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 QUALITATIVE ASPECTS OF DIFFERENTIATION

 The talk with the above title, which was presented at the

 Sixth Summer Symposium on Real Analysis at the University of

 Waterloo, was largely based on [5] , a joint work with Lee Larson.

 This article is a summary of that presentation, supplemented with

 some subsequent observations. The notions of qualitative limits,

 qualitative continuity, and qualitative derivatives were intro-

 duced by S. Marcus [9 - 11]. Loosely speaking, qualitative

 differentiation may be thought of as an attempt at a category

 analogue of approximate differentiation, where the set neglected

 near a point in the computation of difference quotients if of

 first category at the point in the former setting instead of

 density zero at the point as in the latter.

 This qualitative limiting process of Marcus is not a

 direct analogue of the approximate process in that it is not

 sufficiently delicate to capture the analogue of a point of

 density. (A potentially more promising approach has recently

 been advanced by W. Wilczyňski [15].) There are, nonetheless,

 numerous parallels between approximate and qualitative notions.

 For example, corresponding to the well-known fact that a function

 f : R R is Lebesgue measurable if and only if it is approximately

 continuous except at a measure zero set of points, we have that

 54



 a function f : R -»• R has the property of Baire (f 6 g) if and only

 if it is qualitatively continuous except at a first category set

 of points [5]; similarly, corresponding to the result of R. J.

 O'Malley [12] that the set of points at which f : R -»• R attains

 a strict approximate maximum is of measure zero, we have that the

 set of points at which f attains a strict qualitative maximum is

 of first category [4], In this current presentation we wish to

 concentrate on qualitative differentiation.

 Corresponding to the upper right Dini derivate of f at x,
 + +

 D f(x), we let Q f(x) denote the upper right qualitative derivate

 of f at x; i.e. ,

 Q+f(x) = infiy : it : f(t) - f(x) > y(t - x)} is first

 category in some right neighborhood of x} .

 Then Q+f(x), Q f(x), and Q_f(x) are defined analogously and if all

 four are equal, the common value is called the qualitative deriv-

 ative of f at x and is denoted by f^'(x). If we use symmetric
 difference quotients, we may similarly define upper and lower

 g

 symmetric qualitative derivates, Q f(x) and Qgf(x), and in the

 situation where these two are equal, denote their common value by

 f (x) , the qualitative symmetric derivative of f and x. It is

 convenient to let C (f) denote the set of points at which f is

 qualitatively continuous.

 Several authors have observed that if a function has a finite

 qualitative derivative everywhere on R, then it actually has an

 ordinary derivative everywhere on R [1,2,8]. Using the approach

 taken by J. L. Leonard [8], it is easy to see that if f has a
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 finite right qualitative derivative at each point of R, then it

 has an ordinary right derivative everywhere. Leonard also

 observed that finiteness is necessary in this result. In [5] it

 is shown that finiteness is not needed in the bilateral case.

 Theorem 1. If f : R -»■ R has a qualitative derivative everywhere,

 then it has an ordinary derivative everywhere.

 Examples of symmetry results that can be obtained for qual-

 itative derivates are the following:

 Theorem 2. If f : R -*■ R is arbitrary and

 A = {x : Q f(x) = Q+f(x) and Q_f(x) = Q+f(x)}

 B = {x : -o» » Q_f(x) £ Q+f(x) <_ Q f(x) <_ Q+f(x) = 00 }

 C = {x : -» = Q+f(x) <_ Q_f(x) £ Q+f(x) <_ Q f(x) = 00 }

 then (i) R'(A U B U C) is first category ,

 (ii) C^(f)'(A U B U C) ij5 g-porous ,
 (iii) jĻf feg, RVA i£ first category ,

 and (iv) i_f f ļs monotone on a. residual set S, then S'A is

 g-porous.

 From Theorem 2, part (ii), it readily follows that the set

 of points at which a function has a finite one-sided qualitative

 derivative but does not have a qualitative derivative is o-porous,

 paralleling a result of L, Zajíček [16] concerning approximate

 differentiation. An alternate approach for obtaining this and

 related qualitative results is explored in [3], where a result
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 Involving qualitative angular cluster sets is proved and then

 coupled with the Jarnik-Blumberg method to show that if A is as

 in Theorem 2 and

 D « {x : max{ ¡Q+f (x) ¡ , ¡Q+f (x) ¡ } = max{ ļQ_f (x) ¡ , Iq f(x)ļ} = »>,

 then R'(A U D) is a-porous. This latter result again parallels

 the approximate case [16].

 During the Symposium at the University of Waterloo, Professor

 James Foran called my attention to a recent paper of D. Preiss

 and L. Zajíček [13], in which a significant improvement on the

 result alluded to above concerning the symmetry of approximate

 derivates is made. I wish to take this opportunity to show how

 the qualitative version of their result may easily be obtained

 from the results noted to this point by proving the following

 theorem.

 Theorem 3. If f : R R i£ arbitrary , Ü A is as in Theorem 2^

 and if

 E = {x : Q_f (x) = and Q+f(x) = +»}

 and

 F = {x : (x) = -oo and Q f(x) = 4«},

 then R'(A U E U F) is o-porous.

 The proof will rest on two simple lemmas.
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 Lemma 1. Let f : R ->• R be arbitrary and let

 S = {x : max{Q*f (x) ,Q f(x)} < +00} . Then SNC^(f) is countable .

 Proof. It is an easy matter to see that the set

 T = {x : q-lim f(t) ^ q-lim f(t) or q-lim f(t) ^ q-lim f(t)}
 - + - +

 t->x t-*x t->-x t-*x

 is countable, where q-lim f(t) denotes the qualitative limit
 fc+x-

 superior of f at x from the left and so forth. (In [4] a slightly

 more general statement was proved, indicating that the set of

 points at which the left and right qualitative cluster sets are

 not identical is countable.)

 Now, let x€ S'T. Since Q+f(x) < +», it follows that

 q-lS f(t) < f(x),
 +

 t+x

 and, similarly, since Q f(x) < +<*>,

 q-lim f(t) f(x).

 t+x~

 From these two inequalities and the assumption that x # T, it

 follows that x <= Cq(f), completing the proof of this lemma.

 Lemma 2. Let f : R -*■ R be arbitrary and let A and S be as defined

 in Theorem 2 and Lemma jL, respectively. Then S'A jls g-porous .

 Proof. This follows immediately from Lemma 1, Theorem 2 (part

 (ii)), and the observation that

 s n B = s n c = Í.
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 Turning now to the proof of Theorem 3, recall that we

 already know

 R'(A U D) is a-porous

 and, hence, that

 (1) [R'(A U e U F) ] Nd is cr-porous,

 where A,D,E, and F are as described previously.

 Next, let X € [R'(A U E u F)] n D. Then, if we let S be as

 defined in Lemma 1 and S' be the analogous set for the function

 -f, it is easy to see that x e S u S'. It then follows from

 Lemma 2 that

 (2) [R'(A U E U F)] n D is o-porous.

 The theorem follows from (1) and (2).

 It should be noted that the arguments [16 and 13] needed to

 establish the approximate version of Theorem 3 are significantly

 less trivial than those needed in the present qualitative setting.

 Concerning qualitative symmetric derivates, we obtain the

 following [5]:

 Theorem 4. If f : R R is in ß and if V denotes the set of

 points x at which both

 Q f(x) » min{Q_f (x) ,Q,f (x) } and QSf(x) » max{Q f (x) ,Q+f (x) } ,

 then Cq(f) 'V ^s o-porous .
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 It readily follows that if f S $ and f has a qualitative

 symmetric derivative everywhere, then f ' exists at a residual

 set of points. It is also shown [5] that such a qualitative

 symmetric derivative is in Baire class one and that if this

 derivative is non-negative on R, then f must be nondecreasing on

 its set of points of qualitative continuity. Techniques employed

 for these latter results and related theorems are based on those

 used by Larson in [6 and 7] and Thomson in [14].
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