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 On the classification of set-valued functions

 Using a refined Baire classification of multifunction (i.e.

 closed set-valued functions), we present here some new results on

 multif unctions which are similar in spirit to some of the well-

 known theorems on functions due to Baire, Lebesgue, Hausdorff,

 Hahn and Banach. These results were developed in connection with a

 new notion of derivative [3] which is set-valued.

 1. Introduction. Given any topological space (Y ,ü), let

 P(Y) denote the space of all closed subsets of Y. Dsfine, for

 each U e Ü,

 U* - {F e P(Y): F c U) and U* - {F e P( Y): F n U * 0).

 We shall use the Vietoris topology on the apace P(Y) which is

 generated by the family {U^: U e U} u {U*: U e U}.
 Given any other topological space X, let M(X,Y) denote the

 space of all multlfunctlons <f>: X ♦ P(Y). We shall assume

 throughout that X is a perfect space, viz. every open set in X

 is an F^-set. Let M*(X,Y) and A^(X,Y) denote, further, the
 spaces of multlfunctlons in M(X,Y) whose values are

 nonempty or compact respectively. When Y is a topological vector

 space, we use similarly Mc(X,Y) to denote the space of convex-
 valued multlfunctlons in M(X,Y). We set, further,

 ^ c(X,Y) - *Ļ(X,Y) n Mc(X,Y), M*(X,Y) - M*(X,Y) n M^X.Y), etc.
 Next, given any countable ordinal number a, a

 multifunction $ e M(X,Y) will be said to be of Baire class a if

 for each open set G in P(Y) the set $ *(G) is of additive
 class a in X. Let $ be said, further, to be of lower or upper
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 Balre class a if for each open set TJ in Y the set <{> *(U*)
 or <J> (UA) repsectivley is of additive class a in X.

 We shall use B to denote the Baire class a and LB
 a a

 and UBg to denote the lower and upper Baire classes a
 respectively. Thus LBg and UBq are the well-known classes of
 lower and upper semicontinuous multifunctions respectively, or

 briefly LSC and USC multifunctions respectively, and Bq is simply
 the class of continuous multifunctions (see e.g. [5, p. 173]).

 The classes LB and UB have been considered by Kuratowski
 a a

 in one of his recent papers [6], under a different notation, where

 many of the known results on LSC and USC multifunctions have been

 extended to the general classes LB and ŪB . The results
 a a

 presented here are however new even for a =* 0.

 Given any pair of multifunctions $, (|> e M(X,Y), we say $ c (j>

 provided 4>(x) c <|»(x) for each x e X. The multifunctions $ u 4»

 and <J> n t|> are defined in turn by

 ($u40(x) - <f>(x) u 4j(x), (4>n<|>)(x) * <Kx) n 4»(*)» x e X.

 Next, a sequence of multifunctions {<)> } in M(X,Y) will be
 Tl

 said to converge to a multifunction <J> e M(X,Y) if the sequence

 {$ (x) } converges to $(x) in the Vietoris topology of P(Y) for
 n

 each x E X. Further, {<1»^} will be called nondecreasing or
 nonincreasing if ^ c $^1 <>r $n => $Iļ+ļ respectively for each

 CO iX>

 n. The multifunctions U , $ and D . d> are defined in turn n*l , n n»l . Tn

 by

 OO OO 00 00

 ( U 4> )(x) - {u <i> (*)} , ( n ij) )(x) - n <ļ» (x), X e X.
 n-1 n-1 n«l n-1

 Finally, if there exists a finite set of functions f^: X Y
 (i«l,2, . . ,n) such that 4» » f^, then <{i will be called an
 elementary multifunction and {f^: i * 1,2, ...,n) will be called
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 the elements of

 We state here further a few elementary results on

 multifunctions. These results have been obtained In [6] In the

 case when Y Is a compact metric space. Unless stated otherwise,

 we shall always assume a to be an arbitrary countable ordinal

 number.

 It Is clear from the definitions that a multifunction

 $ e Bq iff $ e LBq n UBQ . For a > 0 we have, on the other
 hand,

 1.1 THEOREM. If $ e M^(X,Y) and Y is second countable, then
 ò e B Iff M U n UB .
 a a a

 As regards the mutual relationship between the lower and upper

 Baire classes, we have

 1.2 THEOREM. Suppose $ e M(X,Y) where Y is a perfect space.

 (a) If 4 e UB , then f e LB . , . a , cffl . ,

 (b) If <t> is compact-valued and in LB^ , and if Y is
 further normal, then $ e

 Thus if e M^(X,Y)t where Y is a second countable perfect
 space, and if either (i) <f e UB^ or (ii) Y is normal and
 ^ e 11 , then $ e B . a , crfl

 1.3 THEOREM. If two multifunction 4», ti» e M(X,Y) are both

 in LB or in UB , then so is $ u <ļ>.
 (X OL

 Hence if all the elements of some elementary multifunction

 b e M(X,Y) are in B^ , it follows from Theorems 1.1 and 1.3 that
 $ e B^ provided Y is second countable, and this holds for
 o » 0 without any hypothesis on Y.

 To avoid further definitions, most of the results are

 presented here under the hypothesis of separability on Y. In the

 forthcoming paper we develop, however, a theory which applies to
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 nonseparable Y as well. An application of this theory yields

 extension of many results on the Baire classification of functions

 to functions with a nonseparable range. It yeilds also new results

 on the lower and upper Baire classes of real-valued functions which

 are defined similar to the Baire's definitions [1] of lower and

 upper semi continuous functions.

 2. Characterizations of LB and UB . We present here

 characterizations of mult i functions in LB and UB in terms of
 a a

 limits of monotone sequences of multifunctions in B^ . These
 results are similar to the Baire's characterizations of lower and

 upper 8emicontinuous real-valued functions (see [1] or (4, p.

 280]). There is however no duality between the classes LB^
 and UBa , and hence their characterizations are independent of
 each other.

 Let us state first a general result on the Baire class of

 limits of monotone sequences of multifunctions.

 2.1. THEOREM. Let {$q} be a sequence of multifunctions in
 M(X,Y) and suppose Y is T^.

 (a) If {$ } is nondecreasing and $ e LB for each n,
 n ti oc

 co

 then {<b > converges ° to U i ♦ which is in LB n converges ° n-l i rn o
 (b) If } is nonincreasing and $ is compact-valued and

 09

 in UB for each n, then {<ļ> } converges a to (1 , ł which is o n, n converges a n«l , Tn
 in UB .

 a

 2.2. THEOREM. Suppose Y is a separable metric space, $ e M*(X,Y)

 is complete-valued and that a > 0. Then <J> e LB^ iff it is the
 limit of a nondecreasing sequence of elementary multifunctions

 {(J) } whose elements are in B
 n et

 The above theorem is easily seen to contain the selection

 theorem of Kuratowski and Ryll-Nardzweaki [7]. It does not hold in
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 general for a » 0. But we do have in that case the following
 theorem on convex-valued multifunctions which In turn contains two

 selection theorems of Michael [9J.

 2.3. THEOREM. Suppose Y is a metrizable locally convex space»

 <t> e M*(X,Y) and that one of the following two conditions holds:

 (i) X is normal, Y is separable and <)> is complete-

 valued,

 (il) X is collectionwise normal and <$> is compact- valued.

 Then $ is LSC iff it is the limit of a nondecreasing

 sequence of elementary multifunction {^} whose elements are
 continuous.

 For the multifunction8 in UB^ we have similarly the
 following characterizations which hold for a > 0 and a - 0.

 2.4. THEOREM. Suppose Y is a locally compact separable metric

 space, $ e M (X,Y) and that a > 0. Then <ļ> e ÜB iff it is
 K OC

 the limit of a nonlncraasing sequence of compact-valued

 multifunctions H ) in B .
 n a

 2.5. THEOREM. Suppose X is normal, Y is a separable normed

 vector space, e (X,Y) and that there exists a continuous
 K, C

 multifunction 4* in M. (X,Y) such that <j> c <1*. Then $ is USC
 K, C

 iff it is the limit of a nonincreasing sequence of continuous

 multifunctions {$ } in M. (X,Y).
 n c

 3. Representation of multifunctions in B^ as limits of
 elementary multlfuctions in lower Balre classes. Let us state

 first a general result on the Balre clas6 of limits of sequences of
 multifunctions.

 3.1. THEOREM. Suppose Y is perfectly normal and let {$ } be a
 n
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 sequence of multifunctions in M(X,Y) which converges to <ļ>.

 (a) If (J) e OB for each n, then e LB .
 n ot et* i

 (b) If ♦ is compact-valued and e LB^ for each n,
 then 4» e UB , . .

 Ctrl ,

 (c) If is compact- valued, Y is second countable and

 <b e B for each n , then <|> e B .. .
 ti a erri

 The following theorem extends a well-known theorem on

 functions [5, p. 390] to multifunctions and it is easy to see that

 the result on functions is contained in this theorem.

 3.2. THEOREM. Suppose Y is separable and metrizable,

 eM£(X,Y) and that a > 1. If $ e Ba , then $ is the limit
 of a sequence of elementary multifunctions {^} whose elements are
 in Bai re classes lower than a.

 Moreover, if a m X+l where ' is a limit ordinal, then the

 elements of each can be chosen to be in Baire classes lower
 n

 than X.

 In the case when a « 1 we have, on the other hand,

 3.3. THEOREM. Suppose 4 eM*(X,Y), where X is normal and Y is

 a separable metrizable asbolute retract (for metrizable spaces).

 Then $ e B^ iff it is the limit of a sequence of elementary
 multifunctions {$ } whose elements are continuous.

 n

 The above theorem contains a similar result on functions which

 generalizes the existing results in that direction (see e.g. [5, p.

 391] and Banach [2]).

 Next, we obtain with the help of the above theorems an

 extension of the classical Lebesgue-Hausdorff theorem [5, p. 393]

 to multifunctions. The analytic classes of multifunctions are

 defined as usual using transfinite induction. The analytic class

 0 consists of all continuous multifunctions and, for each

 countable ordinal a > 0, the analytic class a is defined to be
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 the class oť all pointwise limitò of sequences of multifunctions of

 analytic classes lower than a.

 3.4. THEOREM. Suppose $ e M£(X,Y), where X Is normal and Y is
 a separable metrlzable absolute retract. Then 4 is in analytic

 class a iff it is in B or B according as a is finite or
 OL Ctrl

 infinite.

 The same holds for a function f: X > Y in terms of its

 analytic class as a function.

 The last part of the above theorem generalizes all the

 existing versions of the Lebesgue-Hausdorff theorem due to Lebesgue

 [81, Hausdorff [4], Kuratowski [5, p. 393] and Banach [2].

 4. Interposition theorems. We present here two interposition

 theorems on multifunctions which are similar to the interposition

 theorem of Hahn on real-valued functions (see [4, p. 281]).

 4.1. THEOREM. Suppose <fr, 4> e M(X,Y), where Y is a separable

 metric space, <t> is compact- valued and <|> is complete-valued, and

 let a>0. If <ļ> e UB , e LB and $ c <|>, then there exists
 OC OC

 a multifunction 9 e B such that 6 c 0 c <ļ>.
 a

 The above theorem does not hold in general for a ■ 0. But we

 do have in that case the following theorem on convex-valued

 multifunctions. The weak continuity refers here to the continuity

 relative to the Vietoris topology generated by the weak topology of
 Y.

 4.2. THEOREM. Suppose X is normal, Y is a separable reflexive

 normed vector space, » 4> e M£(X,Y) and that one of the following
 conditions holds:

 (1) <J> is compact-valued and 4* is nonempty-valued,
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 iii) <j> has nonempty weakly compact values ani the dual apace

 Y* is separable.

 If <t> e USC, 4» is LSC and $ c 4», then there exists a weakly

 continuous multifunction 9 e M*(X,Y) with weakly compact values

 such that $ c 0 c 4,.
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