_{k}\right)} b_{k i}$. This completes the proof of the lemma.

Now suppose f is continuous and tends to 0 at ∞. Let θ_{k} denote the components of $\{\rho \neq 0\}, e_{k}= \pm 1$ denote the sign of f on θ_{k}, and set $f_{k}(x)=\varepsilon_{k} f(x)$ if $x \in \theta_{k}, f_{k}(x)=0$ otherwise. Then $f=\sum_{k} \varepsilon_{k} f_{k}$. Let $h_{k I}=T f_{k}, f_{k I}=f_{k}-T f_{k}$. Note that $h_{k I}$ is constant on each component of $\left\{f_{k I} \neq 0\right\}$. It now follows from the uniform continuity of f that if this process is indefinitely repeated - i.e., write
$f_{k I}=\sum_{\ell} \varepsilon_{k I \ell} P_{k I l}, h_{k I l}=T f_{k I l}, f_{k I \ell 2}=f_{k I \ell}-h_{k I \ell}$, etc., thet f. can be expressed as $\Sigma \pm b_{m}$, where each b_{m} satisfies the conditions of the Lemma. This yields the following theorem.

Theorem: If f is a continuous real-valued function on \mathbb{R}^{n} and tends to 0 at infinity, then f can be represented by a series $f=\sum_{k} \epsilon_{k} b_{k}, e_{n}= \pm I$, in which each b_{k} is continuous, nonnegative, tends to 0 at infinity, and which in addition. satisfies: $\left\{b_{k}>y\right\} i s$, for each y, connected or else empty. Moreover, if $b_{k} b_{l} \neq 0$, then $\varepsilon_{k}=\varepsilon_{l}$, and one of b_{k}, b_{l} is positive and constant on the support of the other.
(the support of a function g is the closure of $\{g \neq 0\}$).

It is evident that $\int|f(x)| d x=\sum_{m} \int\left|b_{m}(x)\right| d x$. If we had $\operatorname{supp}\left(\operatorname{grad} b_{i}\right) \cap \operatorname{supp}\left(\operatorname{grad} b_{j}\right)=\varnothing{ }_{\phi}^{m}$ for $i \neq j$ it would be nearly evident that the variations would add, where var $b \equiv \sup \left\{\int b \operatorname{div} \varphi d x: \varphi\right.$ a c^{∞} vector field with compact support and $\left.|\varphi|=\left(\sum_{j=1}^{n} \varphi_{j}^{2}\right)^{1 / 2} \leq 1\right\}$. Since the supports of the b_{m} are merely non-overlapping, some extra conditions on the b_{m} seem to be needed.

Proposition Suppose $\left\{f_{m}\right\}$ is a sequence of functions in $C_{0}\left(\mathbb{R}^{n}\right)$ which axe equi-Lipschitz continuous (i.e. for some K, $\left|f_{m}(u)-f_{m}(v)\right| \leq K|u-v|$, all m). If for each $i, j f_{i} f_{j} \geq 0$, and, if $i \neq j$, one of f_{i}, f_{j} is constant on the support of the other, then, with $f=\sum_{m} f_{m}$, if f is locally integrable, then $\operatorname{var} f=\Sigma \operatorname{var} f_{m}$. As a corollary of the proposition and the m
theorem, the decomposition described in the latter satisfies
$\int|f(x)| d x=\sum_{m} \int\left|b_{m}(x)\right| d x$ and var $f=\sum_{m} \operatorname{var} b_{m}$.
Proof of the proposition: We have to show that var $f \geq \Sigma \operatorname{var} f_{m}$. The idea is to find a smooth vector field $\varphi_{m},\left|\varphi_{m}\right| \leq 1$, with support in θ_{m} (defined to be the interior of the support of grad f_{m}, such that $\int f_{m}$ div $\varphi_{m} d x$ is close to var f_{m}. The condition on f_{i}, f_{j} for $i \neq j$ implies that $\operatorname{grad} f_{i}, \operatorname{grad} f_{j}$, have non-overlapping supports. Thus if φ_{m} is as above, then $\int f d i v \varphi_{m} d x=\sum_{k} \int f_{k} d i v \varphi_{m} d x=\int f_{m} d i v \varphi_{m} d x$, because supp $\varphi_{m} \cap \bar{Q}_{k}=\phi$ if $k \neq m$. Thus if $\int f_{m}$ div $\varphi_{m} d x \geq \operatorname{var} f_{m}-\epsilon / \mathcal{L}^{m}$, we have var $f \geq \int f \operatorname{div}\left(\sum_{k=1}^{K} \varphi_{k}\right) d x$ (since the φ_{k} have pairwise disjoint supports)

$$
=\sum_{k=1}^{K} \int_{k} f_{k} d v \varphi_{k} d x \geq \sum_{k=1}^{K} \operatorname{var} f_{k}-\epsilon
$$

Now we let K tend to infinity; since c is arbitrary we have the desired result. Thus the problem is to show that we can approximate $\operatorname{var} f_{k}$ at closely as desired by $\int f_{k}$ div $\varphi_{k} d x$, where φ_{k} has support in θ_{k}, is a C^{∞} vector field and $\left|\varphi_{k}\right| \leq 1$. We may drop the subscript k. Thus, given $e>0$, $\int f \operatorname{div} d x \geq \operatorname{var} f-\frac{1}{2} e$ for some C^{∞} vector field with compact support, $|(\mid x)| \leq 1$ for each x. At least this holds when var $f<\infty$; if var $f=+\infty$, we rake the right hand side $N+\frac{1}{2} e$ for some large N. We wish to find a vector field φ like $\$$, but with support inside $0=$ interior of closure of $\{f \neq 0\}$, so that $\int f$ div $\varphi d x \geq \operatorname{var} f-\varepsilon($ or $\geq N)$.

To do this I need a partition of unity related to a Whitney decomposition of $U=0 \cap$ Int (supp \#) . This may be found on pages

167-170 of [s]. The Whitney decomposition of a bounded open set U expresses it as the union of a denumerable collection of nonoverlapping clased cubes $Q_{j}, j \geq 1$, with
$I \leq \operatorname{dist}\left(Q_{j}, \partial U\right) /$ diam $Q_{j} \leq 4$. Iet each cube Q_{j} be expanded about its center by a factor $\frac{9}{8}$ and call the new cubes Q_{j}^{*}. Then $\frac{8}{11}<\operatorname{dist}\left(Q_{j}^{*}, \partial U\right) / \operatorname{diam} Q_{j}^{*}<4$, and each point of U belongs to at most. N of the cubes Q_{j}^{*}, where N depends only on n. The partition of unity starts with a C^{∞} function P, $0 \leq P \leq 1$, which is identically I on the cube Q_{0} of unit edge centered at 0 , and supported in $(9 / 8) Q_{0}$. Then P_{j}^{*} is defined by $P_{j}^{*}(x)=P\left(\left(x-c_{j}\right) / e_{j}\right)$, where c_{j} is the center of Q_{j} and e_{j} is its edge length. Finslly, $P_{j}(x)=P_{j}^{*}(x) / \sum_{l}^{\infty} P_{k}^{*}(x)$ gives a partition of unity for U. We need to use: $\left|\partial P_{j} / \partial x_{i}\right| \leq$ $A\left(\operatorname{diam} Q_{j}\right)^{-1}$, where A depends only or n. This follows from the properties of the cubes, the construction of P_{j}.

Now suppose $\operatorname{var} f-\frac{\lambda}{2} \varepsilon \leq \int f$ div $d x$. We have
$\int f \operatorname{div} \psi d x=\lim _{\delta \rightarrow 0} \int f\left(\Sigma_{\delta} P_{j}\right)$ div $d x$, where $\Sigma_{\delta} P_{j}$ denotes the sum over those j (finite in number) such that dist $\left(Q_{j}^{*}, \partial U\right) \geq 0$. Now, $\int f\left(\Sigma_{\delta} P_{j}\right) d i v \in d x=\int f \operatorname{div}\left(\left(\Sigma_{\delta} P_{j}\right) \downarrow\right) d x-\int f\left(\Sigma_{\delta} \operatorname{grad} P_{j}\right) d x$, since a div $b=$ div $a b-\operatorname{grad} a \cdot b$. The first term has the desired form. It remains to show that δ can be chosen sufficiently small that the second term on the right-hand side is Iess than, say, e/4. Since $\Sigma_{\delta} P_{j} \equiv 1$ if dist $(x, \partial U) \geq A \delta$, for some $A>1$ depending on n (by the geometric properties of the cubes \hat{Q}_{j}^{*}), and because of the estimate on the derivatives of the P_{j}, grad $\Sigma_{\delta} P_{j}=0$ if $\operatorname{dist}(x, \partial U)>A \delta$, and so
$\left|\operatorname{grad} \Sigma_{8} P_{f}\right| \leq C \delta^{-1}$, where C depends on n only. Thus since $|\forall| \leq I$ and $|f(x)| \leq K$ dist $(x, \partial U)$,
(*) $\quad\left|\int f \psi \cdot\left(\operatorname{grad} \Sigma_{8} P_{f}\right) d x\right| \leq K A \delta C \delta^{-1} \cdot \operatorname{meas}\{x: \delta<\operatorname{dist}(x, \Delta U)<A \delta\}$ which tends to 0 as $\delta \rightarrow 0$. Thus if δ_{0} is so small that $\left|\int f \operatorname{div} \psi d x-\int f\left(\Sigma_{\delta} P_{f}\right) \operatorname{div} d x\right|<e / 4$ for all $\delta<\delta_{o}$, we can choose 8 so small that the right-hand side of (*) is $<e / 4$.

Since this is done for each f_{k}, and the sum is locally integrable, and sum and integral oan be interchanged because of the condition $f_{i} f_{j} \geq 0$, the proof of the proposition is complete. Remark: The estimate (*) shows that if we know a rate of decay for meas $\{x: \delta$ <dist $(x, \partial U)<A \delta\}$, we can correspondingly weaken the condition on f. However, improvement in the result is more likely to come from a different approach.

Acknowledgement: Humke and O'Malley thought of doing the decomposition for continuous functions, and made a clearer argument than that in [B].

References

[B] Wm. Beckner, et al, eds., Conference on harmonic anslysis in honor of Antoni Zygmund, vol 1, pp 159-178: On the decomposition of $L_{I}^{I}(\mathbb{R})$ functions into humps, by Max Jodeit, Jr.
[S] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, 1970.

