Michał Morayne, Instytut Matematyczny, Uniwersytet Wrocławski, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland. Current address: Department of Mathematics, University of Alberta, Edmonton, Canada T6G 2G1.

Differentiability of Peano type functions

- multidimensional case

Let us introduce some notions. Let $f = (f_1, \dots, f_m) : R^n \rightarrow R^m$. We say that f is:

k-differentiable if for each $x_{\epsilon} R^{n}$ there exists a sequence $1 \le i_{1} < \ldots < i_{k} \le m$ such that the function $(f_{i_{1}}, \ldots, f_{i_{k}})$ is differentiable at x;

k-measurable if there exists a sequence $l \le i_1 < \ldots < i_k \le m$ such that the function $(f_{i_1}, \ldots, f_{i_k})$ is a Lebesgue measurable mapping from R^n to R^k .

In [1] the following theorem has been proved:

Theorem. For arbitrary natural numbers $m,n_> 0$ and $k_\ge 0$ the following sentences are equivalent:

(1) $2 \stackrel{5}{\sim} \leq 5_{n-k}$

(2) there exists a function $f : \mathbb{R}^n \to \mathbb{R}^{n+m}$ onto \mathbb{R}^{n+m} which is n-differentiable and k-measurable.

52

(1) is known to be independent of the set theory ZFC (see [4]). Some other related questions concerning k-differentiability of functions f : $\mathbb{R}^n \rightarrow \mathbb{R}^{n+m}$ and modifications of (2) were also considere in [1]. The results in [1] generalize theorems of [2] and [3].

References

- [1] J. Cichoń, M. Morayne, On differentiability of Peano type functions III (to appear).
- [2] M. Morayne, On differentiability of Peano type functions I, Coll. Math. (to appear).
- [3] M. Morayne, On differentiability of Peano type functions II, Coll. Math. (to appear).
- [4] R. Solovay, Independence results in the theory of cardinals, (Abstract). Notices Amer. Math. Soc. 10 (1963), p.595.