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On a Decomposition of Co(]Rn)

Functions into Simple Component Pieces

Suppese f(x) is continuous snd tends to O at infinity.
Then f mway be expressed in a special way as the sum of a series:
f= ii hk s wWhere each hk is a "hump": ‘%30 y for scme o |
h, 1s non-decreasing on (-=,e) , non-increasing on (c,+®) > and
h (x) =0 as |x{ == . The b, "fit together":if n h, # 0, then
they receive the ssme sign, and one of them is cons’tant; .on the
suppor'b of the othgr. This means that if f 1is integrable, then
fl£(x)|ax = i f |n, (x}|ax , and, if £ is of bounded variation,
then var(f} = Zl; var(hk) . This latter is done in [B,pp 159-178].
The extension to continucus functions was done simply by Humke
and O'Malley (perscnal communicaticn).

What happens in n dimensions? The object is to express
fe Co(]Rn) (meaning f£=C at = and is continuous)as L#b,_ ,
where each bk is somehow"simple", and the bm "fit together"
appropriately. I wish to take "simple" to mean that for each y,
{v>y} is connected if not empty. 1In one dimension, this means
that b. is a "hump". In a dimensions, it a2llows the radial
function f(x)ﬂ = r(l-r)+ (rz |x])} to qualify as "simple". I
would like to; know whether thne space of continucus BV functions
can be treated in this way. BV is the collection of "functions"

f , locally integrable, with grad £ (in the sense of distribu-

tions) a vector-valued locally totally finite signed Borel measure.
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At present I can only treat the caze of Lipschitz functions which
tend to O at ® . In this note I will first tdlk about co(mn),

then about Lipschitz functions in C_ .

A non-linear operation. Let f£>0 be in C_ and suppose {t#0}
is connected. Eé.ch function in C  can be split into & (signed)
sum of such functions. Let M={x:f(x)=max f} . For an open
gset 6 , let compxS denote the compcnent of § containing x

(comp 8=4 3if x £6). Set
Tf(x) = sup{ly<f(x) : M N come{f>y} £8} ,

where sup }25 = 0 by convention. 1In effect, the graph of Tf

is formed by cutting "small hills" off the graph of f . Note
that Tf 1is constant on each component of {f-Tf#£0} , and

that the modulus of uniform continuity of Tf is noc greater than
that of f . It is not necessarily true that {Tf>y} is
connected for each y , because the set M need not be connected.
However, h =Tf can be written as a sum of functions which do

satisfy the connectivity condition.

Lemma: Let h# 0, h>0 be in C_(R") with {n>0} connected,
and, for each y>0C , suppcse each component of {h> y} meets
M={x:h(x) =max h} . Ther h(x) = k;lbk(x) , where each bk is
non-negative, in Co s and [bk>y} =is connected {or empty) for

each y .

Proof: Let #(y) dencte the number of components of {h>y} .

Since M is compect, #(y) <® for each y . Now #(y) is non-
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decreasing, and #(y+0) = #(y) , (so that # is right-continuous
on [O,max h)). The first statement is immediate; if the second
were false, some component © of {h>y} would contain at least
two components of {h>y} for each y , y<y <max h . Then
there are points Xy # X, on 6 N M such that for any arc vy
lying in & , joining x, and X, we have y<h{y(t)) , 0<t<1
and h('y(t)-r)) ._<_ y for some t;r in (0,1) , each y € (y,max h) .
Then h(\,f'(to)) <y for some‘ t, (a limit point of t)—r's }, which
is absurd. Let J = {y:#(y)>#(y-0)} . Then since # is integer
valued, J has at most one limit point,namely max h , so J can
be expressed as O<yl<y2<... (O<yl, by right continuity).

Note that #(y)=1 for 0<y<y; . Now define | | _

bo(x) = min(yl,h(x)). s and denote the components of {n> yl} by

6, > i=l,...,#(yl) .« If y,<max h, set

min((h.(X) -yl)+’y2) 3 X e Gli "
x) = The definition of
0} otherwise .

Py

i ki
satisfies the connected condition: {bki>y} is connected if non-
#(y,)
empty. It is clear that h=I X k b . This completes the
k=1 =%

, 1<i 5#(yk) , is similar. By the construction each b

proof of the lemma.
Now suppose f is continuous and tends to O at <« . Let

G

of £ on Gk , and set fk(x) = ekf(x) it x € 6, > fk(x) =0

denote the components of {f;(O] s € = + 1 dencte the sign

otherwise. Then f = 12{ ekf . Let hkl = Tf‘k R fkl = fk'Tfk .

Note that h , 1is constant on each component of {f . 40} . It

k1
now follows from the uniform continuity of f that if this

process is indefinitely repeated - i.e., write
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f can be expressed as I £ b , where each b~ satisfies the
m

conditions of the Lemma. This yields the following theorenm.

Theorem: If f is a continuous real-valued function on R° and
tends to O at infinity, then f can be represented by a series
f = ﬁ ekbk > &, = + 1, in which each bk is continuous, non-
negative, tends to O at infinity, and which in addition .

satisfies: {bk>y} is, for each y , connected or else emptly.

Moreover, if b, by # 0, then ¢, = ¢, »and one of b,,b, 1is

L
positive and c_onsta.nt on the support of the other.

(the support of a function g 1is the closure of {gf'O}).

It is evident that fle(x)|ax =2 flbm(x)ldx . If we had
supp(grad bi) N supp(grad bj) =;n61 for 1#j it would be nearly
evident that the variations would add, where

var b = sup{ J"b div @dx: ¢ a ¢" vector field with compact
support and |e| = ( gl (p:‘;)l/ 2 <1} . since the supports of the

bm are merely non-overlapping, some extra conditions on the bm

seem to be needed.

Proposition Suppose {fm} is a sequence of functions in co(mn)
which are equi-Lipschitz continuous (i.e. for some K ,

Ifm(u) -fm(v)l < K|u-v| , 811 m ). If for each 1, £,£520,

and, if 1£j , one of £5%; is constant on the support of the

other, then, with f =X fm , if £ 4is locally integrable, then
m
var £ = I var fm . As a corollary of the proposition and the
m
theorem, the decomposition described in the latter satisfies
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Jle(xNax = 12!3[ j'lbm(x)ldx and var f = i var b .

Proof of the proposition: We have to show that var £ > £ var fm .
The idea is to find a smooth vector field o, |p | <1 , with
support in 6 (defined to be the interior of the support of

grad £ ), such that [ 2 divedx is close to var £ . The

condition on f fa. for 1#j implies that grad £y » grad f

i? j?

have non-overlapping supports. Thus if P is as above, then

_[' f div cpmdx = i f fk div ‘Pmdx = I fmdiv cpmdx ’ begause

supp ¢ N @k=¢ if k#m . Thus if ffmdiv ¢ dx > var fm-e/em s
K _

we have var f > [f div( T

cpk)d.x (since the ¢, bave pairvise
kel |

disjoint supports)
K K
= Elj'fkdiv P dx > kEl\rav.r f.-€

Now we let K tend to infinity, since € 1s arbitrary we
have the desired result. Thus the problem is to show that we can
approximate var fk at closely as desired by J‘fkdiv tpkdx s where
P has support in @k s s & C‘=° vector fiei.d and lcpk! <1l . Ve
way drop the subscript k . Thus, given e>0 ,
j' f dive dx > var £ - -;: e for some C  vector field ¢ with
compact support, |[¥(x)| <1 for each x . At least this holds
when var f <e® ; if var f=+® , we make the right hand side
N+ %c for some large N . We wish to find a vector field ¢
like ¢ , but with support inside 6 = interior of closure of
{£#0} , sothat [ f div g dx> var £-¢ (or > N) .

To do this I need a partition of unity related to a Whitney

decomposition of U=6NInt(supp §) . This may be found on pages
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167-170 of [8]. The Whitney decomposition of a bounded open set
U expresses it as the union of a demumerable collection of non-
overlapping closed cubes Qj s J>1 > with

lSdist(Q,j,bU) / diam QJ. <Lk . Let each cube QJ e expanded
about its center by a factor % and call the new cubes Q; .
Then —181— < dist(Q;,bu)/ diam Q; <k , and each point of U
belongs to at most N of the cubes Q:
on n . The partition of unity starts with a ¢® function P s

, where N depends only

0<P<Ll , which is identically 1 on the cube @Q o of unit edge

*
centered et 0 , and supported in (9/8)q, - Then P is defined

by P*(x) = P((x-c,) /e.) , where c. is the center of Q. and

J S d J i . J

* *
e is its edge length. TFinally, Pj(x) = Pj(x) /T Pk(x) gives
' 1

a partition of wnity for U . We need to use: lej/bin <
A(diam Q,j)-l , where A depends cnly on n . This follows from
the properties of the cubes, the construction of J:’j .
Now suppose varf--é,’-eg‘]‘fdivt dx . We have
j'f div ¢ dx = ;’szo j' f(S‘.ij)dw ¥ dx , where 28133
*
sum over those J (finite in number) such that dist(Qj,bU)ZB .

denotes the

Now, [ £(EgPy)atv ¥ ax = [ £ div((ZgP;)¥)ax - [ £ v (Zggrad Py)ax,
since a div b = div ab - grad a-b . The first term has the
desired form. It remains to show that & can be chosen
sufficiently small that the second term on the right-hand side

is less than, say, € /4 . Since zapj =1 if aist(x,dU)>45 ,
for some A>1 depending on n (by the geometric properties of
the cubes Q,; ), and because of the estimate on the derivatives

of the P;j , grad Ean-aO if dist(x,0U) >A8 , and so
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1

| grad 26P1i'5 €& ~ , where C depends on n only. Thus since

[¢] <1 and |£(x)| < K dist(x,dU) ,
(*) | fré (graa ZBPJ)dxl < KasCs L . meas{ x: 5 <dist(x,dU) <Ad)

which tends to O as & =0 . Thus if 8 is so small that
[[£ qiv ¢ ax - ff(EGPJ)div ¢ dx| <e /b for all 8<8_ , we can
choose & so small that the right-hand side of (*) is <e/k .

Since this is done for each f » and the sum is locally

k
integrable, and sum and integral can be interchanged because of

the condition fifjgzo s the proof of the proposition is complete.

Remark: The estimate (¥) shows that if we know a rate of decay
for meas{x:5 <dist(x,dU) <A8} , we can correspondingly weaken
the condition on f . However, improvement in the result is more

likely to come from a different epproach.

Acknowledgement: Humke and O'Malley thought of doing the

decomposition for continuous functions, and made a clearer

argument than that in [B].
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